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Preface

These lecture notes grew out of an M.Sc. course on differential
geometry which I gave at the University of Leeds 1992. Their main
purpose is to introduce the beautiful theory of Riemannian Geometry
a still very active area of mathematical research. This is a subject with
no lack of interesting examples. They are indeed the key to a good
understanding of it and will therefore play a major role throughout
this work. Of special interest are the classical Lie groups allowing
concrete calculations of many of the abstract notions on the menu.

The study of Riemannian geometry is rather meaningless without
some basic knowledge on Gaussian geometry that i.e. the geometry of
curves and surfaces in 3-dimensional space. For this I recommend the
excellent textbook: M. P. do Carmo, Differential geometry of curves
and surfaces, Prentice Hall (1976).

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some topology. The most
important results stated in the text are also proven there. Others are
left to the reader as exercises, which follow at the end of each chapter.
This format is aimed at students willing to put hard work into the
course.

For further reading I recommend the interesting textbook: M. P.
do Carmo, Riemannian Geometry, Birkhäuser (1992).

I am grateful to my many enthusiastic students who throughout the
years have contributed to the text by finding numerous typing errors
and giving many useful comments on the presentation.

Norra Nöbbelöv, 17 February 2015

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

On the 10th of June 1854 Georg Friedrich Bernhard Riemann (1826-
1866) gave his famous ”Habilitationsvortrag” in the Colloquium of the
Philosophical Faculty at Göttingen. His talk ”Über die Hypothesen,
welche der Geometrie zu Grunde liegen” is often said to be the most
important in the history of differential geometry. Johann Carl Friedrich
Gauss (1777-1855), at the age of 76, was in the audience and is said to
have been very impressed by his former student.

Riemann’s revolutionary ideas generalized the geometry of surfaces
which had been studied earlier by Gauss, Bolyai and Lobachevsky.
Later this lead to an exact definition of the modern concept of an
abstract Riemannian manifold.

The development of the 20th century has turned Riemannian ge-
ometry into one of the most important parts of modern mathematics.
For an excellent survey of this vast field we recommend the following
work written by one of the main actors in the field: Marcel Berger, A
Panoramic View of Riemannian Geometry, Springer (2003).
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CHAPTER 2

Differentiable Manifolds

In this chapter we introduce the important notion of a differen-
tiable manifold. This generalizes curves and surfaces in R3 studied in
classical differential geometry. Our manifolds are modelled on the stan-
dard differentiable structure on the vector spaces Rm via compatible
local charts. We give many examples, study their submanifolds and
differentiable maps between manifolds.

Let Rm be the standard m-dimensional real vector space equipped
with the topology induced by the Euclidean metric d on Rm given by

d(x, y) =
√

(x1 − y1)2 + . . .+ (xm − ym)2.

For a non-negative integer r and an open subset U of Rm we shall by
Cr(U,Rn) denote the r-times continuously differentiable maps from
U to Rn. By smooth maps U → Rn we mean the elements of

C∞(U,Rn) =
∞∩
r=0

Cr(U,Rn).

The set of real analytic maps from U to Rn will be denoted by
Cω(U,Rn). For the theory of real analytic maps we recommend the
book: S. G. Krantz and H. R. Parks, A Primer of Real Analytic Func-
tions, Birkhäuser (1992).

Definition 2.1. Let (M, T ) be a topological Hausdorff space with a
countable basis. ThenM is called a topological manifold if there ex-
ists a positive integer m, for each point p ∈M an open neighbourhood
U of p and a continuous map x : U → Rm which is a homeomorphism
onto its image x(U). This is an open subset of Rm. The pair (U, x) is
called a (local) chart (or local coordinates) on M . The integer m is
called the dimension of M . To denote that the dimension of M is m
we write Mm.

According to Definition 2.1 a topological manifold M is locally
homeomorphic to the standard Rm for some natural number m. We
shall now introduce a differentiable structure on M via its local charts
and turn M into a differentiable manifold.
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8 2. DIFFERENTIABLE MANIFOLDS

Definition 2.2. LetM be a topological manifold. Then a Cr-atlas
on M is a collection

A = {(Uα, xα)| α ∈ I}
of local charts on M such that A covers the whole of M i.e.

M =
∪
α

Uα

and for all α, β ∈ I the corresponding transition maps

xβ ◦ x−1
α |xα(Uα∩Uβ) : xα(Uα ∩ Uβ) ⊂ Rm → Rm

are r-times continuously differentiable.
A chart (U, x) on M is said to be compatible with a Cr-atlas A

if the union A ∪ {(U, x)} is a Cr-atlas. A Cr-atlas Â is said to be
maximal if it contains all the charts that are compatible with it. A
maximal atlas Â on M is also called a Cr-structure on M . The pair
(M, Â) is said to be a Cr-manifold, or a differentiable manifold of

class Cr, if M is a topological manifold and Â is a Cr-structure on M .
A differentiable manifold is said to be smooth if its transition maps
are C∞ and real analytic if they are Cω.

It should be noted that a given Cr-atlas A on a topological manifold
M determines a unique Cr-structure Â on M containing A. It simply
consists of all charts compatible with A.

Example 2.3. For the standard topological space (Rm, T ) we have
the trivial Cω-atlas

A = {(Rm, x)| x : p 7→ p}
inducing the standard Cω-structure Â on Rm.

Example 2.4. Let Sm denote the unit sphere in Rm+1 i.e.

Sm = {p ∈ Rm+1| p21 + · · ·+ p2m+1 = 1}
equipped with the subset topology induced by the standard T on Rm+1.
Let N be the north pole N = (1, 0) ∈ R×Rm and S be the south pole
S = (−1, 0) on Sm, respectively. Put UN = Sm \ {N}, US = Sm \ {S}
and define xN : UN → Rm, xS : US → Rm by

xN : (p1, . . . , pm+1) 7→
1

1− p1
(p2, . . . , pm+1),

xS : (p1, . . . , pm+1) 7→
1

1 + p1
(p2, . . . , pm+1).

Then the transition maps

xS ◦ x−1
N , xN ◦ x−1

S : Rm \ {0} → Rm \ {0}
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are given by

x 7→ x

|x|2

so A = {(UN , xN), (US, xS)} is a Cω-atlas on Sm. The Cω-manifold

(Sm, Â) is called the m-dimensional standard sphere.

Another interesting example of a differentiable manifold is the m-
dimensional real projective space RPm.

Example 2.5. On the set Rm+1 \ {0} we define the equivalence
relation ≡ by

p ≡ q if and only if there exists a λ ∈ R∗ such that p = λq.

Let RPm be the quotient space (Rm+1 \ {0})/ ≡ and

π : Rm+1 \ {0} → RPm

be the natural projection mapping a point p ∈ Rm+1 \ {0} onto the
equivalence class [p] ∈ RPm i.e. the line

[p] = {λp ∈ Rm+1| λ ∈ R∗}

through the origin generated by p. Equip RPm with the quotient topol-
ogy induced by π and T on Rm+1. For k ∈ {1, . . . ,m + 1} define the
open subset

Uk = {[p] ∈ RPm| pk ̸= 0}
of RPm and the charts xk : Uk ⊂ RPm → Rm by

xk : [p] 7→ (
p1
pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
).

If [p] ≡ [q] then p = λq for some λ ∈ R∗ so pl/pk = ql/qk for all l. This
means that the map xk is well defined for all k. The corresponding
transition maps

xk ◦ x−1
l |xl(Ul∩Uk) : xl(Ul ∩ Uk) ⊂ Rm → Rm

are given by

(
p1
pl
, . . . ,

pl−1

pl
, 1,

pl+1

pl
, . . . ,

pm+1

pl
) 7→ (

p1
pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
)

so the collection

A = {(Uk, xk)| k = 1, . . . ,m+ 1}

is a Cω-atlas on RPm. The differentiable manifold (RPm, Â) is called
the m-dimensional real projective space.



10 2. DIFFERENTIABLE MANIFOLDS

Example 2.6. Let Ĉ be the extended complex plane given by

Ĉ = C ∪ {∞}
and put C∗ = C \ {0}, U0 = C and U∞ = Ĉ \ {0}. Then define the

local coordinates x0 : U0 → C and x∞ : U∞ → C on Ĉ by x0 : z 7→ z
and x∞ : w 7→ 1/w, respectively. The corresponding transition maps

x∞ ◦ x−1
0 , x0 ◦ x−1

∞ : C∗ → C∗

are both given by z 7→ 1/z so A = {(U0, x0), (U∞, x∞)} is a Cω-atlas on

Ĉ. The real analytic manifold (Ĉ, Â) is called the Riemann sphere.

For the product of two differentiable manifolds we have the following
important result.

Proposition 2.7. Let (M1, Â1) and (M2, Â2) be two differentiable
manifolds of class Cr. Let M =M1×M2 be the product space with the
product topology. Then there exists an atlas A on M turning (M, Â)
into a differentiable manifold of class Cr and the dimension of M sat-
isfies

dimM = dimM1 + dimM2.

Proof. See Exercise 2.1. �
The concept of a submanifold of a given differentiable manifold

will play an important role as we go along and we shall be especially
interested in the connection between the geometry of a submanifold
and that of its ambient space.

Definition 2.8. Let m,n be positive integers with m ≤ n and
(Nn, ÂN) be a C

r-manifold. A subsetM of N is said to be a subman-

ifold of N if for each point p ∈ M there exists a chart (Up, xp) ∈ ÂN

such that p ∈ Up and xp : Up ⊂ N → Rm × Rn−m satisfies

xp(Up ∩M) = xp(Up) ∩ (Rm × {0}).
The natural number (n−m) is called the codimension of M in N .

Proposition 2.9. Let m,n be positive integers with m ≤ n and
(Nn, ÂN) be a Cr-manifold. Let M be a submanifold of N equipped
with the subset topology and π : Rm × Rn−m → Rm be the natural
projection onto the first factor. Then

AM = {(Up ∩M, (π ◦ xp)|Up∩M)| p ∈M}

is a Cr-atlas for M . Hence the pair (M, ÂM) is an m-dimensional Cr-

manifold. The differentiable structure ÂM on M is called the induced
structure of ÂN .
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Proof. See Exercise 2.2. �

Remark 2.10. Our next aim is to prove Theorem 2.14 which is a
useful tool for the construction of submanifolds of Rm. For this we use
the classical inverse function theorem stated below. Note that if

F : U → Rn

is a differentiable map defined on an open subset U of Rm then its
differential dFp : Rm → Rn at the point p ∈ U is a linear map given by
the n×m matrix

dFp =

 ∂F1/∂x1(p) . . . ∂F1/∂xm(p)
...

...
∂Fn/∂x1(p) . . . ∂Fn/∂xm(p)

 .

If γ : R → U is a curve in U such that γ(0) = p and γ̇(0) = v ∈ Rm

then the composition F ◦ γ : R → Rn is a curve in Rn and according
to the chain rule we have

dFp · v =
d

ds
(F ◦ γ(s))|s=0.

This is the tangent vector of the curve F ◦ γ at F (p) ∈ Rn.

Hence the differential dFp can be seen as a linear map that
maps tangent vectors at p ∈ U to tangent vectors at the im-
age F (p) ∈ Rn. This will later be generalized to the manifold
setting.

Fact 2.11 (The Inverse Function Theorem). Let U be an open sub-
set of Rm and F : U → Rm be a Cr-map. If p ∈ U and the differential

dFp : Rm → Rm

of F at p is invertible then there exist open neighbourhoods Up around p

and Uq around q = F (p) such that F̂ = F |Up : Up → Uq is bijective and

the inverse (F̂ )−1 : Uq → Up is a Cr-map. The differential (dF̂−1)q of

F̂−1 at q satisfies

(dF̂−1)q = (dFp)
−1

i.e. it is the inverse of the differential dFp of F at p.

Before stating the implicit function theorem we remind the reader
of the following notions.
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Definition 2.12. Let m,n be positive natural numbers, U be an
open subset of Rm and F : U → Rn be a Cr-map. A point p ∈ U is
said to be critical for F if the differential

dFp : Rm → Rn

is not of full rank, and regular if it is not critical. A point q ∈ F (U)
is said to be a regular value of F if every point in the pre-image
F−1({q}) of q is regular and a critical value otherwise.

Remark 2.13. Note that if m,n are positive integers with m ≥ n
then p ∈ U is a regular point of

F = (F1, . . . , Fn) : U → Rn

if and only if the gradients gradF1, . . . , gradFn of the coordinate func-
tions F1, . . . , Fn : U → R are linearly independent at p, or equivalently,
the differential dFp of F at p satisfies the following condition

det(dFp · (dFp)
t) ̸= 0.

Theorem 2.14 (The Implicit Function Theorem). Let m,n be pos-
itive integers with m > n and F : U → Rn be a Cr-map from an open
subset U of Rm. If q ∈ F (U) is a regular value of F then the pre-image
F−1({q}) of q is an (m − n)-dimensional submanifold of Rm of class
Cr.

Proof. Let p be an element of F−1({q}) and Kp be the kernel of
the differential dFp i.e. the (m− n)-dimensional subspace of Rm given
by Kp = {v ∈ Rm| dFp · v = 0}. Let πp : Rm → Rm−n be a linear map
such that πp|Kp : Kp → Rm−n is bijective, πp|K⊥

p
= 0 and define the

map Gp : U → Rn × Rm−n by

Gp : x 7→ (F (x), πp(x)).

Then the differential (dGp)p : Rm → Rm of Gp, with respect to the
decompositions Rm = K⊥

p ⊕Kp and Rm = Rn ⊕ Rm−n, is given by

(dGp)p =

(
dFp|K⊥

p
0

0 πp

)
,

hence bijective. It now follows from the inverse function theorem that
there exist open neighbourhoods Vp around p and Wp around Gp(p)

such that Ĝp = Gp|Vp : Vp → Wp is bijective, the inverse Ĝ
−1
p : Wp → Vp

is Cr, d(Ĝ−1
p )Gp(p) = (dGp)

−1
p and d(Ĝ−1

p )y is bijective for all y ∈ Wp.

Now put Ũp = F−1({q}) ∩ Vp then

Ũp = Ĝ−1
p (({q} × Rm−n) ∩Wp)
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so if π : Rn × Rm−n → Rm−n is the natural projection onto the second
factor, then the map

x̃p = π ◦Gp|Ũp
: Ũp → ({q} × Rm−n) ∩Wp → Rm−n

is a chart on the open neighbourhood Ũp of p. The point q ∈ F (U) is
a regular value so the set

B = {(Ũp, x̃p)| p ∈ F−1({q})}

is a Cr-atlas for F−1({q}). �

Employing the implicit function theorem, we obtain the following
interesting examples of the m-dimensional sphere Sm and its tangent
bundle TSm as differentiable submanifolds of Rm+1 and R2m+2, respec-
tively.

Example 2.15. Let F : Rm+1 → R be the Cω-map given by

F : (p1, . . . , pm+1) 7→ p21 + · · ·+ p2m+1.

Then the differential dFp of F at p is given by dFp = 2p, so

dFp · (dFp)
t = 4|p|2 ∈ R.

This means that 1 ∈ R is a regular value for F so the fibre

Sm = {p ∈ Rm+1| |p|2 = 1} = F−1({1})

of F is an m-dimensional submanifold of Rm+1. This is the standard
m-dimensional sphere introduced in Example 2.4.

Example 2.16. Let F : Rm+1×Rm+1 → R2 be the Cω-map defined
by F : (p, v) 7→ ((|p|2 − 1)/2, ⟨p, v⟩). Then the differential dF(p,v) of F
at (p, v) satisfies

dF(p,v) =

(
p 0
v p

)
.

A simple calculation shows that

det(dF · (dF )t) = det

(
|p|2 ⟨p, v⟩
⟨p, v⟩ |v|2 + |p|2

)
= 1 + |v|2 > 0

on F−1({0}). This means that

F−1({0}) = {(p, v) ∈ Rm+1 × Rm+1| |p|2 = 1 and ⟨p, v⟩ = 0},

which we denote by TSm, is a 2m-dimensional submanifold of R2m+2.
We will later see that TSm is what is called the tangent bundle of the
m-dimensional sphere.
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We now apply the implicit function theorem to construct the im-
portant orthogonal group O(m) as a submanifold of the set of the real
vector space of m×m matrices Rm×m.

Example 2.17. Let Sym(Rm) be them(m+1)/2 dimensional linear
subspace of Rm×m consisting of all symmetric m×m matrices

Sym(Rm) = {y ∈ Rm×m| yt = y}.
Let F : Rm×m → Sym(Rm) be the map defined by

F : x 7→ xtx.

If γ : I → Rm×m is a curve in Rm×m then

d

ds
(F ◦ γ(s)) = γ̇(s)tγ(s) + γ(s)tγ̇(s),

so the differential dFx of F at x ∈ Rm×m satisfies

dFx : X 7→ X tx+ xtX.

This means that for an arbitrary element p in

O(m) = F−1({e}) = {p ∈ Rm×m| ptp = e}
and Y ∈ Sym(Rm) we have dFp(pY/2) = Y . Hence the differential dFp

is surjective, so the identity matrix e ∈ Sym(Rm) is a regular value
for F . Following the implicit function theorem O(m) is a submanifold
of Rm×m of dimension m(m − 1)/2. The set O(m) is the well known
orthogonal group.

The concept of a differentiable map U → Rn, defined on an open
subset of Rm, can be generalized to mappings between manifolds. We
will see that the most important properties of these objects in the
classical case are also valid in the manifold setting.

Definition 2.18. Let (Mm, ÂM) and (Nn, ÂN) be Cr-manifolds.
A map ϕ : M → N is said to be differentiable of class Cr if for all
charts (U, x) ∈ ÂM and (V, y) ∈ ÂN the map

y ◦ ϕ ◦ x−1|x(U∩ϕ−1(V )) : x(U ∩ ϕ−1(V )) ⊂ Rm → Rn

is of class Cr. A differentiable map γ : I → M defined on an open
interval of R is called a differentiable curve in M . A differentiable
map f :M → R with values in R is called a differentiable function on
M . The set of smooth functions defined on M is denoted by C∞(M).

It is an easy exercise, using Definition 2.18, to prove the follow-
ing result concerning the composition of differentiable maps between
manifolds.
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Proposition 2.19. Let (M1, Â1), (M2, Â2), (M3, Â3) be Cr-mani-

folds and ϕ : (M1, Â1) → (M2, Â2), ψ : (M2, Â2) → (M3, Â3) be differ-

entiable maps of class Cr. Then the composition ψ ◦ ϕ : (M1, Â1) →
(M3, Â3) is a differentiable map of class Cr.

Proof. See Exercise 2.5. �

Definition 2.20. Two manifolds (M, ÂM) and (N, ÂN) of class
Cr are said to be diffeomorphic if there exists a bijective Cr-map
ϕ : M → N such that the inverse ϕ−1 : N → M is of class Cr. In
that case the map ϕ is called a diffeomorphism between (M, ÂM)

and (N, ÂN).

It can be shown that the 2-dimensional sphere S2 in R3 and the
Riemann sphere Ĉ are diffeomorphic, see Exercise 2.7.

Definition 2.21. For a differentiable manifold (M, Â) we denote
by D(M) the set of all its diffeomorphisms. If ϕ, ψ ∈ D(M) then
it is clear that the composition ψ ◦ ϕ and the inverse ϕ−1 are also
diffeomorphisms. The pair (D(M), ◦) is called the diffeomorphism

group of (M, Â). The operation is clearly associative and the identity
map is its neutral element.

Definition 2.22. Two Cr-structures Â1 and Â2 on the same topo-
logical manifold M are said to be different if the identity map idM :
(M, Â1) → (M, Â2) is not a diffeomorphism.

It can be seen that even the real line R carries different differentiable
structures, see Exercise 2.6.

Deep Result 2.23. Let (M, ÂM), (N, ÂN) be differentiable man-
ifolds of class Cr of the same dimension m. If M and N are homeo-
morphic as topological spaces and m ≤ 3 then (M, ÂM) and (N, ÂN)
are diffeomorphic.

