Papers by Calphysics
Authors and Grantees |
Gravity and the Quantum Vacuum Inertia Hypothesis
Alfonso Rueda & Bernard Haisch, Annalen der Physik, Vol. 14,
No. 8, 479-498 (2005).
Review of Experimental Concepts for Studying the Quantum
Vacuum Fields
E. W. Davis, V. L. Teofilo, B. Haisch, H. E.
Puthoff, L. J. Nickisch, A. Rueda and D. C. Cole, Space Technology and
Applications International Forum (STAIF 2006), p. 1390 (2006).
Analysis of Orbital Decay Time for the Classical Hydrogen
Atom Interacting with Circularly Polarized Electromagnetic Radiation
Daniel C. Cole & Yi Zou, Physical Review E, 69, 016601, (2004).
Quantum Mechanical Ground State of Hydrogen Obtained from
Classical Electrodynamics
Daniel C. Cole & Yi Zou, Physics
Letters A, Vol. 317, No. 1-2, pp. 14-20 (13 October 2003),
quant-ph/0307154 (2003).
Update
on an Electromagnetic Basis for Inertia, Gravitation, the Principle of
Equivalence, Spin and Particle Mass Ratios
Bernard Haisch,
Alfonso Rueda, L. J. Nickisch & Jules Mollere, in Amer. Inst.
Physics Conf. Proc., Space Technology and Applications International
Forum (STAIF-2003), Ed. Mohamed S. El-Genk, pp. 922 - 931, gr-qc/0209016
(2003).
Connectivity and the Origin of Inertia
L. J.
Nickisch & Jules Molere, preprint physics/0205086 (2002).
Geometrodynamics, Inertia and the Quantum
Vacuum
Bernard Haisch & Alfonso Rueda, AIAA paper 2001-3360,
presented at AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake
City, July 8-12, (2001).
Inertial mass and the quantum vacuum fields
Bernard
Haisch, Alfonso Rueda & York Dobyns, Annalen der Physik, 10, 393-414
(2001).
Stochastic nonrelativistic approach to gravity as
originating from vacuum zero-point field van der Waals forces
Daniel C. Cole, Alfonso Rueda, Konn Danley, Phys. Rev. A, 63,
054101, (2001).
Gravitation as a Super SL(2,C) Gauge Theory
R. S.
Tung, Proc. 9th Marcel Grossman Conf. (2001).
Quasi-local "Conserved Quantities"
R. S. Tung,
Proc. 9th Marcel Grossman Conf. (2001).
Covariant Hamiltonian Boundary Conditions in General
Relativity for Spatially Bounded Spacetime Regions
Stephen Arno
& Roh S. Tung (2001).
Properties of the Symplectic Structure of General
Relativity for Spatially Bounded Spacetime Regions
Stephen Arno
& Roh S. Tung (2001).
Chern-Simons Term for BF Theory and Gravitation as a
Generalized Toplogocial Field Theory in Four Dimensions
H.Y. Guo,
Y. Ling, R.-S. Tung & Y.-Z. Thang. (2002).
Hybrid Quintessence with an End or Quintessence from
Branes and Large Dimensions
Edi Halyo, Stanford U.-ITP-01-28
(2002).
De
Sitter Entropy and Strings
Edi Halyo, Stanford U.-ITP-01-31
(2001).
Universal Counting of Black Hole Entropy by Strings on the
Stretched Horizon
Edi Halyo, Stanford U.-ITP-01-xx (2002).
Strings and the Holographic Description of Asymptotically
de Sitter Spaces
Edi Halyo, Stanford U.-ITP-02-03 (2002).
Holographic Inflation
Edi Halyo, Stanford
U.-ITP-01-03 (2002).
Domain Walls with Strings Attached
Renata Kallosh,
Sergey Prokushkin & Marina Shmakova, JHEP, accepted (2001).
Domain Walls, Black Holes, and Supersymmetric Quantum
Mechanics
Klaus Behrndt, Sergei Gukov & Marina Shmakova,
Nucl. Phys. B., 601, 49, (2001).
One-loop corrections to the D3-brane action
Marina
Shmakova, Phys. Rev. D, 62, 104009, (2000).
Excision of Singularities by Stringy Domain
Walls
Renata Kallosh, Thomas Mohaupt & Marina Shmakova,
Stanford Univ. Rept. No. SU-ITP 00/27 (2000).
Partial Renormalization of the Stress Tensor Four-Point
Function in N=4 SYM and AdS/CFT
B. Eden, A. Petkou, C. Schubert,
E. Sokatchev, submitted to Nucl. Phys. B (2000).
Gravitational Energy-Momentum in the Tetrad and Quadratic
Spinor Representations of General Relativity
R. S. Tung & J.
M. Nester, in Proc. Vigier III Symp. (Aug. 21-25, 2000, U. C. Berkeley),
Kluwer Acad. Press, in press, (2001).
Zero-point field induced mass vs. QED mass
renormalization
Giovanni Modanese, in Proc. 18th Advanced ICFA
Beam Dynamics Workshop on "Quantum Aspects of Beam Physics", Capri,
Italy, October 15-20, 2000, in press (2001).
The
dipolar zero-modes of Einstein action: An informal summary with some new
issues
Giovanni Modanese, in Proc. Vigier III Symp. (Aug. 21-25,
2000, U. C. Berkeley), Kluwer Acad. Press, in press, (2001).