The following remarkable result was proven by John Milnor in his
famous paper: Differentiable structures on spheres, Amer. J. Math.
81 (1959), 962-972.

Deep Result 2.24. The 7-dimensional sphere S7 has exactly 28
different differentiable structures.

The next very useful proposition generalizes a classical result from
real analysis of several variables.
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Proposition 2.25. Let (N1, Â1) and (N2, Â2) be two differentiable
manifolds of class Cr and M1, M2 be submanifolds of N1 and N2, re-
spectively. If ϕ : N1 → N2 is a differentiable map of class Cr such
that ϕ(M1) is contained in M2 then the restriction ϕ|M1 : M1 → M2 is
differentiable of class Cr.

Proof. See Exercise 2.8. �
Example 2.26. The result of Proposition 2.25 implies that the

following maps are all smooth.

(i) ϕ1 : R1 → S1 ⊂ C, ϕ1 : t 7→ eit,
(ii) ϕ2 : Rm+1 \ {0} → Sm ⊂ Rm, ϕ2 : x 7→ x/|x|,
(iii) ϕ3 : S

2 ⊂ R3 → S3 ⊂ R4, ϕ3 : (x, y, z) 7→ (x, y, z, 0),
(iv) ϕ4 : S

3 ⊂ C2 → S2 ⊂ C×R, ϕ4 : (z1, z2) 7→ (2z1z̄2, |z1|2−|z2|2),
(v) ϕ5 : Rm+1 \ {0} → RPm, ϕ5 : x 7→ [x],
(vi) ϕ6 : S

m → RPm, ϕ6 : x 7→ [x].

In differential geometry we are specially interested in differentiable
manifolds carrying a group structure compatible with their differen-
tiable structure. Such manifolds are named after the famous math-
ematician Sophus Lie (1842-1899) and will play an important role
throughout this work.

Definition 2.27. A Lie group is a smooth manifold G with a
group structure · such that the map ρ : G×G→ G with

ρ : (p, q) 7→ p · q−1

is smooth. For an element p in G the left translation by p is the map
Lp : G→ G defined by Lp : q 7→ p · q.

Example 2.28. Let (Rm,+, ·) be the m-dimensional vector space
equipped with its standard differential structure. Then (Rm,+) with
ρ : Rm × Rm → Rm given by

ρ : (p, q) 7→ p− q

is a Lie group.

Corollary 2.29. Let G be a Lie group and p be an element of G.
Then the left translation Lp : G→ G is a smooth diffeomorphism.

Proof. See Exercise 2.10 �
Proposition 2.30. Let (G, ·) be a Lie group and K be a submani-

fold of G which is a subgroup. Then (K, ·) is a Lie group.

Proof. The statement is a direct consequence of Definition 2.27
and Proposition 2.25. �
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The set of non-zero complex numbers C∗ together with the standard
multiplication · forms a Lie group (C∗, ·). The unit circle (S1, ·) is an
interesting compact Lie subgroup of (C∗, ·). Another subgroup is the
set of the non-zero real numbers (R∗, ·) containing the positive real
numbers (R+, ·) and the 0-dimensional sphere (S0, ·) as subgroups.

Example 2.31. By H we denote the set of quaternions given by

H = {z + wj| z, w ∈ C}.

We equip H with an addition, a multiplication and the conjugation
satisfying

(i) (z + wj) = z̄ − wj,
(ii) (z1 + w1j) + (z2 + w2j) = (z1 + z2) + (w1 + w2)j,
(iii) (z1 + w1j) · (z2 + w2j) = (z1z2 − w1w̄2) + (z1w2 + w1z̄2)j.

These extend the standard operations on C as a subset of H. It is easily
seen that the non-zero quaternions (H∗, ·) form a Lie group. On H we
define a scalar product

H×H → H, (p, q) 7→ p · q̄

and a real valued norm given by |p|2 = p · p̄. Then the 3-dimensional
unit sphere S3 in H ∼= R4, with the restricted multiplication, forms a
compact Lie subgroup (S3, ·) of (H∗, ·). They are both non-abelian.

We shall now introduce some of the classical real and complex
matrix Lie groups. As a reference on this topic we recommend the
wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction,
Birkhäuser (2002).

Example 2.32. Let Nil3 be the subset of R3×3 given by

Nil3 = {

1 x z
0 1 y
0 0 1

 ∈ R3×3| x, y, z ∈ R}.

Then Nil3 has a natural differentiable structure determined by the
global coordinates ϕ : Nil3 → R3 with

ϕ :

1 x z
0 1 y
0 0 1

 7→ (x, y, z).

It is easily seen that if ∗ is the standard matrix multiplication, then
(Nil3, ∗) is a Lie group.
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Example 2.33. Let Sol3 be the subset of R3×3 given by

Sol3 = {

ez 0 x
0 e−z y
0 0 1

 ∈ R3×3| x, y, z ∈ R}.

Then Sol3 has a natural differentiable structure determined by the
global coordinates ϕ : Sol3 → R3 with

ϕ :

ez 0 x
0 e−z y
0 0 1

 7→ (x, y, z).

It is easily seen that if ∗ is the standard matrix multiplication, then
(Sol3, ∗) is a Lie group.

Example 2.34. The set of invertible real m×m matrices

GLm(R) = {A ∈ Rm×m| detA ̸= 0}

equipped with the standard matrix multiplication has the structure of
a Lie group. It is called the real general linear group and its neutral
element e is the identity matrix. The subset GLm(R) of Rm×m is open
so dimGLm(R) = m2.

As a subgroup of GLm(R) we have the real special linear group
SLm(R) given by

SLm(R) = {A ∈ Rm×m| detA = 1}.

We will show in Example 3.10 that the dimension of the submanifold
SLm(R) of Rm×m is m2 − 1.

Another subgroup of GLm(R) is the orthogonal group

O(m) = {A ∈ Rm×m| AtA = e}.

As we have already seen in Example 2.17 the dimension of O(m) is
m(m− 1)/2.

As a subgroup of O(m) and SLm(R) we have the special orthog-
onal group SO(m) which is defined as

SO(m) = O(m) ∩ SLm(R).

It can be shown that O(m) is diffeomorphic to SO(m) × O(1), see
Exercise 2.9. Note that O(1) = {±1} so O(m) can be seen as double
cover of SO(m). This means that

dimSO(m) = dimO(m) = m(m− 1)/2.
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Example 2.35. The set of invertible complex m×m matrices

GLm(C) = {A ∈ Cm×m| detA ̸= 0}
equipped with the standard matrix multiplication has the structure of
a Lie group. It is called the complex general linear group and its
neutral element e is the identity matrix. The subset GLm(C) of Cm×m

is open so dim(GLm(C)) = 2m2.
As a subgroup of GLm(C) we have the complex special linear

group SLm(C) given by

SLm(C) = {A ∈ Cm×m| detA = 1}.
The dimension of the submanifold SLm(C) of Cm×m is 2(m2 − 1).

Another subgroup of GLm(C) is the unitary group U(m) given
by

U(m) = {A ∈ Cm×m| ĀtA = e}.
Calculations similar to those for the orthogonal group show that the
dimension of U(m) is m2.

As a subgroup of U(m) and SLm(C) we have the special unitary
group SU(m) which is defined as

SU(m) = U(m) ∩ SLm(C).
It can be shown that U(1) is diffeomorphic to the circle S1 and that
U(m) is diffeomorphic to SU(m)×U(1), see Exercise 2.9. This means
that dimSU(m) = m2 − 1.

For the rest of this work we shall assume, when not stating
otherwise, that our manifolds and maps are smooth i.e. in the
C∞-category.



20 2. DIFFERENTIABLE MANIFOLDS

Exercises

Exercise 2.1. Find a proof of Proposition 2.7.

Exercise 2.2. Find a proof of Proposition 2.9.

Exercise 2.3. Let S1 be the unit circle in the complex plane C
given by S1 = {z ∈ C| |z|2 = 1}. Use the maps x : C \ {i} → C and
y : C \ {−i} → C with

x : z 7→ i+ z

1 + iz
, y : z 7→ 1 + iz

i+ z

to show that S1 is a 1-dimensional submanifold of C ∼= R2.

Exercise 2.4. Use the implicit function theorem to show that the
m-dimensional torus

Tm = {z ∈ Cm| |z1|2 = · · · = |zm|2 = 1}
is a differentiable submanifold of Cm ∼= R2m.

Exercise 2.5. Find a proof of Proposition 2.19.

Exercise 2.6. Equip the real line R with the standard topology
and for each odd integer k ∈ Z+ let Âk be the Cω-structure defined on
R by the atlas

Ak = {(R, xk)| xk : p 7→ pk}.
Show that the differentiable structures Âk are all different but that the
differentiable manifolds (R, Âk) are all diffeomorphic.

Exercise 2.7. Prove that the 2-dimensional sphere S2 as a differ-
entiable submanifold of the standard R3 and the Riemann sphere Ĉ are
diffeomorphic.

Exercise 2.8. Find a proof of Proposition 2.25.

Exercise 2.9. Let the spheres S1, S3 and the Lie groups SO(n),
O(n), SU(n), U(n) be equipped with their standard differentiable
structures. Use Proposition 2.25 to prove the following diffeomorphisms

S1 ∼= SO(2), S3 ∼= SU(2),

SO(n)×O(1) ∼= O(n), SU(n)×U(1) ∼= U(n).

Exercise 2.10. Find a proof of Corollary 2.29.

Exercise 2.11. Let (G, ∗) and (H, ·) be two Lie groups. Prove that
the product manifold G×H has the structure of a Lie group.



CHAPTER 3

The Tangent Space

In this chapter we introduce the notion of the tangent space TpM of
a differentiable manifoldM at a point p ∈M . This is a vector space of
the same dimension as M . We start by studying the standard Rm and
show how a tangent vector v at a point p ∈ Rm can be interpreted as
a first order linear differential operator, annihilating constants, when
acting on real-valued functions locally defined around p.

Let Rm be the m-dimensional real vector space with the standard
differentiable structure. If p is a point in Rm and γ : I → Rm is a
C1-curve such that γ(0) = p then the tangent vector

γ̇(0) = lim
t→0

γ(t)− γ(0)

t
of γ at p is an element of Rm. Conversely, for an arbitrary element v
of Rm we can easily find a curve γ : I → Rm such that γ(0) = p and
γ̇(0) = v. One example is given by

γ : t 7→ p+ t · v.
This shows that the tangent space, i.e. the set of tangent vectors, at
the point p ∈ Rm can be identified with Rm.

We shall now describe how first order differential operators annihi-
lating constants can be interpreted as tangent vectors. For a point p
in Rm we denote by ε(p) the set of differentiable real-valued functions
defined locally around p. Then it is well known from multi-variable
analysis that if v ∈ Rm and f ∈ ε(p) then the directional derivative
∂vf of f at p in the direction of v is given by

∂vf = lim
t→0

f(p+ tv)− f(p)

t
.

Furthermore the operator ∂ has the following properties

∂v(λ · f + µ · g) = λ · ∂vf + µ · ∂vg,
∂v(f · g) = ∂vf · g(p) + f(p) · ∂vg,

∂(λ·v+µ·w)f = λ · ∂vf + µ · ∂wf
for all λ, µ ∈ R, v, w ∈ Rm and f, g ∈ ε(p).

21
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Definition 3.1. For a point p in Rm let TpRm be the set of first
order linear differential operators at p annihilating constants i.e. the
set of mappings α : ε(p) → R such that

(i) α(λ · f + µ · g) = λ · α(f) + µ · α(g),
(ii) α(f · g) = α(f) · g(p) + f(p) · α(g)

for all λ, µ ∈ R and f, g ∈ ε(p).

The set of diffential operators TpRm carries the structure of a real
vector space. This is given by the addition + and the multiplication ·
by real numbers satisfying

(α+ β)(f) = α(f) + β(f),

(λ · α)(f) = λ · α(f)

for all α, β ∈ TpRm, f ∈ ε(p) and λ ∈ R.
The above mentioned properties of the operator ∂ show that we

have a well defined linear map Φ : Rm → TpRm given by

Φ : v 7→ ∂v.

Theorem 3.2. For a point p in Rm the linear map Φ : Rm → TpRm

defined by Φ : v 7→ ∂v is a vector space isomorphism.

Proof. Let v, w ∈ Rm such that v ̸= w. Choose an element u ∈
Rm such that ⟨u, v⟩ ̸= ⟨u,w⟩ and define f : Rm → R by f(x) = ⟨u, x⟩.
Then ∂vf = ⟨u, v⟩ ̸= ⟨u,w⟩ = ∂wf so ∂v ̸= ∂w. This proves that the
map Φ is injective.

Let α be an arbitrary element of TpRm. For k = 1, . . . ,m let x̂k :
Rm → R be the map given by

x̂k : (x1, . . . , xm) 7→ xk

and put vk = α(x̂k). For the constant function 1 : (x1, . . . , xm) 7→ 1 we
have

α(1) = α(1 · 1) = 1 · α(1) + 1 · α(1) = 2 · α(1),
so α(1) = 0. By the linearity of α it follows that α(c) = 0 for any
constant c ∈ R. Let f ∈ ε(p) and following Lemma 3.3 locally write

f(x) = f(p) +
m∑
k=1

(x̂k(x)− pk) · ψk(x),

where ψk ∈ ε(p) with

ψk(p) =
∂f

∂xk
(p).
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We can now apply the differential operator α ∈ TpRm and yield

α(f) = α(f(p) +
m∑
k=1

(x̂k − pk) · ψk)

= α(f(p)) +
m∑
k=1

α(x̂k − pk) · ψk(p) +
m∑
k=1

(x̂k(p)− pk) · α(ψk)

=
m∑
k=1

vk
∂f

∂xk
(p)

= ⟨v, gradfp⟩
= ∂vf,

where v = (v1, . . . , vm) ∈ Rm. This means that Φ(v) = ∂v = α so the
map Φ : Rm → TpRm is surjective and hence a vector space isomor-
phism. �

Lemma 3.3. Let p be a point in Rm and f : U → R be a dif-
ferentiable function defined on an open ball around p. Then for each
k = 1, 2, . . . ,m there exist functions ψk : U → R such that

f(x) = f(p) +
m∑
k=1

(xk − pk) · ψk(x) and ψk(p) =
∂f

∂xk
(p)

for all x ∈ U .

Proof. It follows from the fundamental theorem of calculus that

f(x)− f(p) =

∫ 1

0

∂

∂t
(f(p+ t(x− p)))dt

=
m∑
k=1

(xk − pk) ·
∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.

The statement then immediately follows by setting

ψk(x) =

∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.

�
Remark 3.4. Let p be a point in Rm, v ∈ TpRm be a tangent

vector at p and f : U → R be a C1-function defined on an open subset
U of Rm containing p. Let γ : I → U be a curve such that γ(0) = p
and γ̇(0) = v. The identification given by Theorem 3.2 tells us that v
acts on f by

v(f) = ∂v(f) = ⟨v, gradfp⟩ = dfp(γ̇(0)) =
d

dt
(f ◦ γ(t))|t=0.
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This implies that the real number v(f) is independent of the choice of
the curve γ as long as γ(0) = p and γ̇(0) = v.

As a direct consequence of Theorem 3.2 we have the following useful
result.

Corollary 3.5. Let p be a point in Rm and {ek| k = 1, . . . ,m} be
a basis for Rm. Then the set {∂ek | k = 1, . . . ,m} is a basis for the
tangent space TpRm at p.

We shall now use the ideas presented above to generalize to the
manifold setting. Let M be a differentiable manifold and for a point
p ∈ M let ε(p) denote the set of differentiable functions defined on an
open neighborhood of p.

Definition 3.6. Let M be a differentiable manifold and p be a
point on M . A tangent vector Xp at p is a map Xp : ε(p) → R such
that

(i) Xp(λ · f + µ · g) = λ ·Xp(f) + µ ·Xp(g),
(ii) Xp(f · g) = Xp(f) · g(p) + f(p) ·Xp(g)

for all λ, µ ∈ R and f, g ∈ ε(p). The set of tangent vectors at p is called
the tangent space at p and denoted by TpM .

The tangent space TpM ofM at p has the structure of a real vector
space. The addition + and the multiplication · by real numbers are
simply given by

(Xp + Yp)(f) = Xp(f) + Yp(f),

(λ ·Xp)(f) = λ ·Xp(f)

for all Xp, Yp ∈ TpM , f ∈ ε(p) and λ ∈ R.

Remark 3.7. LetM be anm-dimensional manifold and (U, x) be a
local chart around p ∈M . Then the differential dxp : TpM → Tx(p)Rm

is a bijective linear map so for a given element Xp ∈ TpM there exists
a tangent vector v in Rm such that dxp(Xp) = v. The image x(U) is an
open subset of Rm containing x(p) so we can find a curve c : I → x(U)
with c(0) = x(p) and ċ(0) = v. Then the composition γ = x−1 ◦c : I →
U is a curve in M through p since γ(0) = p. The element d(x−1)x(p)(v)
of the tangent space TpM denoted by γ̇(0) is called the tangent to the
curve γ at p. It follows from the relation

γ̇(0) = d(x−1)x(p)(v) = Xp

that the tangent space TpM can be thought of as the set of all tangents
to curves through the point p.
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If f : U → R is a C1-function defined locally on U then it follows
from Definition 3.14 that

Xp(f) = (dxp(Xp))(f ◦ x−1)

=
d

dt
(f ◦ x−1 ◦ c(t))|t=0

=
d

dt
(f ◦ γ(t))|t=0

It should be noted that the real number Xp(f) is independent of the
choice of the chart (U, x) around p and the curve c : I → x(U) as long
as γ(0) = p and γ̇(0) = Xp.

We shall now determine the tangent spaces of some of the explicit
differentiable manifolds introduced in Chapter 2.

Example 3.8. Let γ : I → Sm be a curve into the m-dimensional
unit sphere in Rm+1 with γ(0) = p and γ̇(0) = X. The curve satisfies

⟨γ(t), γ(t)⟩ = 1

and differentiation yields

⟨γ̇(t), γ(t)⟩+ ⟨γ(t), γ̇(t)⟩ = 0.

This means that ⟨p,X⟩ = 0 so every tangent vector X ∈ TpS
m must

be orthogonal to p. On the other hand if X ̸= 0 satisfies ⟨p,X⟩ = 0
then γ : R → Sm with

γ : t 7→ cos(t|X|) · p+ sin(t|X|) ·X/|X|
is a curve into Sm with γ(0) = p and γ̇(0) = X. This shows that the
tangent space TpS

m is actually given by

TpS
m = {X ∈ Rm+1| ⟨p,X⟩ = 0}.

Proposition 3.9. Let Exp : Cm×m → Cm×m be the well-known
exponential map for complex matrices given by the converging power
series

Exp : Z 7→
∞∑
k=0

Zk

k!
.

For two elements Z,W ∈ Cm×m we have the following

(i) det(Exp(Z)) = exp(traceZ),
(ii) Exp(Zt) = Exp(Z)t,

(iii) Exp(Z̄) = Exp(Z),
(iv) if ZW = WZ then Exp(Z +W ) = Exp(Z)Exp(W ).

Proof. See Exercise 3.2 �
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The real general linear group GLm(R) is an open subset of Rm×m

so its tangent space TpGLm(R) at any point p is simply Rm×m. The
tangent space TeSLm(R) of the special linear group SLm(R) at the
neutral element e can be determined as follows.

Example 3.10. If X is a matrix in Rm×m with traceX = 0 then
define a curve A : R → Rm×m by

A : s 7→ Exp(sX).

Then A(0) = e, Ȧ(0) = X and

det(A(s)) = det(Exp(sX)) = exp(trace(sX)) = exp(0) = 1.

This shows that A is a curve into the special linear group SLm(R) and
that X is an element of the tangent space TeSLm(R) of SLm(R) at the
neutral element e. Hence the linear space

{X ∈ Rm×m| traceX = 0}

of dimension m2 − 1 is contained in the tangent space TeSLm(R).
The curve given by s 7→ Exp(se) = exp(s)e is not contained in

SLm(R) so the dimension of TeSLm(R) is at most m2 − 1. This shows
that

TeSLm(R) = {X ∈ Rm×m| traceX = 0}.

Example 3.11. Let γ : I → O(m) be a curve into the orthogonal
group O(m) such that γ(0) = e. Then γ(s)tγ(s) = e for all s ∈ I and
differentiation gives

{γ̇(s)tγ(s) + γ(s)tγ̇(s)}|s=0 = 0

or equivalently γ̇(0)t + γ̇(0) = 0. This means that each tangent vector
of O(m) at e is a skew-symmetric matrix.

On the other hand, for an arbitrary real skew-symmetric matrix X
define the curve A : R → Rm×m by A : s 7→ Exp(sX). Then

A(s)tA(s) = Exp(sX)tExp(sX)

= Exp(sX t)Exp(sX)

= Exp(s(X t +X))

= Exp(0)

= e.

This shows that A is a curve on the orthogonal group, A(0) = e and
Ȧ(0) = X so X is an element of TeO(m). Hence

TeO(m) = {X ∈ Rm×m| X t +X = 0}.
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The dimension of TeO(m) is therefore m(m − 1)/2. The orthogonal
group O(m) is diffeomorphic to SO(m) × {±1} so dim(SO(m)) =
dim(O(m)) hence

TeSO(m) = TeO(m) = {X ∈ Rm×m| X t +X = 0}.

We have proven the following result.

Proposition 3.12. Let e be the neutral element of the classical
real Lie groups GLm(R), SLm(R), O(m), SO(m). Then their tangent
spaces at e are given by

TeGLm(R) = Rm×m

TeSLm(R) = {X ∈ Rm×m| traceX = 0}
TeO(m) = {X ∈ Rm×m| X t +X = 0}
TeSO(m) = TeO(m) ∩ TeSLm(R) = TeO(m)

For the classical complex Lie groups similar methods can be used
to prove the following.

Proposition 3.13. Let e be the neutral element of the classical
complex Lie groups GLm(C), SLm(C), U(m), and SU(m). Then their
tangent spaces at e are given by

TeGLm(C) = Cm×m

TeSLm(C) = {Z ∈ Cm×m| traceZ = 0}
TeU(m) = {Z ∈ Cm×m| Z̄t + Z = 0}
TeSU(m) = TeU(m) ∩ TeSLm(C).

Proof. See Exercise 3.4 �
Definition 3.14. Let ϕ :M → N be a differentiable map between

manifolds. Then the differential dϕp of ϕ at a point p in M is the
map dϕp : TpM → Tϕ(p)N such that for all Xp ∈ TpM and f ∈ ε(ϕ(p))

(dϕp(Xp))(f) = Xp(f ◦ ϕ).

Remark 3.15. Let M and N be differentiable manifolds, p ∈ M
and ϕ : M → N be a smooth map. Further let γ : I → M be a curve
on M such that γ(0) = p and γ̇(0) = Xp. Let c : I → N be the
curve c = ϕ ◦ γ in N with c(0) = ϕ(p) and put Yϕ(p) = ċ(0). Then it
is an immediate consequence of Definition 3.14 that for each function
f ∈ ε(q) defined locally around q

(dϕp(Xp))(f) = Xp(f ◦ ϕ)
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=
d

dt
(f ◦ ϕ ◦ γ(t))|t=0

=
d

dt
(f ◦ c(t))|t=0

= Yϕ(p)(f).

Hence dϕp(Xp) = Yϕ(p) or equivalently dϕp(γ̇(0)) = ċ(0). This result
should be compared with Remark 2.10.

Proposition 3.16. Let ϕ : M1 → M2 and ψ : M2 → M3 be differ-
entiable maps between manifolds, then for each p ∈M1 we have

(i) the map dϕp : TpM1 → Tϕ(p)M2 is linear,
(ii) if idM1 :M1 →M1 is the identity map, then d(idM1)p = idTpM1,
(iii) d(ψ ◦ ϕ)p = dψϕ(p) ◦ dϕp.

Proof. The only non-trivial statement is the relation (iii) which
is called the chain rule. If Xp ∈ TpM1 and f ∈ ε(ψ ◦ ϕ(p)), then

(dψϕ(p) ◦ dϕp)(Xp)(f) = (dψϕ(p)(dϕp(Xp)))(f)

= (dϕp(Xp))(f ◦ ψ)
= Xp(f ◦ ψ ◦ ϕ)
= (d(ψ ◦ ϕ)p(Xp))(f).

�
Corollary 3.17. Let ϕ :M → N be a diffeomorphism with inverse

ψ = ϕ−1 : N → M . Then the differential dϕp : TpM → Tϕ(p)N at p is
bijective and (dϕp)

−1 = dψϕ(p).

Proof. The statement is a direct consequence of the following re-
lations

dψϕ(p) ◦ dϕp = d(ψ ◦ ϕ)p = d(idM)p = idTpM ,

dϕp ◦ dψϕ(p) = d(ϕ ◦ ψ)ϕ(p) = d(idN)ϕ(p) = idTϕ(p)N .

�
We are now ready to prove the following interesting result. This

is of course a direct generalization of the corresponding result in the
classical theory for surfaces in R3.

Theorem 3.18. Let Mm be an m-dimensional differentable man-
ifold and p be a point in M . Then the tangent space TpM at p is an
m-dimensional real vector space.

Proof. Let (U, x) be a local chart on M . Then the linear map
dxp : TpM → Tx(p)Rm is a vector space isomorphism. The statement
now follows from Theorem 3.2 and Corollary 3.17. �
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Proposition 3.19. Let Mm be a differentiable manifold, (U, x) be
a local chart on M and {ek| k = 1, . . . ,m} be the canonical basis for
Rm. For an arbitrary point p in U we define ( ∂

∂xk
)p in TpM by( ∂

∂xk

)
p
: f 7→ ∂f

∂xk
(p) = ∂ek(f ◦ x−1)(x(p)).

Then the set

{( ∂

∂xk
)p | k = 1, 2, . . . ,m}

is a basis for the tangent space TpM of M at p.

Proof. The local chart x : U → x(U) is a diffeomorphism and the
differential (dx−1)x(p) : Tx(p)Rm → TpM of the inverse x−1 : x(U) → U
satisfies

(dx−1)x(p)(∂ek)(f) = ∂ek(f ◦ x−1)(x(p))

=
( ∂

∂xk

)
p
(f)

for all f ∈ ε(p). The statement is then a direct consequence of Corollary
3.5. �

The rest of this chapter is devoted to the introduction of special
types of differentiable maps, the immersions, the submersions and the
embeddings.

Definition 3.20. A differentiable map ϕ : M → N between man-
ifolds is said to be an immersion if for each p ∈ M the differential
dϕp : TpM → Tϕ(p)N is injective. An embedding is an immersion
ϕ :M → N which is a homeomorphism onto its image ϕ(M).

For positive integers m,n with m < n we have the inclusion map
ϕ : Rm+1 → Rn+1 given by

ϕ : (x1, . . . , xm+1) 7→ (x1, . . . , xm+1, 0, . . . , 0).

The differential dϕx at x is injective since dϕx(v) = (v, 0). The map
ϕ is obviously a homeomorphism onto its image ϕ(Rm+1) hence an
embedding. It is easily seen that even the restriction ϕ|Sm : Sm → Sn

of ϕ to the m-dimensional unit sphere Sm in Rm+1 is an embedding.

Definition 3.21. Let M be an m-dimensional differentiable man-
ifold and U be an open subset of Rm. An immersion ϕ : U → M is
called a local parametrization of M .

If M is a differentiable manifold and (U, x) is a chart on M , then
the inverse x−1 : x(U) → U of x is a parametrization of the subset U
of M .



30 3. THE TANGENT SPACE

Example 3.22. Let S1 be the unit circle in the complex plane C.
For a non-zero integer k ∈ Z define ϕk : S

1 → C by ϕk : z 7→ zk. For a
point w ∈ S1 let γw : R → S1 be the curve with γw : t 7→ weit. Then
γw(0) = w and γ̇w(0) = iw. For the differential of ϕk we have

(dϕk)w(γ̇w(0)) =
d

dt
(ϕk ◦ γw(t))|t=0 =

d

dt
(wkeikt)|t=0 = kiwk ̸= 0.

This shows that the differential (dϕk)w : TwS
1 ∼= R → TwkC ∼= R2 is

injective, so the map ϕk is an immersion. It is easily seen that ϕk is an
embedding if and only if k = ±1.

Example 3.23. Let q ∈ S3 be a quaternion of unit length and
ϕq : S1 → S3 be the map defined by ϕq : z 7→ qz. For w ∈ S1 let
γw : R → S1 be the curve given by γw(t) = weit. Then γw(0) = w,
γ̇w(0) = iw and ϕq(γw(t)) = qweit. By differentiating we yield

dϕq(γ̇w(0)) =
d

dt
(ϕq(γw(t)))|t=0 =

d

dt
(qweit)|t=0 = qiw.

Then |dϕq(γ̇w(0))| = |qwi| = |q||w| = 1 ̸= 0 implies that the differen-
tial dϕq is injective. It is easily checked that the immersion ϕq is an
embedding.

In the next example we construct an interesting embedding of the
real projective space RPm into the vector space Sym(Rm+1) of the real
symmetric (m+ 1)× (m+ 1) matrices.

Example 3.24. Let Sm be them-dimensional unit sphere in Rm+1.
For a point p ∈ Sm let

lp = {λp ∈ Rm+1| λ ∈ R}
be the line through the origin generated by p and ρp : Rm+1 → Rm+1

be the reflection about the line lp. Then ρp is an element of End(Rm+1)
i.e. the set of linear endomorphisms of Rm+1 which can be identified
with R(m+1)×(m+1). It is easily checked that the reflection about the
line lp is given by

ρp : q 7→ 2⟨q, p⟩p− q.

It then follows from the equations

ρp(q) = 2⟨q, p⟩p− q = 2p⟨p, q⟩ − q = (2ppt − e)q

that the matrix in R(m+1)×(m+1) corresponding to ρp is just the sym-
metric

(2ppt − e).

We will now show that the map ϕ : Sm → Sym(Rm+1) given by

ϕ : p 7→ ρp



3. THE TANGENT SPACE 31

is an immersion. Let p be an arbitrary point on Sm and α, β : I → Sm

be two curves meeting at p, that is α(0) = p = β(0), with X = α̇(0)

and Y = β̇(0). For γ ∈ {α, β} we have

ϕ ◦ γ : t 7→ (q 7→ 2⟨q, γ(t)⟩γ(t)− q)

so

(dϕ)p(γ̇(0)) =
d

dt
(ϕ ◦ γ(t))|t=0

= (q 7→ 2⟨q, γ̇(0)⟩γ(0) + 2⟨q, γ(0)⟩γ̇(0)).
This means that

dϕp(X) = (q 7→ 2⟨q,X⟩p+ 2⟨q, p⟩X)

and

dϕp(Y ) = (q 7→ 2⟨q, Y ⟩p+ 2⟨q, p⟩Y ).

If X ̸= Y then dϕp(X) ̸= dϕp(Y ) so the differential dϕp is injective,
hence the map ϕ : Sm → Sym(Rm+1) is an immersion.

If two points p, q ∈ Sm are linearly independent, then the lines
lp and lq are different. But these are just the eigenspaces of ρp and
ρq with the eigenvalue +1, respectively. This shows that the linear
endomorphisms ρp, ρq of Rm+1 are different in this case.

On the other hand, if p and q are parallel then p = ±q hence
ρp = ρq. This means that the image ϕ(Sm) can be identified with the
quotient space Sm/ ≡ where ≡ is the equivalence relation defined by

x ≡ y if and only if x = ±y.
This is of course the real projective space RPm so the map ϕ induces
an embedding Φ : RPm → Sym(Rm+1) with

Φ : [p] → ρp.

For each p ∈ Sm the reflection ρp : Rm+1 → Rm+1 about the line lp
satisfies

ρtp · ρp = e.

This shows that the image Φ(RPm) = ϕ(Sm) is not only contained in
the linear space Sym(Rm+1) but also in the orthogonal group O(m+1)
which we know is a submanifold of R(m+1)×(m+1)

The following result was proven by Hassler Whitney in his famous
paper, Differentiable Manifolds, Ann. of Math. 37 (1936), 645-680.

Deep Result 3.25. For 1 ≤ r ≤ ∞ let M be an m-dimensional
Cr-manifold. Then there exists a Cr-embedding ϕ : M → R2m+1 of M
into the (2m+ 1)-dimensional real vector space R2m+1.
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The classical inverse function theorem generalizes to the manifold
setting as follows.

Theorem 3.26 (The Inverse Function Theorem). Let ϕ :M → N
be a differentiable map between manifolds with dimM = dimN . If
p is a point in M such that the differential dϕp : TpM → Tϕ(p)N at
p is bijective then there exist open neighborhoods Up around p and Uq

around q = ϕ(p) such that ψ = ϕ|Up : Up → Uq is bijective and the
inverse ψ−1 : Uq → Up is differentiable.

Proof. See Exercise 3.8 �

We shall now generalize the classical implicit function theorem to
manifolds. For this we need the following definition.

Definition 3.27. Let m,n be positive integers and ϕ :Mm → Nn

be a differentiable map between manifolds. A point p ∈ M is said to
be critical for ϕ if the differential

dϕp : TpM → Tϕ(p)N

is not of full rank, and regular if it is not critical. A point q ∈ ϕ(M) is
called a regular value for ϕ if every point of the pre-image ϕ−1({q})
of {q} is regular and a critical value otherwise.

Theorem 3.28 (The Implicit Function Theorem). Let ϕ : Mm →
Nn be a differentiable map between manifolds such that m > n. If
q ∈ ϕ(M) is a regular value, then the pre-image ϕ−1({q}) of q is an
(m−n)-dimensional submanifold ofMm. The tangent space Tpϕ

−1({q})
of ϕ−1({q}) at p is the kernel of the differential dϕp i.e.

Tpϕ
−1({q}) = {X ∈ TpM | dϕp(X) = 0}.

Proof. Let (V, y) be a chart on N with q ∈ V and y(q) = 0. For
a point p ∈ ϕ−1({q}) we choose a chart (U, x) on M such that p ∈ U ,
x(p) = 0 and ϕ(U) ⊂ V . Then the differential of the map

ψ = y ◦ ϕ ◦ x−1|x(U) : x(U) → Rn

at the point 0 is given by

dψ0 = (dy)q ◦ dϕp ◦ (dx−1)0 : T0Rm → T0Rn.

The pairs (U, x) and (V, y) are charts so the differentials (dy)q and
(dx−1)0 are bijective. This means that dψ0 is surjective since dϕp is. It
then follows from Theorem 2.14 that x(ϕ−1({q}) ∩ U) is an (m − n)-
dimensional submanifold of x(U). Hence ϕ−1({q}) ∩ U is an (m− n)-
dimensional submanifold of U . This is true for each point p ∈ ϕ−1({q})
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so we have proven that ϕ−1({q}) is an (m−n)-dimensional submanifold
of Mm.

Let γ : I → ϕ−1({q}) be a curve such that γ(0) = p. Then

(dϕ)p(γ̇(0)) =
d

dt
(ϕ ◦ γ(t))|t=0 =

dq

dt
|t=0 = 0.

This implies that Tpϕ
−1({q}) is contained in and has the same dimen-

sion as the kernel of dϕp, so Tpϕ
−1({q}) = Ker dϕp. �

Definition 3.29. For positive integers m,n with m ≥ n a map
ϕ : Mm → Nn between two manifolds is said to be a submersion if
for each p ∈M the differential dϕp : TpM → Tϕ(p)N is surjective.

If m,n ∈ N such that m ≥ n then we have the projection map
π : Rm → Rn given by π : (x1, . . . , xm) 7→ (x1, . . . , xn). Its differential
dπx at a point x is surjective since

dπx(v1, . . . , vm) = (v1, . . . , vn).

This means that the projection is a submersion. An important sub-
mersion between spheres is given by the following.

Example 3.30. Let S3 and S2 be the unit spheres in C2 and C×
R ∼= R3, respectively. The Hopf map ϕ : S3 → S2 is given by

ϕ : (x, y) 7→ (2xȳ, |x|2 − |y|2).
For p ∈ S3 the Hopf circle Cp through p is given by

Cp = {eiθ(x, y)| θ ∈ R}.
The following shows that the Hopf map is constant along each Hopf
circle

ϕ(eiθ(x, y)) = (2eiθxe−iθȳ, |eiθx|2 − |eiθy|2)
= (2xȳ, |x|2 − |y|2)
= ϕ((x, y)).

The map ϕ and its differential dϕp : TpS
3 → Tϕ(p)S

2 are surjective for
each p ∈ S3. This implies that each point q ∈ S2 is a regular value and
the fibres of ϕ are 1-dimensional submanifolds of S3. They are actually
the great circles given by

ϕ−1({(2xȳ, |x|2 − |y|2)}) = {eiθ(x, y)| θ ∈ R}.
This means that the 3-dimensional sphere S3 is a disjoint union of great
circles

S3 =
∪
q∈S2

ϕ−1({q}).
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Exercises

Exercise 3.1. Let p be an arbitrary point on the unit sphere S2n+1

of Cn+1 ∼= R2n+2. Determine the tangent space TpS
2n+1 and show that

it contains an n-dimensional complex subspace of Cn+1.

Exercise 3.2. Use your local library to find a proof of Proposition
3.9.

Exercise 3.3. Prove that the matrices

X1 =

(
1 0
0 −1

)
, X2 =

(
0 −1
1 0

)
, X3 =

(
0 1
1 0

)
form a basis for the tangent space TeSL2(R) of the real special linear
group SL2(R) at the neutral element e. For each k = 1, 2, 3 find an
explicit formula for the curve γk : R → SL2(R) given by

γk : s 7→ Exp(sXk).

Exercise 3.4. Find a proof of Proposition 3.13.

Exercise 3.5. Prove that the matrices

Z1 =

(
0 −1
1 0

)
, Z2 =

(
0 i
i 0

)
, Z3 =

(
i 0
0 −i

)
form a basis for the tangent space TeSU(2) of the special unitary group
SU(2) at the neutral element e. For each k = 1, 2, 3 find an explicit
formula for the curve γk : R → SU(2) given by

γk : s 7→ Exp(sZk).

Exercise 3.6. For each k ∈ N0 define ϕk : C → C and ψk : C∗ →
C by ϕk, ψk : z 7→ zk. For which k ∈ N0 are ϕk, ψk immersions,
submersions or embeddings.

Exercise 3.7. Prove that the map ϕ : Rm → Cm given by

ϕ : (x1, . . . , xm) 7→ (eix1 , . . . , eixm)

is a parametrization of the m-dimensional torus Tm in Cm.

Exercise 3.8. Find a proof of Theorem 3.26.

Exercise 3.9. Prove that the Hopf-map ϕ : S3 → S2 with ϕ :
(x, y) 7→ (2xȳ, |x|2 − |y|2) is a submersion.



CHAPTER 4

The Tangent Bundle

In this chapter we introduce the tangent bundle TM of a differen-
tiable manifoldM . Intuitively, this is the object that we get by glueing
at each point p of M the corresponding tangent space TpM . The dif-
ferentiable structure onM induces a natural differentiable structure on
the tangent bundle TM turning it into a differentiable manifold.

We have already seen that for a point p ∈ Rm the tangent space
TpRm can be identified with the m-dimensional vector space Rm. This
means that if we at each point p ∈ Rm glue the tangent space TpRm to
Rm we obtain the so called tangent bundle of Rm

TRm = {(p, v)| p ∈ Rm and v ∈ TpRm}.

For this we have the natural projection π : TRm → Rm defined by

π : (p, v) 7→ p

and for each point p ∈ M the fibre π−1({p}) over p is precisely the
tangent space TpRm at p.

Classically, a vector fieldX on Rm is a smooth mapX : Rm → Rm

but we would like to view it as a map X : Rm → TRm into the tangent
bundle and with abuse of notation write

X : p 7→ (p,X(p)).