Inertial mass and vacuum fluctuations in quantum field
theory
Giovanni Modanese. (2000)
The
Paradox of Virtual Dipoles in the Einstein Action
Giovanni
Modanese, Phys. Rev. D, 62, 087502 (2000).
Large
"Dipolar" Vacuum Fluctuations in Quantum Gravity
Giovanni
Modanese, Nucl. Phys. B, Vol. 588, 419 (2000).
The
Case for Inertia as a Vacuum Effect: a Reply to Woodward &
Mahood
Y. Dobyns, A. Rueda & B.Haisch, Foundations of
Physics, Vol. 30, No. 1, 59 (2000).
(NOTE — This paper discusses the
differences between the quantum vacuum approach to inertia and a Machian
approach.)
On the
relation between a zero-point-field-induced inertial effect and the
Einstein-de Broglie formula
B. Haisch & A. Rueda, Physics
Letters A, 268, 224, (2000).
Toward an Interstellar Mission: Zeroing in on the
Zero-Point-Field Inertia Resonance
B. Haisch & A. Rueda,
Space Technology and Applications International Forum (STAIF-2000),
Conference on Enabling Technology and Required Developments for
Interstellar Missions, Amer. Inst. Phys. Conf. Publ. 504, p. 1047
(2000).
Earlier Scientific
Publications on SED and Inertia
|
Electromagnetic Zero Point Field as Active Energy Source
in the Intergalactic Medium
A. Rueda, H. Sunahata & B.
Haisch, 35th AIAA/ASME/SAE/ASEE AIAA Joint Propulsion Conference, AIAA
paper 99-2145, (1999).
Progess in Establishing a Connection Between the
Electromagnetic Zero-Point Field and Inertia
B. Haisch & A.
Rueda, Space Technology and Applications International Forum-99,
American Institute of Physics Conference Proceedings 458, Mohammed S.
El-Genk, ed., p. 988 (1999).
Inertial Mass Viewed as Reaction of the Vacuum to Accelerated Motion
A. Rueda & B. Haisch, Proc. NASA Breakthrough Propulsion Physics
Workshop, NASA/CP-1999-208694, p. 65 (1999).
The Zero-Point Field and the NASA Challenge to Create the
Space Drive
B. Haisch & A. Rueda, Proc. NASA Breakthrough
Propulsion Physics Workshop, NASA/CP-1999-208694, p. 55 (1999).
Advances in the Proposed Electromagnetic Zero-Point Field
Theory of Inertia
B. Haisch, A. Rueda & H. E. Puthoff, 34th
AIAA/ASME/SAE/ASEE AIAA Joint Propulsion Conference, AIAA paper 98-3143,
(1998).
Contribution to inertial mass by reaction of the vacuum to
accelerated motion
A. Rueda & B. Haisch, Foundations of
Physics, Vol. 28, No. 7, pp. 1057-1108 (1998).
Inertial mass as reaction of the vacuum to acccelerated
motion
A. Rueda & B. Haisch, Phys. Letters A, vol. 240, No.
3, pp. 115-126, (1998).
An Electromagnetic Basis for Inertia and Gravitation: What
are the Implications for 21st Century Physics and Technology
B.
Haisch & A. Rueda, CP-420, Space Technology and Applications
International Forum (M. S.El-Genk, ed), DOE Conf. 960103, American Inst.
of Physics, p. 1443 (1998).
The
Zero-Point Field and Inertia
B. Haisch & A. Rueda, in
"Causality and Locality in Modern Physics," G. Hunter, S. Jeffers &
J.-P. Vigier (eds.), Kluwer Acad. Publ., pp. 171-178, (1998).
Electromagnetic Vacuum and Inertial Mass
A. Rueda & B.
Haisch, in "Causality and Locality in Modern Physics," G. Hunter, S.
Jeffers & J.-P. Vigier (eds.), Kluwer Acad. Publ., pp. 179-186,
(1998).
Physics of the Zero-Point-Field: Implications for Inertia,
Gravitation and Mass
B. Haisch, A. Rueda & H.E. Puthoff,
Speculations in Science & Technology, Vol. 20, pp. 99–114, (1997).
Reply to Michel's "Comment on Zero-Point Fluctuations and
the Cosmological Constant"
B. Haisch & A. Rueda, Astrophys.
J., 488, 563, (1997).
Quantum and classical statistics of the electromagnetic
zero-point-field
M. Ibison & B. Haisch, Physical Review A,
54, pp. 2737-2744, (1996).
Vacuum Zero-Point Field Pressure Instability in
Astrophysical Plasmas and the Formation of Cosmic Voids
A.
Rueda, B. Haisch & D.C. Cole, Astrophysical Journal, Vol. 445, pp.
7-16 (1995).
Inertia as a zero-point-field Lorentz force
B.
Haisch, A. Rueda & H.E. Puthoff, Physical Review A, Vol. 49, No. 2,
pp. 678-694 (1994).
Extracting energy and heat from the vacuum
D. C.
Cole & H.E. Puthoff, Physical Review E, Vol. 48, No. 2, pp.
1562-1565 (1993).
Ground state of hydrogen as a
zero-point-fluctuation-determined state
H.E. Puthoff, Physical
Review D, Vol. 35, No. 10, pp. 3266-3269 (1987).
Extracting electrical energy from the vacuum by cohesion
of charged foliated conductors
R. L. Forward, Physical Review B,
Vol. 30, No. 4, pp. 1700-1702 (1984).