Following Proposition 3.19 two vector fields X, Y : Rm → TRm can be
written as

X =
m∑
k=1

ak
∂

∂xk
and Y =

m∑
k=1

bk
∂

∂xk
,

where ak, bk : Rm → R are smooth functions defined on Rm. If f :
Rm → R is another such function the commutator [X, Y ] acts on f
as follows:

[X, Y ](f) = X(Y (f))− Y (X(f))

=
m∑

k,l=1

(
ak

∂

∂xk
(bl

∂

∂xl
)− bk

∂

∂xk
(al

∂

∂xl
)
)
(f)

35



36 4. THE TANGENT BUNDLE

=
m∑

k,l=1

(
ak
∂bl
∂xk

∂

∂xl
+ akbl

∂2

∂xk∂xl

−bk
∂al
∂xk

∂

∂xl
− bkal

∂2

∂xk∂xl

)
(f)

=
m∑
l=1

[ m∑
k=1

(
ak
∂bl
∂xk

− bk
∂al
∂xk

)] ∂

∂xl
(f).

This shows that the commutator [X, Y ] is a smooth vector field on Rm.

We shall now generalize to the manifold setting. First we introduce
the following notion of a topological vector bundle.

Definition 4.1. Let E and M be topological manifolds and π :
E →M be a continuous surjective map. The triple (E,M, π) is called
an n-dimensional topological vector bundle over M if (i) for each
p ∈ M the fibre Ep = π−1({p}) is an n-dimensional vector space, (ii)
for each p ∈M there exists a bundle chart (π−1(U), ψ) consisting of
the pre-image π−1(U) of an open neighbourhood U of p and a home-
omorphism ψ : π−1(U) → U × Rn such that for all q ∈ U the map
ψq = ψ|Eq : Eq → {q} × Rn is a vector space isomorphism. A bundle
atlas for (E,M, π) is a collection

B = {(π−1(Uα), ψα)| α ∈ I}
of bundle charts such that M = ∪αUα. For α, β ∈ I there exists a map
Aα,β : Uα∩Uβ → GLn(R) such that the corresponding continuous map

ψβ ◦ ψ−1
α |(Uα∩Uβ)×Rn : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

is given by
(p, v) 7→ (p, (Aα,β(p))(v)).

The elements of {Aα,β| α, β ∈ I} are called the transition maps of
the bundle atlas B.

Definition 4.2. Let (E,M, π) be an n-dimensional topological vec-
tor bundle over M . A continuous map σ : M → E is called a section
of the bundle (E,M, π) if π ◦ σ(p) = p for each p ∈M .

Definition 4.3. A topological vector bundle (E,M, π) over M , of
dimension n, is said to be trivial if there exists a global bundle chart
ψ : E →M × Rn.

Example 4.4. For n ∈ Z+ and a topological manifold M we have
the n-dimensional trivial vector bundle (M × Rn,M, π) over M ,
where π :M ×Rn →M is the projection map with π : (p, v) 7→ p. The
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bundle is trivial since the identity map ψ : M × Rn → M × Rn is a
global bundle chart.

Definition 4.5. Let E and M be differentiable manifolds and
π : E → M be a differentiable map such that (E,M, π) is an n-
dimensional topological vector bundle. A bundle atlas B for (E,M, π)
is said to be differentiable if the corresponding transition maps are
differentiable. A differentiable vector bundle is a topological vector
bundle together with a maximal differentiable bundle atlas. By C∞(E)
we denote the set of all smooth sections of (E,M, π).

From now on we shall assume, when not stating otherwise,
that all our vector bundles are smooth.

Definition 4.6. Let (E,M, π) be a vector bundle over a manifold
M . Then we define the operations + and · on the set C∞(E) of smooth
sections of (E,M, π) by

(i) (v + w)p = vp + wp,
(ii) (f · v)p = f(p) · vp

for all v, w ∈ C∞(E) and f ∈ C∞(M). If U is an open subset ofM then
a set {v1, . . . , vn} of smooth sections v1, . . . , vn : U → E on U is said
to be a local frame for E if for each p ∈ U the set {(v1)p, . . . , (vn)p}
is a basis for the vector space Ep.

According to Definition 2.18, the set of smooth real-valued functions
on M is denoted by C∞(M). With the above defined operations on
C∞(E) it becomes a module over C∞(M) and in particular a vector
space over the real numbers as the constant functions in C∞(M).

Example 4.7. Let Mm be a differentiable manifold with maximal
atlas Â. Define the set TM by

TM = {(p, v)| p ∈M and v ∈ TpM}
and let π : TM →M be the projection map satisfying

π : (p, v) 7→ p.

Then the fibre π−1({p}) over a point p ∈ M is the m-dimensional
tangent space TpM . The triple (TM,M, π) is called the tangent
bundle of M .

We shall now equip TM with the structure of a smooth manifold.
For every local chart x : U → Rm from the maximal atlas Â of M we
define a local chart

x∗ : π−1(U) → Rm × Rm
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on the tangent bundle TM by the formula

x∗ : (p,
m∑
k=1

vk
( ∂

∂xk

)
p
) 7→ (x(p), (v1, . . . , vm)).

Proposition 3.19 shows that the map x∗ is well-defined. The collection

{(x∗)−1(W ) ⊂ TM | (U, x) ∈ Â and W ⊂ x(U)× Rm open}

is a basis for a topology TTM on TM and (π−1(U), x∗) is a chart on the
2m-dimensional topological manifold (TM, TTM).

If (U, x) and (V, y) are two charts in Â such that p ∈ U ∩ V then
the transition map

(y∗) ◦ (x∗)−1 : x∗(π−1(U ∩ V )) → Rm × Rm

is given by

(a, b) 7→ (y ◦ x−1(a),
m∑
k=1

∂y1
∂xk

(x−1(a))bk, . . . ,
m∑
k=1

∂ym
∂xk

(x−1(a))bk),

see Exercise 4.1. Since we are assuming that y ◦ x−1 is differentiable it
follows that (y∗) ◦ (x∗)−1 is also differentiable. This means that

A∗ = {(π−1(U), x∗)| (U, x) ∈ Â}

is a Cr-atlas on TM so (TM, Â∗) is a differentiable manifold. The
surjective projection map π : TM →M is clearly differentiable.

We shall now describe how the tangent bundle (TM,M, π) can be
given the structure of an m-dimensional differentiable vector bundle.
For each point p ∈M the fibre π−1({p}) is the tangent space TpM and
hence an m-dimensional vector space. For a local chart x : U → Rm in
the maximal atlas Â of M we define x̄ : π−1(U) → U × Rm by

x̄ : (p,
m∑
k=1

vk
( ∂

∂xk

)
p
) 7→ (p, (v1, . . . , vm)).

The restriction x̄p = x̄|TpM : TpM → {p} × Rm to the tangent space
TpM is given by

x̄p :
m∑
k=1

vk
( ∂

∂xk

)
p
7→ (v1, . . . , vm),

so it is clearly a vector space isomorphism. This implies that the map

x̄ : π−1(U) → U × Rm
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is a local bundle chart. If (U, x) and (V, y) are two charts in Â such
that p ∈ U ∩ V then the transition map

(ȳ) ◦ (x̄)−1 : (U ∩ V )× Rm → (U ∩ V )× Rm

is given by

(p, b) 7→ (p,
m∑
k=1

∂y1
∂xk

(p)bk, . . . ,
m∑
k=1

∂ym
∂xk

(p)bk).

This shows that

B = {(π−1(U), x̄)| (U, x) ∈ Â}
is a bundle atlas turning (TM,M, π) into an m-dimensional topologi-
cal vector bundle. It immediately follows from above that (TM,M, π)

together with the maximal bundle atlas B̂ defined by B is a differen-
tiable vector bundle.

Definition 4.8. Let M be a differentiable manifold, then a section
X :M → TM of the tangent bundle is called a vector field. The set
of smooth vector fields X :M → TM is denoted by C∞(TM).

Example 4.9. We have seen earlier that the 3-sphere S3 in H ∼= C2

carries a group structure · given by

(z, w) · (α, β) = (zα− wβ̄, zβ + wᾱ).

This makes (S3, ·) into a Lie group with neutral element e = (1, 0).
Put v1 = (i, 0), v2 = (0, 1) and v3 = (0, i) and for k = 1, 2, 3 define the
curves γk : R → S3 with

γk : t 7→ cos t · (1, 0) + sin t · vk.
Then γk(0) = e and γ̇k(0) = vk so v1, v2, v3 are elements of the tangent
space TeS

3. They are linearily independent so they generate TeS
3.

The group structure on S3 can be used to extend vectors in TeS
3 to

vector fields on S3 as follows. For p ∈ S3 let Lp : S
3 → S3 be the left

translation on S3 by p given by Lp : q 7→ p · q. Then define the vector
fields X1, X2, X3 ∈ C∞(TS3) by

(Xk)p = (dLp)e(vk) =
d

dt
(Lp(γk(t)))|t=0.

It is left as an exercise for the reader to show that at a point p =
(z, w) ∈ S3 the values of Xk at p is given by

(X1)p = (z, w) · (i, 0) = (iz,−iw),
(X2)p = (z, w) · (0, 1) = (−w, z),
(X3)p = (z, w) · (0, i) = (iw, iz).
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Our next aim is to introduce the Lie bracket on the set of vector
fields C∞(TM) on M .

Definition 4.10. Let M be a smooth manifold. For two vector
fields X, Y ∈ C∞(TM) we define the Lie bracket [X, Y ]p : C

∞(M) →
R of X and Y at p ∈M by

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f)).

The next result shows that the Lie bracket [X, Y ]p actually is an
element of the tangent space TpM .

Proposition 4.11. Let M be a smooth manifold, X,Y ∈ C∞(TM)
be vector fields on M , f, g ∈ C∞(M) and λ, µ ∈ R. Then

(i) [X,Y ]p(λ · f + µ · g) = λ · [X,Y ]p(f) + µ · [X,Y ]p(g),
(ii) [X,Y ]p(f · g) = [X, Y ]p(f) · g(p) + f(p) · [X, Y ]p(g).

Proof.

[X,Y ]p(λf + µg)

= Xp(Y (λf + µg))− Yp(X(λf + µg))

= λXp(Y (f)) + µXp(Y (g))− λYp(X(f))− µYp(X(g))

= λ[X, Y ]p(f) + µ[X, Y ]p(g).

[X, Y ]p(f · g)
= Xp(Y (f · g))− Yp(X(f · g))
= Xp(f · Y (g) + g · Y (f))− Yp(f ·X(g) + g ·X(f))

= Xp(f)Yp(g) + f(p)Xp(Y (g)) +Xp(g)Yp(f) + g(p)Xp(Y (f))

−Yp(f)Xp(g)− f(p)Yp(X(g))− Yp(g)Xp(f)− g(p)Yp(X(f))

= f(p){Xp(Y (g))− Yp(X(g))}+ g(p){Xp(Y (f))− Yp(X(f))}
= f(p)[X,Y ]p(g) + g(p)[X, Y ]p(f).

�

Proposition 4.11 implies that if X, Y are smooth vector fields onM
then the map [X, Y ] : M → TM given by [X, Y ] : p 7→ [X,Y ]p is a
section of the tangent bundle. In Proposition 4.13 we shall prove that
this section is smooth. For this we need the following technical lemma.

Lemma 4.12. Let Mm be a smooth manifold and X : M → TM
be a section of TM . Then the following conditions are equivalent

(i) the section X is smooth,
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(ii) if (U, x) is a chart on M then the functions a1, . . . , am : U → R
given by

X|U =
m∑
k=1

ak
∂

∂xk
,

are smooth,
(iii) if f : V → R defined on an open subset V of M is smooth, then

the function X(f) : V → R with X(f)(p) = Xp(f) is smooth.

Proof. (i) ⇒ (ii): The functions ak = πm+k ◦ x∗ ◦ X|U : U →
π−1(U) → x(U)× Rm → R are restrictions of compositions of smooth
maps so therefore smooth.

(ii) ⇒ (iii): Let (U, x) be a chart on M such that U is contained
in V . By assumption the map

X(f |U) =
m∑
i=1

ai
∂f

∂xi

is smooth. This is true for each such chart (U, x) so the function X(f)
is smooth.

(iii) ⇒ (i): Note that the smoothness of the section X is equivalent
to x∗ ◦ X|U : U → R2m being smooth for all charts (U, x) on M . On
the other hand, this is equivalent to x∗k = πk ◦ x∗ ◦X|U : U → R being
smooth for all k = 1, 2, . . . , 2m and all charts (U, x) on M . It is trivial
that the coordinates x∗k = xk for k = 1, . . . ,m are smooth. But x∗m+k =
ak = X(xk) for k = 1, . . . ,m hence also smooth by assumption. �

Proposition 4.13. Let M be a manifold and X, Y ∈ C∞(TM) be
vector fields on M . Then the section [X, Y ] :M → TM of the tangent
bundle given by [X, Y ] : p 7→ [X, Y ]p is smooth.

Proof. Let f : M → R be an arbitrary smooth function on M
then [X, Y ](f) = X(Y (f)) − Y (X(f)) is smooth so it follows from
Lemma 4.12 that the section [X, Y ] is smooth. �

For later use we prove the following useful result.

Lemma 4.14. Let M be a smooth manifold and [, ] be the Lie
bracket on the tangent bundle TM . Then

(i) [X, f · Y ] = X(f) · Y + f · [X, Y ],
(ii) [f ·X,Y ] = f · [X, Y ]− Y (f) ·X

for all X,Y ∈ C∞(TM) and f ∈ C∞(M).

Proof. If g ∈ C∞(M), then

[X, f · Y ](g) = X(f · Y (g))− f · Y (X(g))
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= X(f) · Y (g) + f ·X(Y (g))− f · Y (X(g))

= (X(f) · Y + f · [X,Y ])(g).

This proves the first statement and the second follows from the skew-
symmetry of the Lie bracket. �

Definition 4.15. A real vector space (V,+, ·) equipped with an
operation [, ] : V × V → V is said to be a Lie algebra if the following
relations hold

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z],
(ii) [X,Y ] = −[Y,X],
(iii) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

for allX,Y, Z ∈ V and λ, µ ∈ R. The equation (iii) is called the Jacobi
identity.

Theorem 4.16. Let M be a smooth manifold. The vector space
C∞(TM) of smooth vector fields on M equipped with the Lie bracket
[, ] : C∞(TM)× C∞(TM) → C∞(TM) is a Lie algebra.

Proof. See exercise 4.4. �
Definition 4.17. If ϕ : M → N is a surjective map between

differentiable manifolds, then two vector fields X ∈ C∞(TM) and X̄ ∈
C∞(TN) are said to be ϕ-related if dϕp(Xp) = X̄ϕ(p) for all p ∈ M .
In this situation we write dϕ(X) = X̄.

Example 4.18. Let S1 be the unit circle in the complex plane
and ϕ : S1 → S1 be the map given by ϕ(z) = z2. Note that this is
surjective but not bijective. Further let X be the vector field on S1

satisfying X(z) = iz. Then

dϕz(Xz) =
d

dθ
(ϕ(zeiθ))|θ=0 =

d

dθ
((zeiθ)2)|θ=0 = 2iz2 = 2Xϕ(z).

This shows that the vector field X is ϕ-related to X̄ = 2X.

Example 4.19. Let f : R → R be a surjective C1-function and
x, y ∈ R such that x ̸= y, f(x) = f(y) and f ′(x) ̸= f ′(y). Further
let γ : R → R be the curve with γ(t) = t and define the vector field
X ∈ C1(R) by Xt = γ̇(t). Then for each t ∈ R we have

dft(Xt) = (f ◦ γ(t))′ = f ′(t).

If X̄ ∈ C1(R) is a vector field which is f -related to X then

X̄f(x) = dfx(Xx) = f ′(x) ̸= f ′(y) = dfy(Xy) = X̄f(y).

This contradicts the existence of such a vector field X̄.
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Proposition 4.20. Let ϕ : M → N be a surjective map between
differentiable manifolds and X,Y ∈ C∞(TM), X̄, Ȳ ∈ C∞(TN) such
that dϕ(X) = X̄ and dϕ(Y ) = Ȳ . Then

dϕ([X,Y ]) = [X̄, Ȳ ].

Proof. Let p ∈M and f : N → R be a smooth function, then

dϕp([X, Y ]p)(f) = [X,Y ]p(f ◦ ϕ)
= Xp(Y (f ◦ ϕ))− Yp(X(f ◦ ϕ))
= Xp(dϕ(Y )(f) ◦ ϕ)− Yp(dϕ(X)(f) ◦ ϕ)
= dϕ(X)ϕ(p)(dϕ(Y )(f))− dϕ(Y )ϕ(p)(dϕ(X)(f))

= [X̄, Ȳ ]ϕ(p)(f).

�
Proposition 4.21. Let M and N be differentiable manifolds and

ϕ : M → N be a diffeomorphism. If X,Y ∈ C∞(TM) are vector
fields on M , then dϕ(X) is a vector field on N and the tangent map
dϕ : C∞(TM) → C∞(TN) is a Lie algebra homomorphism i.e.

dϕ([X, Y ]) = [dϕ(X), dϕ(Y )].

Proof. The fact that ϕ is bijective implies that dϕ(X) is a section
of the tangent bundle. That dϕ(X) is smooth follows directly from the
fact that

dϕ(X)(f)(ϕ(p)) = X(f ◦ ϕ)(p).
The last statement is a direct consequence of Proposition 4.20. �

Definition 4.22. Let M be a smooth manifold. Two vector fields
X, Y ∈ C∞(TM) are said to commute if [X, Y ] = 0.

Proposition 4.23. Let M be a differentiable manifold, (U, x) be
local coordinates on M and

{ ∂

∂xk
| k = 1, 2, . . . ,m}

be the induced local frame for the tangent bundle TM . Then the local
frame fields commute i.e.

[
∂

∂xk
,
∂

∂xl
] = 0 for all k, l = 1, . . . ,m.

Proof. The map x : U → x(U) is bijective and differentiable. The
vector field ∂/∂xk ∈ C∞(TU) is x-related to the coordinate vector field
∂ek ∈ C∞(Tx(U)). Then Proposition 4.21 implies that

dx([
∂

∂xk
,
∂

∂xl
]) = [∂ek , ∂el ] = 0.
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The last equation is an immediate consequence of the following well-
known fact

[∂ek , ∂el ](f) = ∂ek(∂el(f))− ∂el(∂ek(f)) = 0

for all f ∈ C2(x(U)). �

Definition 4.24. A vector field X ∈ C∞(TG) is said to be left-
invariant if for all p ∈ G it is Lp-related to itself i.e.

(dLp)q(Xq) = Xpq for all p, q ∈ G.

The set of left-invariant vector fields on G is called the Lie algebra of
G and denoted by g.

Remark 4.25. It should be noted that if e is the neutral element
of the Lie group G and X ∈ g is a left-invariant vector field then

Xp = (dLp)e(Xe).

This shows that the value Xp of X at p is completely determined by
the value Xe at e. Hence the map Φ : TeG→ g given by

Φ : Xe 7→ (X : p 7→ (dLp)e(Xe))

is a vector space isomorphism. As a direct consequence we see that the
Lie algebra g is a finite dimensional subspace of C∞(TG).

Proposition 4.26. If G is a Lie group then its Lie algebra g is a
Lie subalgebra of C∞(TG) i.e. if X, Y ∈ g then [X,Y ] ∈ g.

Proof. If p ∈ G then the left translation Lp : G → G is a diffeo-
morphism so it follows from Proposition 4.21 that

dLp([X, Y ]) = [dLp(X), dLp(Y )] = [X, Y ]

for all X, Y ∈ g. This proves that the Lie bracket [X, Y ] of two left-
invariant vector fields X,Y is left-invariant. �

The linear isomorphism Φ : TeG→ g given by

Φ : Xe 7→ (X : p 7→ (dLp)e(Xe))

induces a natural Lie bracket [ , ] : TeG × TeG → TeG on the tangent
space TeG via

[Xe, Ye] = [X, Y ]e.

For the classical matrix Lie groups introduced in Chapter 3, we
denote their Lie algebras by glm(R), slm(R), o(m), so(m), glm(C),
slm(C), u(m) and su(m), respectively.
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Proposition 4.27. Let G be one of the classical matrix Lie groups
and TeG be the tangent space of G at the neutral element e. Then the
Lie bracket [ , ] : TeG× TeG→ TeG is given by

[Xe, Ye] = Xe · Ye − Ye ·Xe

where · is the usual matrix multiplication.

Proof. We prove the result for the general linear group GLm(R).
For the other real groups the result follows from the fact that they are
all subgroups of GLm(R). The same proof can be used for the complex
cases.

Let X, Y ∈ glm(R) be left-invariant vector fields, f : U → R be
a function defined locally around the identity element e and p be an
arbitrary point in U . Then the derivative Xp(f) is given by

Xp(f) =
d

dt
(f(p · Exp(tXe)))|t=0 = dfp(p ·Xe) = dfp(Xp).

The general linear group GLm(R) is an open subset of Rm×m so we can
apply standard arguments from multi-variable calculus. The second
derivative Ye(X(f)) satisfies

Ye(X(f)) =
d

dt
(XExp(tYe)(f))|t=0

=
d

dt
(dfExp(tYe)(Exp(tYe) ·Xe))|t=0

= d2fe(Ye, Xe) + dfe(Ye ·Xe).

Here d2fe is the symmetric Hessian for f . As an immediate consequence
obtain

[X, Y ]e(f) = Xe(Y (f))− Ye(X(f)) = dfe(Xe · Ye − Ye ·Xe).

�

Theorem 4.28. The tangent bundle TG of a Lie group G is trivial.

Proof. Let {(X1)e, . . . , (Xm)e} be a basis for TeG and extend each
(Xk)e ∈ TeG to the left-invariant vector field Xk ∈ g with

(Xk)p = (dLp)e((Xk)e).

For each p ∈ G the left translation Lp : G→ G is a diffeomorphism so
the set {(X1)p, . . . , (Xm)p} is a basis for the tangent space TpG. This
means that the map ψ : TG→ G× Rm given by

ψ : (p,
m∑
k=1

vk · (Xk)p) 7→ (p, (v1, . . . , vm))
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is well-defined. It is a global bundle chart so the tangent bundle TG is
trivial. �
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Exercises

Exercise 4.1. Let (M, Â) be a smooth manifold, (U, x), (V, y) be
local charts such that U ∩ V is non-empty and

f = y ◦ x−1 : x(U ∩ V ) → Rm

be the corresponding transition map. Show that the local frames

{ ∂

∂xi
| i = 1, . . . ,m} and { ∂

∂yj
| j = 1, . . . ,m}

for TM on U ∩ V satisfy

∂

∂xi
=

m∑
j=1

∂(fj ◦ x)
∂xi

· ∂

∂yj
.

Exercise 4.2. Let SO(m) be the special orthogonal group.

(i) Find a basis for the tangent space TeSO(m),
(ii) construct a non-vanishing vector field Z ∈ C∞(TSO(m)),
(iii) determine all smooth vector fields on SO(2).

The Hairy Ball Theorem. There does not exist a continuous
non-vanishing vector field X ∈ C0(TS2m) on the even dimensional
sphere S2m.

Exercise 4.3. Employ the Hairy Ball Theorem to show that the
tangent bundle TS2m is not trivial. Then construct a non-vanishing
vector field X ∈ C∞(TS2m+1) on the odd-dimensional sphere S2m+1.

Exercise 4.4. Find a proof of Theorem 4.16.





CHAPTER 5

Riemannian Manifolds

In this chapter we introduce the notion of a Riemannian manifold
(M, g). The metric g provides us with an inner product on each tangent
space and can be used to measure angles and the lengths of curves in
the manifold. This defines a distance function and turns the manifold
into a metric space in a natural way. The Riemannian metric on a
differentiable manifold is an important example of what is called a
tensor field.

LetM be a smooth manifold, C∞(M) denote the commutative ring
of smooth functions on M and C∞(TM) be the set of smooth vector
fields on M forming a module over C∞(M). Put

C∞
0 (TM) = C∞(M)

and for each positive integer r let

C∞
r (TM) = C∞(TM)⊗ · · · ⊗ C∞(TM)

be the r-fold tensor product of C∞(TM) over C∞(M).

Definition 5.1. Let M be a differentiable manifold. A smooth
tensor field A onM of type (r, s) is a map A : C∞

r (TM) → C∞
s (TM)

which is multi-linear over C∞(M) i.e. satisfying

A(X1 ⊗ · · · ⊗Xk−1 ⊗ (f · Y + g · Z)⊗Xk+1 ⊗ · · · ⊗Xr)

= f · A(X1 ⊗ · · · ⊗Xk−1 ⊗ Y ⊗Xk+1 ⊗ · · · ⊗Xr)

+g · A(X1 ⊗ · · · ⊗Xk−1 ⊗ Z ⊗Xk+1 ⊗ · · · ⊗Xr)

for all X1, . . . , Xr, Y, Z ∈ C∞(TM), f, g ∈ C∞(M) and k = 1, . . . , r.
For the rest of this work we shall for A(X1⊗· · ·⊗Xr) use the notation

A(X1, . . . , Xr).

The next general result provides us with the most important prop-
erty of a tensor field. It shows that the value of A(X1, . . . , Xr) at a
point p ∈M only depends on the values of the vector fields X1, . . . , Xr

at p and is independent of their values away from p.

49
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Proposition 5.2. Let A : C∞
r (TM) → C∞

s (TM) be a tensor field
of type (r, s) and p ∈ M . Let X1, . . . , Xr and Y1, . . . , Yr be smooth
vector fields on M such that (Xk)p = (Yk)p for each k = 1, . . . , r. Then

A(X1, . . . , Xr)(p) = A(Y1, . . . , Yr)(p).

Proof. We shall prove the statement for r = 1, the rest follows by
induction. Put X = X1 and Y = Y1 and let (U, x) be local coordinates
on M . Choose a function f ∈ C∞(M) such that f(p) = 1,

support(f) = {p ∈M | f(p) ̸= 0}

is contained in U and define the vector fields v1, . . . , vm ∈ C∞(TM) on
M by

(vk)q =

{
f(q) · ( ∂

∂xk
)q if q ∈ U

0 if q /∈ U

Then there exist functions ρk, σk ∈ C∞(M) such that

f ·X =
m∑
k=1

ρk · vk and f · Y =
m∑
k=1

σk · vk.

This implies that

A(X)(p) = f(p)A(X)(p)

= (f · A(X))(p)

= A(f ·X)(p)

= A(
m∑
k=1

ρk · vk)(p)

=
m∑
k=1

(ρk · A(vk))(p)

=
m∑
k=1

ρk(p)A(vk)(p)

and similarily

A(Y )(p) =
m∑
k=1

σk(p)A(vk)(p).

The fact that Xp = Yp shows that ρk(p) = σk(p) for all k. As a direct
consequence we see that

A(X)(p) = A(Y )(p).

�
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For a tensor A we shall by Ap denote the multi-linear restriction of
A to the r-fold tensor product TpM ⊗ · · · ⊗ TpM of the vector space
TpM over R given by

Ap : ((X1)p, . . . , (Xr)p) 7→ A(X1, . . . , Xr)(p).

Definition 5.3. Let M be a smooth manifold. A Riemannian
metric g on M is a tensor field g : C∞

2 (TM) → C∞
0 (TM) such that

for each p ∈M the restriction gp of g to TpM ⊗ TpM with

gp : (Xp, Yp) 7→ g(X, Y )(p)

is an inner product on the tangent space TpM . The pair (M, g) is
called a Riemannian manifold. The study of Riemannian manifolds
is called Riemannian Geometry. Geometric properties of (M, g) which
only depend on the metric g are said to be intrinsic or metric proper-
ties.

Definition 5.4. Let γ : I → M be a C1-curve in M . Then the
length L(γ) of γ is defined by

L(γ) =

∫
I

√
g(γ̇(t), γ̇(t))dt.

Example 5.5. The standard inner product on the vector space Rm

given by

⟨X, Y ⟩Rm = X t · Y =
m∑
k=1

XkYk

defines a Riemannian metric on Rm. The Riemannian manifold

Em = (Rm, ⟨, ⟩Rm)

is called the m-dimensional Euclidean space.

Example 5.6. Equip the vector space Rm with the Riemannian
metric g given by

gp(X, Y ) =
4

(1 + |p|2Rm)2
⟨X,Y ⟩Rm .

The Riemannian manifold Σm = (Rm, g) is called the m-dimensional
punctured round sphere. Let γ : R+ → Σm be the curve with

γ : t 7→ (t, 0, . . . , 0).

Then the length L(γ) of γ can be determined as follows

L(γ) = 2

∫ ∞

0

√
⟨γ̇, γ̇⟩

1 + |γ|2
dt = 2

∫ ∞

0

dt

1 + t2
= 2[arctan(t)]∞0 = π.
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Example 5.7. Let Bm
1 (0) be the open unit ball in Rm given by

Bm
1 (0) = {p ∈ Rm| |p|Rm < 1}.

By the m-dimensional hyperbolic ball we mean Bm
1 (0) equipped with

the Riemannian metric

gp(X,Y ) =
4

(1− |p|2Rm)2
⟨X,Y ⟩Rm .

Let γ : (0, 1) → Bm
1 (0) be a curve given by γ : t 7→ (t, 0, . . . , 0). Then

L(γ) = 2

∫ 1

0

√
⟨γ̇, γ̇⟩

1− |γ|2
dt = 2

∫ 1

0

dt

1− t2
= [log(

1 + t

1− t
)]10 = ∞

As we shall now see a Riemannian manifold (M, g) has the structure
of a metric space (M,d) in a natural way.

Proposition 5.8. Let (M, g) be a Riemannian manifold which is
path-connected. For two points p, q ∈ M let Cpq denote the set of C1-
curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q and define the
function d :M ×M → R+

0 by

d(p, q) = inf{L(γ)| γ ∈ Cpq}.
Then (M,d) is a metric space i.e. for all p, q, r ∈M we have

(i) d(p, q) ≥ 0,
(ii) d(p, q) = 0 if and only if p = q,
(iii) d(p, q) = d(q, p),
(iv) d(p, q) ≤ d(p, r) + d(r, q).

The topology on M induced by the metric d is identical to the one M
carries as a topological manifold (M, T ), see Definition 2.1.

Proof. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). �

A Riemannian metric on a differentiable manifold induces a Rie-
mannian metric on any of its submanifolds as follows.

Definition 5.9. Let M be a submanifold of Riemannian manifold
(N, h). Then the smooth tensor field g : C∞

2 (TM) → C∞
0 (M) given by

g(X, Y ) : p 7→ hp(Xp, Yp)

is a Riemannian metric on M called the induced metric on M in
(N, h).

Example 5.10. The Euclidean metric ⟨, ⟩Rn on Rn induces Rie-
mannian metrics on the following submanifolds.

(i) the m-dimensional sphere Sm ⊂ Rn, with n = m+ 1,
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(ii) the tangent bundle TSm ⊂ Rn, where n = 2(m+ 1),
(iii) the m-dimensional torus Tm ⊂ Rn, with n = 2m,
(iv) the m-dimensional real projective space RPm as a subset of

Sym(Rm+1) ∼= Rn, where n = (m+ 2)(m+ 1)/2.

Example 5.11. The vector space Cm×m of complexm×mmatrices
carries a natural Riemannian metric g given by

g(Z,W ) = Re(trace(Z̄tW )) for all Z,W ∈ Cm×m.

This induces metrics on the submanifolds of Cm×m such as Rm×m and
the classical Lie groups GLm(R), SLm(R), O(m), SO(m), GLm(C),
SLm(C), U(m), SU(m).

Our next important step is to prove that every differentiable mani-
fold M can be equipped with a Riemannian metric g. For this we need
the following fact from topology.

Fact 5.12. Every locally compact Hausdorff space with countable
basis is paracompact i.e. every open cover has an open refinement that
is locally finite.

Corollary 5.13. Let (M, T ) be a topological manifold. Let the
collection (Uα)α∈I be an open covering of M such that for each α ∈ I
the pair (Uα, ϕα) is a chart on M . Then there exists

(i) a locally finite open refinement (Wβ)β∈J such that for all β ∈ J ,
Wβ is an open neighbourhood for a chart (Wβ, ϕβ), and

(ii) a partition of unity (fβ)β∈J such that support(fβ) ⊂ Wβ.

Theorem 5.14. Let (Mm, Â) be a differentiable manifold. Then
there exists a Riemannian metric g on M .

Proof. For each point p ∈M let (Up, ϕp) ∈ Â be a chart such that
p ∈ Up. Then (Up)p∈M is an open covering as in Corollary 5.13. Let
(Wβ)β∈J be a locally finite open refinement, (Wβ, x

β) be charts on M
and (fβ)β∈J be a partition of unity such that support(fβ) is contained
in Wβ. Let ⟨, ⟩Rm be the Euclidean metric on Rm. Then for β ∈ J
define gβ : C∞

2 (TM) → C∞
0 (TM) by

gβ(
∂

∂xβk
,
∂

∂xβl
)(p) =

{
fβ(p) · ⟨ek, el⟩Rm if p ∈ Wβ

0 if p /∈ Wβ

Note that at each point only finitely many of gβ are non-zero. This
means that the well-defined tensor g : C∞

2 (TM) → C∞
0 (TM) given by

g =
∑
β∈J

gβ

is a Riemannian metric on M . �
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Definition 5.15. Let (M, g) and (N, h) be Riemannian manifolds.
A map ϕ : (M, g) → (N, h) is said to be conformal if there exists a
function λ :M → R such that

eλ(p)gp(Xp, Yp) = hϕ(p)(dϕp(Xp), dϕp(Yp)),

for all X, Y ∈ C∞(TM) and p ∈ M . The function eλ is called the
conformal factor of ϕ. A conformal map with λ ≡ 0 is said to be
isometric. An isometric diffeomorphism is called an isometry.

Definition 5.16. For a Riemannian manifold (M, g) we denote by
I(M) the set of all its isometries. If ϕ, ψ ∈ I(M) then it is clear that
the composition ψ ◦ϕ and the inverse ϕ−1 are also isometries. The pair
(I(M), ◦) is called the isometry group of (M, g). The operation is
clearly associative and the identity map is its neutral element.

Definition 5.17. The isometry group I(M) of a Riemannian man-
ifold (M, g) is said to be transitive if for all p, q ∈ M there exists an
isometry ϕpq : M → M such that ϕpq(p) = q. In that case (M, g) is
called a Riemannian homogeneous space.

Example 5.18. On the standard unit sphere Sm we have an action
O(m+ 1)× Sm → Sm of the orthogonal group O(m+ 1) given by

(p, x) 7→ p · x
where · is the standard matrix multiplication. The following shows
that the O(m+ 1)-action on Sm is isometric

⟨pX, pY ⟩ = X tptpY = X tY = ⟨X, Y ⟩.
This means that the orthogonal group O(m + 1) is a subgroup of the
isometry group I(Sm). It is easily seen that O(m+1) acts transitively
on the sphere Sm so it is a homogeneous space.

Example 5.19. The standard inner product on Rm×m induces a
Riemannian metric on the orthogonal group O(m), given by

⟨X, Y ⟩ = trace(X tY ).

Applying the left translation Lp : O(m) → O(m) with Lp : q 7→ pq we
see that the tangent space TpO(m) of O(m) at p is

TpO(m) = {pX| X t +X = 0}.
The differential (dLp)q : TqO(m) → TpqO(m) of Lp at q ∈ O(m)
satisfies

(dLp)q : qX 7→ pqX.

We then have

gpq((dLp)q(qX), (dLp)q(qY )) = trace((pqX)tpqY )
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= trace(X tqtptpqY )

= trace(qX)t(qY ).

= gq(qX, qY ).

This shows that the left translation Lp : O(m) → O(m) is an isometry
for each p ∈ O(m).

Definition 5.20. A Riemannian metric g on a Lie group G is said
to be left-invariant if for each p ∈ G the left translation Lp : G → G
is an isometry. A Lie group (G, g) with a left-invariant metric is called
a Riemannian Lie group.

Remark 5.21. It should be noted that if (G, g) is a Riemannian
Lie group and X, Y ∈ g are left-invariant vector fields then

gp(Xp, Yp) = gp((dLp)e(Xe), (dLp)e(Ye)) = ge(Xe, Ye).

This tells us that a left-invariant metric g on G is completely deter-
mined by the inner product ge : TeG× TeG→ R on the tangent space
at the neutral element e ∈ G.

Theorem 5.22. A Riemannian Lie group (G, g) is a Riemannian
homogeneous space.

Proof. For arbitrary elements p, q ∈ G the left-translation ϕpq =
Lqp−1 by pq−1 ∈ G is an isometry satisfying ϕpq(p) = q. This shows
that the isometry group I(G) is transitive. �

We shall now equip the real projective space RPm with a Riemann-
ian metric.

Example 5.23. Let Sm be the unit sphere in Rm+1 and Sym(Rm+1)
be the linear space of symmetric real (m+1)×(m+1) matrices equipped
with the metric g given by

g(X, Y ) =
1

8
trace(X t · Y ).

As in Example 3.24 we define a map ϕ : Sm → Sym(Rm+1) by

ϕ : p 7→ (ρp : q 7→ 2⟨q, p⟩p− q).

Let α, β : R → Sm be two curves such that α(0) = p = β(0) and put

X = α̇(0), Y = β̇(0). Then for γ ∈ {α, β} we have

dϕp(γ̇(0)) = (q 7→ 2⟨q, γ̇(0)⟩p+ 2⟨q, p⟩γ̇(0)).
If B is an orthonormal basis for Rm+1, then

g(dϕp(X), dϕp(Y ))
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=
1

8
trace(dϕp(X)t · dϕp(Y ))

=
1

8

∑
q∈B

⟨q, dϕp(X)t · dϕp(Y )q⟩

=
1

8

∑
q∈B

⟨dϕp(X)q, dϕp(Y )q⟩

=
1

2

∑
q∈B

⟨⟨q,X⟩p+ ⟨q, p⟩X, ⟨q, Y ⟩p+ ⟨q, p⟩Y ⟩

=
1

2

∑
q∈B

{⟨p, p⟩⟨X, q⟩⟨q, Y ⟩+ ⟨X, Y ⟩⟨p, q⟩⟨p, q⟩}

=
1

2
{⟨X, Y ⟩+ ⟨X,Y ⟩}

= ⟨X,Y ⟩.
This proves that the immersion ϕ is isometric. In Example 3.24 we have
seen that the image ϕ(Sm) can be identified with the real projective
space RPm. This inherits the induced metric from R(m+1)×(m+1) and
the map ϕ : Sm → RPm is what is called an isometric double cover of
RPm.

Long before John Nash became famous in Hollywood he proved
the next remarkable result in his paper The embedding problem for
Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. It implies
that every Riemannian manifold can be realized as a submanifold of a
Euclidean space. The original proof of Nash was later simplified, see
for example Matthias Gunther, On the perturbation problem associated
to isometric embeddings of Riemannian manifolds, Annals of Global
Analysis and Geometry 7 (1989), 69-77.

Deep Result 5.24. For 3 ≤ r ≤ ∞ let (M, g) be a Riemannian
Cr-manifold. Then there exists an isometric Cr-embedding of (M, g)
into a Euclidean space Rn.

We shall now see that parametrizations can be very useful tools for
studying the intrinsic geometry of a Riemannian manifold (M, g). Let

p be a point of M and ψ̂ : U → M be a local parametrization of M
with q ∈ U and ψ̂(q) = p. The differential dψ̂q : TqRm → TpM is
bijective so there exist neighbourhoods Uq of q and Up of p such that

the restriction ψ = ψ̂|Uq : Uq → Up is a diffeomorphism. On Uq we
have the canonical frame {e1, . . . , em} for TUq so {dψ(e1), . . . , dψ(em)}
is a local frame for TM over Up. We then define the pull-back metric
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g̃ = ψ∗g on Uq by

g̃(ek, el) = g(dψ(ek), dψ(el)).

Then ψ : (Uq, g̃) → (Up, g) is an isometry so the intrinsic geometry of
(Uq, g̃) and that of (Up, g) are exactly the same.

Example 5.25. Let G be one of the classical Lie groups and e
be the neutral element of G. Let {X1, . . . , Xm} be a basis for the Lie
algebra g of G. For p ∈ G define ψp : Rm → G by

ψp : (t1, . . . , tm) 7→ Lp(
m∏
k=1

Exp(tkXk(e)))

where Lp : G→ G is the left translation given by Lp(q) = pq. Then

(dψp)0(ek) = Xk(p)

for all k. This means that the differential (dψp)0 : T0Rm → TpG is an
isomorphism so there exist open neighbourhoods U0 of 0 and Up of p
such that the restriction of ψ to U0 is bijective onto its image Up and
hence a local parametrization of G around p.

We shall now study the normal bundle of a submanifold of a given
Riemannian manifold. This is an important example of the notion of
a vector bundle over a manifold.

Definition 5.26. LetM be a submanifold of the Riemannian man-
ifold (N, h). For a point p ∈ M we define the normal space NpM of
M at p by

NpM = {X ∈ TpN | hp(X, Y ) = 0 for all Y ∈ TpM}.
For all p ∈M we have the orthogonal decomposition

TpN = TpM ⊕NpM.

The normal bundle of M in N is defined by

NM = {(p,X)| p ∈M, X ∈ NpM}.
Example 5.27. Let Sm be the unit sphere in Rm+1 equipped with

its standard Euclidean metric ⟨, ⟩. If p ∈ Sm then the tangent space
TpS

m of Sm at p is

TpS
m = {X ∈ Rm+1| ⟨p,X⟩ = 0}

so the normal space NpS
m of Sm at p satisfies

NpS
m = {λp ∈ Rm+1| λ ∈ R}.

This shows that the normal bundle NSm of Sm in Rm+1 is given by

NSm = {(p, λp) ∈ R2m+2| p ∈ Sm, λ ∈ R}.
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Theorem 5.28. Let Mm be a smooth submanifold of the Riemann-
ian manifold (Nn, h). Then the normal bundle (NM,M, π) is a smooth
(n−m)-dimensional vector bundle over M .

Proof. See Exercise 5.6. �
We shall now determine the normal bundle NO(m) of the orthog-

onal group O(m) as a submanifold of Rm×m.

Example 5.29. The standard Euclidean scalar product on the
space Rm×m induces a left-invariant Riemannian metric on O(m) as
a subset. This satisfies

⟨X, Y ⟩ = trace(X tY ).

As we have already seen, the tangent space TeO(m) of O(m) at the
neutral element e is

TeO(m) = {X ∈ Rm×m| X t +X = 0}
and the tangent bundle TO(m) of O(m) is given by

TO(m) = {(p, pX)| p ∈ O(m), X ∈ TeO(m)}.
The space Rm×m of real m×m matrices has a linear decomposition

Rm×m = Sym(Rm)⊕ TeO(m)

and every element X ∈ Rm×m can be decomposed X = X⊤ + X⊥ in
its symmetric and skew-symmetric parts given by

X⊤ =
1

2
(X −X t) and X⊥ =

1

2
(X +X t).

If X ∈ TeO(m) and Y ∈ Sym(Rm) then

⟨X,Y ⟩ = trace(X tY )

= trace(Y tX)

= trace(XY t)

= trace(−X tY )

= −⟨X,Y ⟩.
This means that the normal bundle NO(m) of O(m) in Rm×m is given
by

NO(m) = {(p, pY )| p ∈ O(m), Y ∈ Sym(Rm)}.

A given Riemannian metric g on a manifold M can be used to con-
struct a family of natural metrics on the tangent bundle TM of M .
The best known such examples are the Sasaki and Cheeger-Gromoll
metrics. For a detailed survey on the geometry of tangent bundles
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equipped with these metrics we recommend the paper: S. Gudmunds-
son, E. Kappos, On the geometry of tangent bundles, Expo. Math. 20
(2002), 1-41.
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Exercises

Exercise 5.1. Equip Rm and Cm with their standard Euclidean
scalar products and let ϕ : Rm → Tm be the standard parametriza-
tion of the m-dimensional torus in Cm satisfying ϕ : (x1, . . . , xm) 7→
(eix1 , . . . , eixm). Show that ϕ is isometric.

Exercise 5.2. The stereographic projection from the north pole
of the m-dimensional sphere

ϕ : (Sm − {(1, 0, . . . , 0)}, ⟨, ⟩Rm+1) → (Rm,
4

(1 + |x|2)2
⟨, ⟩Rm)

is given by

ϕ : (x0, . . . , xm) 7→
1

1− x0
(x1, . . . , xm).

Show that ϕ is an isometry.

Exercise 5.3. Let B2
1(0) be the open unit disk in the complex plane

equipped with the hyperbolic metric

g(X, Y ) =
4

(1− |z|2)2
⟨X, Y ⟩R2 .

Equip the upper half plane {z ∈ C| Im(z) > 0} with the Riemannian
metric

g(X, Y ) =
1

Im(z)2
⟨X, Y ⟩R2 .

Prove that the holomorphic function f : B2
1(0) → {z ∈ C| Im(z) > 0}

given by

f : z 7→ i+ z

1 + iz
is an isometry.

Exercise 5.4. Equip the unitary groupU(m) with the Riemannian
metric g given by

g(Z,W ) = Re(trace(Z̄tW )).

Show that for each p ∈ U(m) the left translation Lp : U(m) → U(m)
is an isometry.

Exercise 5.5. For the general linear group GLm(R) we have two
Riemannian metrics g and h satisfying

gp(pZ, pW ) = trace((pZ)tpW ), hp(pZ, pW ) = trace(ZtW ).

Further let ĝ, ĥ be their induced metrics on the special linear group
SLm(R) as a subset of GLm(R).
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(i) Which of the metrics g, h, ĝ, ĥ are left-invariant?
(ii) Determine the normal space NeSLm(R) of SLm(R) in GLm(R)

with respect to g
(iii) Determine the normal bundleNSLm(R) of SLm(R) inGLm(R)

with respect to h.

Exercise 5.6. Find a proof of Theorem 5.28.





CHAPTER 6

The Levi-Civita Connection

In this chapter we introduce the Levi-Civita connection ∇ of a
Riemannian manifold (M, g). This is the most important example of
the general notion of a connection in a smooth vector bundle. We
deduce an explicit formula for the Levi-Civita connection for Lie groups
equipped with left-invariant metrics. We also give an example of a
connection in the normal bundle of a submanifold of a Riemannian
manifold and study its properties.

On them-dimensional real vector space Rm we have the well-known
differential operator

∂ : C∞(TRm)× C∞(TRm) → C∞(TRm)

mapping a pair of vector fields X, Y on Rm to the directional deriv-
ative ∂XY of Y in the direction of X given by

(∂XY )(x) = lim
t→0

Y (x+ tX(x))− Y (x)

t
.

The most fundamental properties of the operator ∂ are expressed by
the following. If λ, µ ∈ R, f, g ∈ C∞(Rm) and X, Y, Z ∈ C∞(TRm)
then

(i) ∂X(λ · Y + µ · Z) = λ · ∂XY + µ · ∂XZ,
(ii) ∂X(f · Y ) = X(f) · Y + f · ∂XY ,

(iii) ∂(f ·X + g · Y )Z = f · ∂XZ + g · ∂YZ.

The next result shows that the differential operator ∂ is compatible
with both the standard differentiable structure on Rm and its Euclidean
metric.

Proposition 6.1. Let the real vector space Rm be equipped with
the standard Euclidean metric ⟨, ⟩ and X, Y, Z ∈ C∞(TRm) be smooth
vector fields on Rm. Then

(iv) ∂XY − ∂YX = [X, Y ],

(v) X(⟨Y, Z⟩) = ⟨∂XY ,Z⟩+ ⟨Y, ∂XZ⟩.

63
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We shall now generalize the differential operator ∂ on the Euclidean
space Rm to the so called Levi-Civita connection ∇ on a Riemannian
manifold (M, g). First we introduce the concept of a connection in a
smooth vector bundle.

Definition 6.2. Let (E,M, π) be a smooth vector bundle over M .

A connection on (E,M, π) is a map ∇̂ : C∞(TM)×C∞(E) → C∞(E)
such that

(i) ∇̂X(λ · v + µ · w) = λ · ∇̂Xv + µ · ∇̂Xw,
(ii) ∇̂X(f · v) = X(f) · v + f · ∇̂Xv,
(iii) ∇̂(f ·X + g · Y )v = f · ∇̂Xv + g · ∇̂Yv.

for all λ, µ ∈ R, X, Y ∈ C∞(TM), v, w ∈ C∞(E) and f, g ∈ C∞(M).
A section v ∈ C∞(E) of the vector bundle E is said to be parallel

with respect to the connection ∇̂ if

∇̂Xv = 0

for all vector fields X ∈ C∞(TM).

Definition 6.3. Let M be a smooth manifold and ∇̂ be a connec-
tion on the tangent bundle (TM,M, π). Then we define the torsion

T : C∞
2 (TM) → C∞

1 (TM) of ∇̂ by

T (X,Y ) = ∇̂XY − ∇̂YX − [X, Y ],

where [, ] is the Lie bracket on C∞(TM). The connection ∇̂ is said to
be torsion-free if its torsion T vanishes i.e.

[X, Y ] = ∇̂XY − ∇̂YX

for all X, Y ∈ C∞(TM).

Definition 6.4. Let (M, g) be a Riemannian manifold. Then a

connection ∇̂ on the tangent bundle (TM,M, π) is said to be metric
or compatible with the Riemannian metric g if

X(g(Y, Z)) = g(∇̂XY ,Z) + g(Y, ∇̂XZ)

for all X, Y, Z ∈ C∞(TM).

Let (M, g) be a Riemannian manifold and ∇ be a metric and
torsion-free connection on its tangent bundle (TM,M, π). Then it is
easily seen that the following equations hold

g(∇XY ,Z) = X(g(Y, Z))− g(Y,∇XZ),

g(∇XY ,Z) = g([X,Y ], Z) + g(∇YX,Z)
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= g([X,Y ], Z) + Y (g(X,Z))− g(X,∇YZ),

0 = −Z(g(X, Y )) + g(∇ZX, Y ) + g(X,∇ZY )

= −Z(g(X, Y )) + g(∇XZ + [Z,X], Y ) + g(X,∇YZ − [Y, Z]).

By adding these relations we yield

2 · g(∇XY ,Z) = {X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+g(Z, [X, Y ]) + g(Y, [Z,X])− g(X, [Y, Z])}.
If {E1, . . . , Em} is a local orthonormal frame for the tangent bundle
then

∇XY =
m∑
k=1

g(∇XY ,Ei)Ei.

As a direct consequence there exists at most one metric and torsion-
free connection on the tangent bundle.

Definition 6.5. Let (M, g) be a Riemannian manifold then the
map ∇ : C∞(TM)× C∞(TM) → C∞(TM) given by

2 · g(∇XY ,Z) = {X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y ))

+g([Z,X], Y ) + g([Z, Y ], X) + g(Z, [X, Y ])}.
is called the Levi-Civita connection on M .

Remark 6.6. It is very important to note that the Levi-Civita
connection is an intrinsic object on (M, g) i.e. only depending on the
differentiable structure of the manifold and its Riemannian metric.

Proposition 6.7. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection ∇ is a connection on the tangent bundle TM of
M .

Proof. It follows from Definition 3.6, Theorem 4.16 and the fact
that g is a tensor field that

g(∇X(λ · Y1 + µ · Y2), Z) = λ · g(∇XY1, Z) + µ · g(∇XY2, Z)
and

g(∇Y1 + Y2
X,Z) = g(∇Y1X,Z) + g(∇Y2X,Z)

for all λ, µ ∈ R and X, Y1, Y2, Z ∈ C∞(TM). Furthermore we have for
all f ∈ C∞(M)

2 · g(∇XfY , Z)
= {X(f · g(Y, Z)) + f · Y (g(X,Z))− Z(f · g(X, Y ))

+f · g([Z,X], Y ) + g([Z, f · Y ], X) + g(Z, [X, f · Y ])}
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= {X(f) · g(Y, Z) + f ·X(g(Y, Z)) + f · Y (g(X,Z))

−Z(f) · g(X, Y )− f · Z(g(X,Y )) + f · g([Z,X], Y )

+g(Z(f) · Y + f · [Z, Y ], X) + g(Z,X(f) · Y + f · [X, Y ])}
= 2 · {X(f) · g(Y, Z) + f · g(∇XY ,Z)}
= 2 · g(X(f) · Y + f · ∇XY ,Z)

and

2 · g(∇f ·XY ,Z)

= {f ·X(g(Y, Z)) + Y (f · g(X,Z))− Z(f · g(X, Y ))

+g([Z, f ·X], Y ) + f · g([Z, Y ], X) + g(Z, [f ·X, Y ])}
= {f ·X(g(Y, Z)) + Y (f) · g(X,Z) + f · Y (g(X,Z))

−Z(f) · g(X, Y )− f · Z(g(X,Y ))

+g(Z(f) ·X,Y ) + f · g([Z,X], Y )

+f · g([Z, Y ], X) + f · g(Z, [X, Y ])− g(Z, Y (f) ·X)}
= 2 · f · g(∇XY ,Z).

This proves that ∇ is a connection on the tangent bundle (TM,M, π).
�

The next result is called the Fundamental Theorem of Riemannian
geometry.

Theorem 6.8. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection is the unique metric and torsion-free connection
on the tangent bundle (TM,M, π).

Proof. The difference g(∇XY ,Z) − g(∇YX,Z) equals twice the

skew-symmetric part (w.r.t the pair (X,Y )) of the right hand side of
the equation in Definition 6.5. This is the same as

=
1

2
{g(Z, [X,Y ])− g(Z, [Y,X])} = g(Z, [X, Y ]).

This proves that the Levi-Civita connection is torsion-free.
The sum g(∇XY ,Z) + g(∇XZ, Y ) equals twice the symmetric part

(w.r.t the pair (Y, Z)) on the right hand side of Definition 6.5. This is
exactly

=
1

2
{X(g(Y, Z)) +X(g(Z, Y ))} = X(g(Y, Z)).

This shows that the Levi-Civita connection is compatible with the Rie-
mannian metric g on M . �
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A vector field X ∈ C∞(TM) on (M, g) induces the first order
covariant derivative

∇X : C∞(TM) → C∞(TM)

in the direction of X by

∇X : Y 7→ ∇XY .

Definition 6.9. Let G be a Lie group. For a left-invariant vector
field Z ∈ g we define the map adZ : g → g by

adZ : X 7→ [Z,X].

Proposition 6.10. Let (G, g) be a Lie group equipped with a left-
invariant metric. Then the Levi-Civita connection ∇ satisfies

g(∇XY ,Z) =
1

2
{g([X,Y ], Z) + g(adZ(X), Y ) + g(X, adZ(Y ))}

for all X, Y, Z ∈ g. In particular, if for all Z ∈ g the map adZ is skew
symmetric with respect to g then

∇XY =
1

2
[X, Y ].

Proof. See Exercise 6.2. �
Proposition 6.11. Let G be one of the classical compact Lie groups

O(m), SO(m), U(m) or SU(m) equipped with the left-invariant metric

g(Z,W ) = Re (trace (Z̄tW )).

Then for each X ∈ g the operator adX : g → g is skew symmetric.

Proof. See Exercise 6.3. �
Example 6.12. Let (M, g) be a Riemannian manifold with Levi-

Civita connection ∇. Further let (U, x) be local coordinates on M and
put Xi = ∂/∂xi ∈ C∞(TU). Then {X1, . . . , Xm} is a local frame of
TM on U . For (U, x) we define the Christoffel symbols Γk

ij : U → R
of the connection ∇ with respect to (U, x) by

m∑
k=1

Γk
ijXk = ∇Xi

Xj.

On the subset x(U) of Rm we define the metric g̃ by

g̃(ei, ej) = gij = g(Xi, Xj).

The differential dx is bijective so Proposition 4.21 implies that

dx([Xi, Xj]) = [dx(Xi), dx(Xj)] = [∂ei , ∂ej ] = 0
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and hence [Xi, Xj] = 0. From the definition of the Levi-Civita connec-
tion we now get

m∑
k=1

Γk
ijgkl = ⟨

m∑
k=1

Γk
ijXk, Xl⟩

= ⟨∇Xi
Xj, Xl⟩

=
1

2
{Xi⟨Xj, Xl⟩+Xj⟨Xl, Xi⟩ −Xl⟨Xi, Xj⟩}

=
1

2
{∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

}.

If gkl = (g−1)kl then

Γk
ij =

1

2

m∑
l=1

gkl{∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

}.

Definition 6.13. LetN be a smooth manifold,M be a submanifold
of N and X̃ ∈ C∞(TM) be a vector field on M . Let U be an open
subset of N such that U ∩M ̸= ∅. A local extension of X̃ to U is
a vector field X ∈ C∞(TU) such that X̃p = Xp for all p ∈ U ∩M . If
U = N then X is called a global extension.

Fact 6.14. Let M be a submanifold of a Riemannian manifold
(N, h), X̃ ∈ C∞(TM), Ỹ ∈ C∞(NM) and p ∈ M . Then there ex-
ists an open neighbourhood U of N containing p and X,Y ∈ C∞(TU)
extending X̃ and Ỹ , respectively, on U .

Let (N, h) be a Riemannian manifold and M be a submanifold
equipped with the induced metric g. Let Z ∈ C∞(TN) be a vector
field on N and Z̃ = Z|M :M → TN be the restriction of Z toM . Note
that Z̃ is not necessarily an element of C∞(TM) i.e. a vector field on
the submanifold M . For each p ∈M the tangent vector Z̃p ∈ TpN can
be decomposed

Z̃p = Z̃⊤
p + Z̃⊥

p

in a unique way into its tangential part (Z̃p)
⊤ ∈ TpM and its normal

part (Z̃p)
⊥ ∈ NpM . For this we write Z̃ = Z̃⊤ + Z̃⊥.

Let X̃, Ỹ ∈ C∞(TM) be vector fields on M extended by X, Y ∈
C∞(TN) to N . If p ∈ M then (∇XY )p only depends on the value

Xp = X̃p and the value of Y along some curve γ : (−ϵ, ϵ) → N such

that γ(0) = p and γ̇(0) = Xp = X̃p. For this see Remark 7.3. Since
Xp ∈ TpM we may choose the curve γ such that the image γ((−ϵ, ϵ))
is contained in M . Then Ỹγ(t) = Yγ(t) for t ∈ (−ϵ, ϵ). This means
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that (∇XY )p only depends on X̃p and the value of Ỹ along γ, hence

independent of the way X̃ and Ỹ are extended. This shows that the
following operators ∇̃ and B are well defined.

Definition 6.15. Let (N, h) be a Riemannian manifold and M be
a submanifold with the induced metric g. Then we define

∇̃ : C∞(TM)× C∞(TM) → C∞(TM)

and

B : C∞(TM)× C∞(TM) → C∞(NM)

by

∇̃X̃Ỹ = (∇XY )⊤ and B(X̃, Ỹ ) = (∇XY )⊥,

where X, Y ∈ C∞(TN) are any extensions of X̃, Ỹ . The operator B is
called the second fundamental form of M in (N, h).

Theorem 6.16. Let (N, h) be a Riemannian manifold and M be
a submanifold with the induced metric g. Then the operator ∇̃ is the
Levi-Civita connection of the submanifold (M, g).

Proof. See Exercise 6.8. �

Proposition 6.17. Let (N, h) be a Riemannian manifold andM be
a submanifold with the induced metric g. Then the second fundamental
form B ofM in (N, h) is symmetric and tensorial in both its arguments.

Proof. See Exercise 6.7. �

Definition 6.18. Let (N, h) be a Riemannian manifold andM be a
submanifold with the induced metric g. ThenM is said to be minimal
if its second fundamental form

B : C∞(TM)⊗ C∞(TM) → C∞(NM)

is traceless i.e.

traceB =
m∑
k=1

B(Xk, Xk) = 0.

Here {X1, X2, . . . , Xm} is any local orthonormal frame for the tangent
bundle TM .

Let us now consider the classical situation of a regular surface Σ as
a submanifold of the 3-dimensional Euclidean space R3. Let {X̃, Ỹ }
be a local orthonormal frame for the tangent bundle TΣ of Σ around
a point p ∈ Σ and Ñ be the local Gauss map with Ñ = X̃ × Ỹ . If
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X, Y,N are local extensions of X̃, Ỹ , Ñ then the second fundamental
form B of Σ in R3 satisfies

B(X̃, Ỹ ) = < ∂XY ,N > N

= − < Y, ∂XN > N

= − < Y, dN(X) > N

= < Y, Sp(X) > N,

where Sp : TpΣ → TpΣ is the shape operator at p. The trace of B then
satisfies

traceB = (< Sp(X), X > + < Sp(Y ), Y >)N = (k1 + k2)N = 0

if and only if the classical mean curvature H = (k1+ k2)/2 vanishes.

We conclude this chapter by observing that the Levi-Civita con-
nection of a Riemannian (N, h) induces a metric connection ∇̄ on the
normal bundle NM of its submanifold M as follows.

Proposition 6.19. Let (N, h) be a Riemannian manifold and M
be a submanifold with the induced metric g. Let X,Y ∈ C∞(TN) be
vector fields extending X̃ ∈ C∞(TM) and Ỹ ∈ C∞(NM). Then the
map ∇̄ : C∞(TM)× C∞(NM) → C∞(NM) given by

∇̄X̃Ỹ = (∇XY )⊥

is a well-defined connection on the normal bundle NM satisfying

X̃(h(Ỹ , Z̃)) = h(∇̄X̃Ỹ , Z̃) + h(Ỹ , ∇̄X̃Z̃)

for all X̃ ∈ C∞(TM) and Ỹ , Z̃ ∈ C∞(NM).

Proof. See Exercise 6.9. �
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Exercises

Exercise 6.1. Let M be a smooth manifold and ∇̂ be a con-
nection on the tangent bundle (TM,M, π). Prove that the torsion

T : C∞
2 (TM) → C∞

1 (TM) of ∇̂ is a tensor field of type (2, 1).

Exercise 6.2. Find a proof of Proposition 6.10.

Exercise 6.3. Find a proof of Proposition 6.11.

Exercise 6.4. Let Sol3 be the 3-dimensional subgroup of SL3(R)
given by

Sol3 = {

ez 0 x
0 e−z y
0 0 1

 | p = (x, y, z) ∈ R3}.

Let X, Y, Z ∈ g be left-invariant vector fields on Sol3 such that

Xe =
∂

∂x
|p=0, Ye =

∂

∂y
|p=0 and Ze =

∂

∂z
|p=0.

Show that

[X,Y ] = 0, [Z,X] = X and [Z, Y ] = −Y.
Let g be a left-invariant Riemannian metric on G such that {X, Y, Z} is
an orthonormal basis for the Lie algebra g. Calculate the vector fields

∇XY , ∇YX, ∇XZ, ∇ZX, ∇YZ and ∇ZY .

Exercise 6.5. Let SO(m) be the special orthogonal group equipped
with the metric

⟨X, Y ⟩ = 1

2
trace(X tY ).

Prove that ⟨, ⟩ is left-invariant and that for left-invariant vector fields
X, Y ∈ so(m) we have

∇XY =
1

2
[X, Y ].

Let A,B,C be elements of the Lie algebra so(3) with

Ae =

 0 −1 0
1 0 0
0 0 0

 , Be =

 0 0 −1
0 0 0
1 0 0

 , Ce =

 0 0 0
0 0 −1
0 1 0

 .

Prove that {A,B,C} is an orthonormal basis for so(3) and calculate

∇AB, ∇BC and ∇CA.
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Exercise 6.6. Let SL2(R) be the real special linear group equipped
with the metric

⟨X, Y ⟩p =
1

2
trace((p−1X)t(p−1Y )).

Let A,B,C be elements of the Lie algebra sl2(R) with

Ae =

(
0 −1
1 0

)
, Be =

(
0 1
1 0

)
, Ce =

(
1 0
0 −1

)
.

Prove that {A,B,C} is an orthonormal basis for sl2(R) and calculate

∇AB, ∇BC and ∇CA.

Exercise 6.7. Find a proof of Proposition 6.17.

Exercise 6.8. Find a proof of Theorem 6.16.

Exercise 6.9. Find a proof of Proposition 6.19.



CHAPTER 7

Geodesics

In this chapter we introduce the notion of a geodesic on a Riemann-
ian manifold (M, g). This is a solution to a second order non-linear
system of ordinary differential equations. We show that geodesics are
solutions to two different variational problems. They are critical points
to the so called energy functional and furthermore locally shortest paths
between their endpoints.

Definition 7.1. Let M be a smooth manifold and (TM,M, π) be
its tangent bundle. A vector field X along a curve γ : I → M is
a curve X : I → TM such that π ◦ X = γ. By C∞

γ (TM) we denote
the set of all smooth vector fields along γ. For X,Y ∈ C∞

γ (TM) and
f ∈ C∞(I) we define the operations + and · by

(i) (X + Y )(t) = X(t) + Y (t),
(ii) (f ·X)(t) = f(t) ·X(t).

This turns (C∞
γ (TM),+, ·) into a module over C∞(I) and a real vector

space over the constant functions in particular. For a given smooth
curve γ : I → M in M the smooth vector field X : I → TM with
X : t 7→ (γ(t), γ̇(t)) is called the tangent field along γ.

The next result gives a rule for differentiating a vector field along a
given curve and shows how this is related to the Levi-Civita connection.

Proposition 7.2. Let (M, g) be a smooth Riemannian manifold
and γ : I →M be a curve in M . Then there exists a unique operator

D

dt
: C∞

γ (TM) → C∞
γ (TM)

such that for all λ, µ ∈ R and f ∈ C∞(I),

(i) D(λ ·X + µ · Y )/dt = λ · (DX/dt) + µ · (DY/dt),
(ii) D(f · Y )/dt = df/dt · Y + f · (DY /dt), and
(iii) for each t0 ∈ I there exists an open subinterval J0 of I such that

t0 ∈ J0 and if X ∈ C∞(TM) is a vector field with Xγ(t) = Y (t)
for all t ∈ J0 then(DY

dt

)
(t0) = (∇̇γX)γ(t0).

73
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Proof. Let us first prove the uniqueness, so for the moment we
assume that such an operator exists. For a point t0 ∈ I choose a chart
(U, x) on M and open subinterval J ⊂ I such that t0 ∈ J , γ(J) ⊂ U
and put Xi = ∂/∂xi ∈ C∞(TU). Then any vector field Y along the
restriction of γ to J can be written in the form

Y (t) =
m∑
j=1

αj(t)
(
Xj

)
γ(t)

for some functions αj ∈ C∞(J). The second condition means that

(1)
(DY
dt

)
(t) =

m∑
j=1

αj(t)
(DXj

dt

)
γ(t)

+
m∑
k=1

α̇k(t)
(
Xk

)
γ(t)
.

Let x ◦ γ(t) = (γ1(t), . . . , γm(t)) then

γ̇(t) =
m∑
i=1

γ̇i(t)
(
Xi

)
γ(t)

and the third condition for D/dt implies that

(2)
(DXj

dt

)
γ(t)

= (∇̇γXj)γ(t) =
m∑
i=1

γ̇i(t)(∇Xi
Xj)γ(t).

Together equations (1) and (2) give

(3)
(DY
dt

)
(t) =

m∑
k=1

(
α̇k(t) +

m∑
i,j=1

Γk
ij(γ(t))γ̇i(t)αj(t)

)(
Xk

)
γ(t)
.

This shows that the operator D/dt is uniquely determined.
It is easily seen that if we use equation (3) for defining an operator

D/dt then it satisfies the necessary conditions of Proposition 7.2. This
proves the existence of the operator D/dt. �

Remark 7.3. It follows from the fact that the Levi-Civita connec-
tion is tensorial in its first argument i.e.

∇f · ZX = f · ∇ZX

and the equation

(∇̇γX)γ(t0) =
(DY
dt

)
(t0)

in Proposition 7.2 that the value (∇ZX)p of ∇ZX at p only depends
on the value of Zp of Z at p and the values of Y along some curve γ
satisfying γ(0) = p and γ̇(0) = Zp. This allows us to use the notation
∇γ̇Y for DY/dt.
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The Levi-Civita connection can now be used to define the notions
of parallel vector fields and geodesics on Riemannian manifolds. We
will show that they are solutions to ordinary differential equations.

Definition 7.4. Let (M, g) be a Riemannian manifold and γ : I →
M be a C1-curve. A vector field X along γ is said to be parallel if

∇̇γX = 0.

A C2-curve γ : I → M on M is said to be a geodesic if its tangent
field γ̇ is parallel along γ i.e.

∇̇γγ̇ = 0.

The next result shows that for given initial values at a point p ∈M
we get a parallel vector field globally defined along any curve through
that point.

Theorem 7.5. Let (M, g) be a Riemannian manifold and I = (a, b)
be an open interval on the real line R. Further let γ : [a, b] → M
be a continuous curve which is C1 on I, t0 ∈ I and X0 ∈ Tγ(t0)M .
Then there exists a unique parallel vector field Y along γ such that
X0 = Y (t0).

Proof. Let (U, x) be a chart on M such that γ(t0) ∈ U and put
Xi = ∂/∂xi ∈ C∞(TU). Let J be an open subset of I such that the
image γ(J) is contained in U . Then the tangent of the restriction of γ
to J can be written as

γ̇(t) =
m∑
i=1

γ̇i(t)
(
Xi

)
γ(t)
.

Similarly, let Y be a vector field along γ represented by

Y (t) =
m∑
j=1

αj(t)
(
Xj

)
γ(t)
.

Then (
∇̇γY

)
(t) =

m∑
j=1

{α̇j(t)
(
Xj

)
γ(t)

+ αj(t)
(
∇̇γXj

)
γ(t)

}

=
m∑
k=1

{α̇k(t) +
m∑

i,j=1

αj(t)γ̇i(t)Γ
k
ij(γ(t))}

(
Xk

)
γ(t)
.

This implies that the vector field Y is parallel i.e. ∇̇γY ≡ 0 if and

only if the following first order linear system of ordinary differential
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equations is satisfied

α̇k(t) +
m∑

i,j=1

αj(t)γ̇i(t)Γ
k
ij(γ(t)) = 0

for all k = 1, . . . ,m. It follows from Fact 7.6 that to each initial value
α(t0) = (v1, . . . , vm) ∈ Rm with

Y0 =
m∑
k=1

vk
(
Xk

)
γ(t0)

there exists a unique solution α = (α1, . . . , αm) to the above system.
This gives us the unique parallel vector field Y

Y (t) =
m∑
k=1

αk(t)
(
Xk

)
γ(t)

along J . Since the Christoffel symbols are bounded along the compact
set [a, b] it is clear that the parallel vector field can be extended to the
whole of I = (a, b). �

The following result is the well-known theorem of Picard-Lindelöf.

Fact 7.6. Let f : U → Rn be a continuous map defined on an open
subset U of R× Rn and L ∈ R+ such that

|f(t, x)− f(t, y)| ≤ L · |x− y|

for all (t, x), (t, y) ∈ U . If (t0, x0) ∈ U then there exists a unique local
solution x : I → Rn to the following initial value problem

x′(t) = f(t, x(t)), x(t0) = x0.

Lemma 7.7. Let (M, g) be a Riemannian manifold, γ : I → M
be a smooth curve and X, Y be parallel vector fields along γ. Then the
function g(X,Y ) : I → R given by t 7→ gγ(t)(Xγ(t), Yγ(t)) is constant.
In particular, if γ is a geodesic then g(γ̇, γ̇) is constant along γ.

Proof. Using the fact that the Levi-Civita connection is metric
we obtain

d

dt
(g(X,Y )) = g(∇̇γX, Y ) + g(X, ∇̇γY ) = 0.

This proves that the function g(X,Y ) is constant along γ. �

The following result on parallel vector fields is a useful tool in Rie-
mannian geometry. It turns out to be very useful in Chapter 9.
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Proposition 7.8. Let (M, g) be a Riemannian manifold, p ∈ M
and {v1, . . . , vm} be an orthonormal basis for the tangent space TpM .
Let γ : I →M be a smooth curve such that γ(0) = p and X1, . . . , Xm be
parallel vector fields along γ such that Xk(0) = vk for k = 1, 2, . . . ,m.
Then the set {X1(t), . . . , Xm(t)} is a orthonormal basis for the tangent
space Tγ(t)M for all t ∈ I.

Proof. This is a direct consequence of Lemma 7.7. �
Geodesics are of great importance in Riemannian geometry. For

those we have the following fundamental uniquness and existence re-
sult.

Theorem 7.9. Let (M, g) be a Riemannian manifold. If p ∈ M
and v ∈ TpM then there exists an open interval I = (−ϵ, ϵ) and a
unique geodesic γ : I →M such that γ(0) = p and γ̇(0) = v.

Proof. Let (U, x) be a chart on M such that p ∈ U and put
Xi = ∂/∂xi ∈ C∞(TU). Let J be an open subset of I such that the
image γ(J) is contained in U . Then the tangent of the restriction of γ
to J can be written as

γ̇(t) =
m∑
i=1

γ̇i(t)
(
Xi

)
γ(t)
.

By differentiation we then obtain

∇̇γγ̇ =
m∑
j=1

∇̇γ
(
γ̇j(t)

(
Xj

)
γ(t)

)
=

m∑
j=1

{γ̈j(t)
(
Xj

)
γ(t)

+
m∑
i=1

γ̇i(t)γ̇j(t)
(
∇Xi

Xj

)
γ(t)

}

=
m∑
k=1

{γ̈k(t) +
m∑

i,j=1

γ̇i(t)γ̇j(t)Γ
k
ij(γ(t))}

(
Xk

)
γ(t)
.

Hence the curve γ is a geodesic if and only if

γ̈k(t) +
m∑

i,j=1

γ̇i(t)γ̇j(t)Γ
k
ij(γ(t)) = 0

for all k = 1, . . . ,m. It follows from Fact 7.10 that for initial values
q = x(p) and w = (dx)p(v) there exists an open interval (−ϵ, ϵ) and a
unique solution (γ1, . . . , γm) satisfying the initial conditions

(γ1(0), . . . , γm(0)) = q and (γ̇1(0), . . . , γ̇m(0)) = w.

�
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The following result is a second order consequence of the well-known
theorem of Picard-Lindelöf.

Fact 7.10. Let f : U → Rn be a continuous map defined on an
open subset U of R× Rn and L ∈ R+ such that

|f(t, x)− f(t, y)| ≤ L · |x− y|
for all (t, x), (t, y) ∈ U . If (t0, x0) ∈ U and x1 ∈ Rn then there exists a
unique local solution x : I → Rn to the following initial value problem

x′′(t) = f(t, x(t)), x(t0) = x0, x′(t0) = x1.

Remark 7.11. The Levi-Civita connection ∇ on a given Riemann-
ian manifold (M, g) is an inner object i.e. completely determined by
the differentiable structure on M and the Riemannian metric g, see
Remark 6.6. Hence the same applies for the condition

∇̇γγ̇ = 0

for a given curve γ : I →M . This means that the image of a geodesic
under a local isometry is again a geodesic.

Example 7.12. Let Em = (Rm, ⟨, ⟩Rm) be the Euclidean space.
For the trivial chart idRm : Rm → Rm the metric on Em is given by
gij = δij. As a direct consequence of Example 6.12 we see that

Γk
ij = 0 for all i, j, k = 1, . . . ,m.

Hence γ : I → Rm is a geodesic if and only if γ̈(t) = 0. For p ∈ Rm

and v ∈ TpRm ∼= Rm define

γ(p,v) : R → Rm by γ(p,v)(t) = p+ t · v.
Then γ(p,v)(0) = p, γ̇(p,v)(0) = v and γ̈(p,v) = 0. It now follows from
Theorem 7.9 that the geodesics in Em are the straight lines.

Definition 7.13. A geodesic γ : I → (M, g) in a Riemannian
manifold is said to be maximal if it cannot be extended to a geodesic
defined on an interval J strictly containing I. The manifold (M, g)
is said to be complete if for each point (p, v) ∈ TM there exists a
geodesic γ : R →M defined on the whole of R such that γ(0) = p and
γ̇(0) = v.

Proposition 7.14. Let (N, h) be a Riemannian manifold with Levi-
Civita connection ∇ and M be a submanifold equipped with the induced
metric g. A curve γ : I →M is a geodesic in M if and only if

(∇̇γγ̇)
⊤ = 0.
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Proof. Following Theorem 6.16 the Levi-Civita connection ∇̃ on
(M, g) satisfies

∇̃̇γγ̇ = (∇̇γγ̇)
⊤.

�

Example 7.15. Let Em+1 be the (m + 1)-dimensional Euclidean
space and Sm be the unit sphere in Em+1 with the induced metric. At
a point p ∈ Sm the normal space NpS

m of Sm in Em+1 is simply the
line generated by p. If γ : I → Sm is a curve on the sphere, then

∇̃̇γγ̇ = (∇̇γγ̇)
⊤ = (∂γ̇γ̇)

⊤ = γ̈⊤ = γ̈ − γ̈⊥ = γ̈ − ⟨γ̈, γ⟩γ.

This shows that γ is a geodesic on the sphere Sm if and only if

(4) γ̈ = ⟨γ̈, γ⟩γ.

For a point (p,X) ∈ TSm define the curve γ = γ(p,X) : R → Sm by

γ : t 7→
{

p if X = 0
cos(|X|t) · p+ sin(|X|t) ·X/|X| if X ̸= 0.

Then one easily checks that γ(0) = p, γ̇(0) = X and that γ satisfies
the geodesic equation (4). This shows that the non-constant geodesics
on Sm are precisely the great circles and the sphere is complete.

Example 7.16. Let Sym(Rm+1) be equipped with the metric

⟨A,B⟩ = 1

8
trace(AtB).

Then we know that the map ϕ : Sm → Sym(Rm+1) with

ϕ : p 7→ (2ppt − e)

is an isometric immersion and that the image ϕ(Sm) is isometric to
the m-dimensional real projective space RPm. This means that the
geodesics on RPm are exactly the images of geodesics on Sm. This
shows that the real projective spaces are complete.

Definition 7.17. Let (M, g) be a Riemannian manifold and γ :
I →M be a Cr-curve on M . A variation of γ is a Cr-map

Φ : (−ϵ, ϵ)× I →M

such that for all s ∈ I, Φ0(s) = Φ(0, s) = γ(s). If the interval is
compact i.e. of the form I = [a, b], then the variation Φ is called
proper if for all t ∈ (−ϵ, ϵ), Φt(a) = γ(a) and Φt(b) = γ(b).
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Definition 7.18. Let (M, g) be a Riemannian manifold and γ :
I → M be a C2-curve on M . For every compact interval [a, b] ⊂ I we
define the energy functional E[a,b] by

E[a,b](γ) =
1

2

∫ b

a

g(γ̇(t), γ̇(t))dt.

A C2-curve γ : I → M is called a critical point for the energy
functional if every proper variation Φ of γ|[a,b] satisfies

d

dt
(E[a,b](Φt))|t=0 = 0.

We shall now prove that geodesics can be characterized as the crit-
ical points of the energy functional.

Theorem 7.19. A C2-curve γ : I = [a, b] → M is a critical point
for the energy functional if and only if it is a geodesic.

Proof. For a C2-map Φ : (−ϵ, ϵ) × I → M , Φ : (t, s) 7→ Φ(t, s)
we define the vector fields X = dΦ(∂/∂s) and Y = dΦ(∂/∂t) along Φ.
The following shows that the vector fields X and Y commute.

∇XY −∇YX = [X, Y ]

= [dΦ(∂/∂s), dΦ(∂/∂t)]

= dΦ([∂/∂s, ∂/∂t])

= 0,

since [∂/∂s, ∂/∂t] = 0. We now assume that Φ is a proper variation of
γ. Then

d

dt
(E[a,b](Φt)) =

1

2

d

dt
(

∫ b

a

g(X,X)ds)

=
1

2

∫ b

a

d

dt
(g(X,X))ds

=

∫ b

a

g(∇YX,X)ds

=

∫ b

a

g(∇XY ,X)ds

=

∫ b

a

(
d

ds
(g(Y,X))− g(Y,∇XX))ds

= [g(Y,X)]ba −
∫ b

a

g(Y,∇XX)ds.
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The variation is proper, so Y (t, a) = Y (t, b) = 0. FurthermoreX(0, s) =
∂Φ/∂s(0, s) = γ̇(s), so

d

dt
(E[a,b](Φt))|t=0 = −

∫ b

a

g(Y (0, s), (∇̇γγ̇)(s))ds.

The last integral vanishes for every proper variation Φ of γ if and only
if ∇̇γγ̇ = 0. �

A geodesic γ : I → (M, g) is a special case of what is called a
harmonic map ϕ : (M, g) → (N, h) between Riemannian manifolds.
Other examples are conformal immersions ψ : (M2, g) → (N, h) which
parametrize the so called minimal surfaces in (N, h). For a reference on
harmonic maps see H. Urakawa, Calculus of Variations and Harmonic
Maps, Translations of Mathematical Monographs 132, AMS (1993).

Let (Mm, g) be an m-dimensional Riemannian manifold, p ∈ M
and

Sm−1
p = {v ∈ TpM | gp(v, v) = 1}

be the unit sphere in the tangent space TpM at p. Then every point
w ∈ TpM \ {0} can be written as w = rw · vw, where rw = |w| and
vw = w/|w| ∈ Sm−1

p . For v ∈ Sm−1
p let γv : (−αv, βv) → M be

the maximal geodesic such that αv, βv ∈ R+ ∪ {∞}, γv(0) = p and
γ̇v(0) = v. It can be shown that the real number

ϵp = inf{αv, βv| v ∈ Sm−1
p }

is positive so the open ball

Bm
ϵp(0) = {v ∈ TpM | gp(v, v) < ϵ2p}

is non-empty. The exponential map expp : Bm
ϵp(0) → M at p is

defined by

expp : w 7→
{

p if w = 0
γvw(rw) if w ̸= 0.

Note that for v ∈ Sm−1
p the line segment λv : (−ϵp, ϵp) → TpM

with λv : t 7→ t · v is mapped onto the geodesic γv i.e. locally we have
γv = expp ◦λv. One can prove that the map expp is smooth and it
follows from its definition that the differential

d(expp)0 : TpM → TpM

is the identity map for the tangent space TpM . Then the inverse
mapping theorem tells us that there exists an rp ∈ R+ such that if
Up = Bm

rp(0) and Vp = expp(Up) then expp |Up : Up → Vp is a diffeomor-
phism parametrizing the open subset Vp of M .
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The next result shows that the geodesics are locally the shortest
paths between their endpoints.

Theorem 7.20. Let (M, g) be a Riemannian manifold. Then the
geodesics are locally the shortest paths between their end points.

Proof. Let p ∈M , U = Bm
r (0) in TpM and V = expp(U) be such

that the restriction

ϕ = expp |U : U → V

of the exponential map at p is a diffeomorphism. We define a metric g̃
on U such that for each X,Y ∈ C∞(TU) we have

g̃(X, Y ) = g(dϕ(X), dϕ(Y )).

This turns ϕ : (U, g̃) → (V, g) into an isometry. It then follows from
the construction of the exponential map, that the geodesics in (U, g̃)
through the point 0 = ϕ−1(p) are exactly the lines λv : t 7→ t · v where
v ∈ TpM .

Now let q ∈ Bm
r (0) \ {0} and λq : [0, 1] → Bm

r (0) be the curve
λq : t 7→ t · q. Further let σ : [0, 1] → U be any C1-curve such that
σ(0) = 0 and σ(1) = q. Along the curve σ we define the vector field X
with X : t 7→ σ(t) and the tangent field σ̇ : t → σ̇(t) to σ. Then the
radial component σ̇rad of σ̇ is the orthogonal projection of σ̇ onto the
line generated by X i.e.

σ̇rad : t 7→ g̃(σ̇(t), X(t))

g̃(X(t), X(t))
X(t).

Then it is easily checked that

|σ̇rad(t)| =
|g̃(σ̇(t), X(t))|

|X(t)|
and

d

dt
|X(t)| = d

dt

√
g̃(X(t), X(t)) =

g̃(σ̇(t), X(t))

|X(t)|
.

Combining these two relations we yield

|σ̇rad(t)| ≥
d

dt
|X(t)|.

This means that

L(σ) =

∫ 1

0

|σ̇(t)|dt

≥
∫ 1

0

|σ̇rad(t)|dt
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≥
∫ 1

0

d

dt
|X(t)|dt

= |X(1)| − |X(0)|
= |q|
= L(λq).

This proves that in fact γ is the shortest path connecting p and q. �

Definition 7.21. Let (N, h) be a Riemannian manifold and M be
a submanifold with the induced metric g. Then the mean curvature
vector field of M in N is the smooth section H : M → NM of the
normal bundle NM given by

H =
1

m
trace B =

1

m

m∑
k=1

B(Xk, Xk).

Here B is the second fundamental form of M in N and {X1, . . . , Xm}
is any local orthonormal frame for the tangent bundle TM of M . The
submanifold M is said to be minimal in N if H ≡ 0 and totally
geodesic in N if B ≡ 0.

Proposition 7.22. Let (N, h) be a Riemannian manifold andM be
a submanifold equipped with the induced metric g. Then the following
conditions are equivalent

(i) M is totally geodesic in N
(ii) if γ : I → M is a curve, then the following conditions are

equivalent
(a) γ : I →M is a geodesic in M ,
(b) γ : I →M is a geodesic in N .

Proof. The result is a direct consequence of the following decom-
position formula

∇̇γγ̇ = (∇̇γγ̇)
⊤ + (∇̇γγ̇)

⊥ = ∇̃̇γγ̇ +B(γ̇, γ̇).

�

Proposition 7.23. Let (N, h) be a Riemannian manifold andM be
a complete submanifold of N . For a point (p, v) of the tangent bundle
TM let γ(p,v) : I → N be the maximal geodesic in N with γ(0) = p
and γ̇(0) = v. Then M is totally geodesic in (N, h) if and only if
γ(p,v)(I) ⊂M for all (p, v) ∈ TM .

Proof. See Exercise 7.3. �
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Corollary 7.24. Let (N, h) be a Riemannian manifold, p ∈ N
and V be an m-dimensional linear subspace of the tangent space TpN
of N at p. Then there exists (locally) at most one totally geodesic
submanifold M of (N, h) such that TpM = V .

Proof. See Exercise 7.4. �

Proposition 7.25. Let (N, h) be a Riemannian manifold andM be
a submanifold of N which is the fixpoint set of an isometry ϕ : N → N .
Then M is totally geodesic in N .

Proof. Let p ∈ M , v ∈ TpM and c : J → M be a curve such
that c(0) = p and ċ(0) = v. Since M is the fix point set of ϕ we have
ϕ(p) = p and dϕp(v) = v. Further let γ : I → N be the maximal
geodesic in N with γ(0) = p and γ̇(0) = v. The map ϕ : N → N
is an isometry so the curve ϕ ◦ γ : I → N is also a geodesic. The
uniqueness result of Theorem 7.9, ϕ(γ(0)) = γ(0) and dϕ(γ̇(0)) = γ̇(0)
then imply that ϕ(γ) = γ. Hence the image of the geodesic γ : I → N
is contained in M , so following Proposition 7.23 the submanifold M is
totally geodesic in N . �

Corollary 7.26. Let m < n be positive integers. Then the m-
dimensional sphere

Sm = {(x, 0) ∈ Rm+1 × Rn−m| |x|2 = 1}

is a totally geodesic submanifold of

Sn = {(x, y) ∈ Rm+1 × Rn−m| |x|2 + |y|2 = 1}.

Proof. The statement is a direct consequence of the fact that Sm

is the fixpoint set of the isometry ϕ : Sn → Sn of Sn with (x, y) 7→
(x,−y). �

Corollary 7.27. Let m < n be positive integers. Let Hn be the n-
dimensional hyperbolic space modelled on the upper half space R+×Rn−1

equipped with the Riemannian metric

g(X, Y ) =
1

x21
⟨X,Y ⟩Rn ,

where x = (x1, . . . , xn) ∈ Hn. Then the m-dimensional hyperbolic space

Hm = {(x, 0) ∈ Hn| x ∈ Rm}

is totally geodesic in Hn.

Proof. See Exercise 7.6. �
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Definition 7.28. A symmetric space is a Riemannian manifold
(M, g) such that for each point p ∈ M there exists a global isometry
ϕp : M → M which is a geodesic symmetry fixing p. By this we
mean that ϕp(p) = p and the tangent map dϕp : TpM → TpM satisfies
dϕp(X) = −X for all X ∈ TpM .

Example 7.29. Let p be an arbitrary point on the standard sphere
Sm as a subset of Rn+1. Then the reflection ρp : Rn+1 → Rn+1 about
the line generated by p is given by

ρp : q 7→ 2⟨q, p⟩p− q.

This is a linear map hence identical to is differential ρp : Rn+1 → Rn+1.
The restriction ϕp = ρp|Sm : Sm → Sm, to the sphere, is an isometry
that fixes p. Its tangent map dϕp : TpS

m → TpS
m satisfies dϕp(X) =

−X for all X ∈ TpS
m. We have shown that the homogeneous space

Sm is symmetric.

Proposition 7.30. Every symmetric space is complete.

Proof. See Exercise 7.9. �
Theorem 7.31. Let (M, g) be a complete Riemannian manifold.

If p, q ∈ M then there exists a geodesic γ : R → M such that γ(0) = p
and γ(1) = q.

Proof. See Exercise 7.10. �
Theorem 7.32. Every symmetric space is homogeneous.

Proof. See Exercise 7.11. �
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Exercises

Exercise 7.1. The result of Exercise 5.3 shows that the two di-
mensional hyperbolic disc H2 introduced in Example 5.7 is isometric
to the upper half plane M = ({(x, y) ∈ R2| y ∈ R+} equipped with the
Riemannian metric

g(X, Y ) =
1

y2
⟨X, Y ⟩R2 .

Use your local library to find all geodesics in (M, g).

Exercise 7.2. Let n be a positive integer and O(n) be the orthog-
onal group equipped with the standard left-invariant metric

g(A,B) = trace(AtB).

Prove that a C2-curve γ : (−ϵ, ϵ) → O(n) is a geodesic if and only if

γt · γ̈ = γ̈t · γ.
Exercise 7.3. Find a proof of Proposition 7.23.

Exercise 7.4. Find a proof of Corollary 7.24.

Exercise 7.5. For the real parameter θ ∈ (0, π/2) define the 2-
dimensional torus T 2

θ by

T 2
θ = {(cos θeiα, sin θeiβ) ∈ S3| α, β ∈ R}.

Determine for which θ ∈ (0, π/2) the torus T 2
θ is a minimal submanifold

of the 3-dimensional sphere

S3 = {(z1, z2) ∈ C2| |z1|2 + |z2|2 = 1}.
Exercise 7.6. Find a proof of Corollary 7.27.

Exercise 7.7. Determine the totally geodesic submanifolds of the
m-dimensional real projective space RPm.

Exercise 7.8. Let the orthogonal group O(n) be equipped with
the left-invariant metric

g(A,B) = trace(AtB)

and let K be a Lie subgroup of O(n). Prove that K is totally geodesic
in O(n).

Exercise 7.9. Find a proof of Proposition 7.30.

Exercise 7.10. Use your local library to find a proof of Theorem
7.31.

Exercise 7.11. Find a proof of Theorem 7.32.



CHAPTER 8

The Riemann Curvature Tensor

In this chapter we introduce the Riemann curvature tensor and
the notion of sectional curvature of a Riemannian manifold. These
generalize the Gaussian curvature playing a central role in classical
differential geometry.

We prove that the Euclidean spaces, the standard spheres and the
hyperbolic spaces all have constant sectional curvature. We determine
the Riemannian curvature tensor for manifolds of constant sectional
curvature and also for an important class of Lie groups. We then derive
the important Gauss equation comparing the sectional curvatures of a
submanifold and that of its ambient space.

Let (M, g) be a Riemannian manifold and ∇ be its Levi-Civita
connection. Then to each vector field X ∈ C∞(TM) we have the first
order covariant derivative

∇X : C∞(TM) → C∞(TM)

in the direction of X satisfying

∇X : Z 7→ ∇XZ.
We shall now generalize this and introduce the covariant derivative of
tensor fields of type (r, 0) or (r, 1).

As motivation, let us assume that A is a tensor field of type (2, 1).
If we differentiate A(Y, Z) in the direction of X applying the naive
”product rule”

∇X(A(Y, Z)) = (∇XA)(Y, Z) + A(∇XY ,Z) + A(Y,∇XZ)
we get

(∇XA)(Y, Z) = ∇X(A(Y, Z))− A(∇XY ,Z)− A(Y,∇XZ),
where ∇XA is the ”covariant derivative” of the tensor field A in the
direction of X. This naive idea turns out to be very useful and leads
to the following formal definition.

Definition 8.1. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. For a tensor field A : C∞

r (TM) → C∞
0 (TM) of

87
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type (r, 0) we define its covariant derivative

∇A : C∞
r+1(TM) → C∞

0 (TM)

by

∇A : (X,X1, . . . , Xr) 7→ (∇XA)(X1, . . . , Xr) =

X(A(X1, . . . , Xr))−
r∑

k=1

A(X1, . . . , Xk−1,∇XXk, Xk+1, . . . , Xr).

A tensor field A of type (r, 0) is said to be parallel if ∇A ≡ 0.

The following result can be seen as, yet another, compatibility of
the Levi-Civita connection ∇ of (M, g) with the Riemannian metric g.

Proposition 8.2. Let (M, g) be a Riemannian manifold. Then the
metric g is a parallel tensor field of type (2, 0).

Proof. See Exercise 8.1. �
Let (M, g) be a Riemannian manifold. Then its Levi-Civita con-

nection ∇ is tensorial in its first argument i.e. if X,Y ∈ C∞(TM) and
f, g ∈ C∞(M) then

∇(fX + gY )Z = f∇XZ + g∇YZ.

This means that a vector field Z ∈ C∞(TM) on M induces a natural
tensor field Z : C∞

1 (TM) → C∞
1 (TM) of type (1, 1) given by

Z : X 7→ ∇XZ.

Definition 8.3. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. For a tensor field B : C∞

r (TM) → C∞
1 (TM) of

type (r, 1) we define its covariant derivative

∇B : C∞
r+1(TM) → C∞

1 (TM)

by

∇B : (X,X1, . . . , Xr) 7→ (∇XB)(X1, . . . , Xr) =

∇X(B(X1, . . . , Xr))−
r∑

k=1

B(X1, . . . , Xk−1,∇XXk, Xk+1, . . . , Xr).

A tensor field B of type (r, 1) is said to be parallel if ∇B ≡ 0.

Definition 8.4. Let X,Y ∈ C∞(TM) be two vector fields on the
Riemannian manifold (M, g) with Levi-Civita connection ∇. Then the
second order covariant derivative

∇2
X, Y : C∞(TM) → C∞(TM)
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is defined by

∇2
X, Y : Z 7→ (∇XZ)(Y ),

where Z is the natural (1, 1)-tensor field induced by Z ∈ C∞(TM).

As a direct consequence of Definitions 8.3 and 8.4 we see that if
X, Y, Z ∈ C∞(TM) then the second order covariant derivative ∇2

X, Y
satisfies

∇2
X,YZ = ∇X(Z(Y ))−Z(∇XY ) = ∇X∇YZ −∇∇XY

Z.

Definition 8.5. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then we define its Riemann curvature operator

R : C∞(TM)× C∞(TM)× C∞(TM) → C∞(TM)

as twice the skew-symmetric part of the second covariant derivative ∇2

i.e.

R(X,Y )Z = ∇2
X, YZ −∇2

Y,XZ.

The next remarkable result shows that the curvature operator is a
tensor field.

Theorem 8.6. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then the curvature R : C∞

3 (TM) → C∞
1 (TM)

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

is a tensor field on M of type (3, 1).

Proof. See Exercise 8.2. �

The reader should note that the Riemann curvature tensor R is
an intrinsic object since it only depends on the intrinsic Levi-Civita
connection ∇. The following result shows that the curvature tensor
has many beautiful symmetries.

Proposition 8.7. Let (M, g) be a Riemannian manifold. For vec-
tor fields X,Y, Z,W ∈ C∞(TM) on M we then have

(i) R(X,Y )Z = −R(Y,X)Z,
(ii) g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z),
(iii) R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0,
(iv) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ),
(v) 6 ·R(X, Y )Z = R(X,Y + Z)(Y + Z)−R(X,Y − Z)(Y − Z)

+R(X + Z, Y )(X + Z)−R(X − Z, Y )(X − Z).

Proof. See Exercise 8.3. �
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Part (iii) of Proposition 8.7 is the so called first Bianchi identity.
The second Bianchi identity is a similar result concerning the covariant
derivative ∇R of the curvature tensor. This will not be treated here.

Let (M, g) be a Riemannian manifold and p ∈M . Then a section
V at p is a 2-dimensional subspace of the tangent space TpM . The set

G2(TpM) = {V | V is a section of TpM}
of sections is called the Grassmannian of 2-planes at p.

Lemma 8.8. Let (M, g) be a Riemannian manifold, p ∈ M and
X, Y, Z,W ∈ TpM be tangent vectors at p such that the two sections
spanR{X,Y } and spanR{Z,W} are identical. Then

g(R(X, Y )Y,X)

|X|2|Y |2 − g(X,Y )2
=

g(R(Z,W )W,Z)

|Z|2|W |2 − g(Z,W )2
.

Proof. See Exercise 8.4. �
This leads to the following natural definition of the sectional cur-

vature.

Definition 8.9. Let (M, g) be a Riemannian manifold and p ∈M
Then the function Kp : G2(TpM) → R given by

Kp : spanR{X, Y } 7→ g(R(X,Y )Y,X)

|X|2|Y |2 − g(X, Y )2

is called the sectional curvature at p. We often write K(X, Y ) for
K(spanR{X, Y }).

Definition 8.10. Let (M, g) be a Riemannian manifold, p ∈ M
and Kp : G2(TpM) → R be the sectional curvature at p. Then we
define the functions δ,∆ :M → R by

δ : p 7→ min
V ∈G2(TpM)

Kp(V ) and ∆ : p 7→ max
V ∈G2(TpM)

Kp(V ).

The Riemannian manifold (M, g) is said to be

(i) of positive curvature if δ(p) ≥ 0 for all p,
(ii) of strictly positive curvature if δ(p) > 0 for all p,
(iii) of negative curvature if ∆(p) ≤ 0 for all p,
(iv) of strictly negative curvature if ∆(p) < 0 for all p,
(v) of constant curvature if δ = ∆ is constant,
(vi) flat if δ ≡ ∆ ≡ 0.

The next result shows how the curvature tensor can be expressed
in terms of local coordinates.
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Proposition 8.11. Let (M, g) be a Riemannian manifold and let
(U, x) be local coordinates on M . For i, j, k, l = 1, . . . ,m put

Xi =
∂

∂xi
, gij = g(Xi, Xj) and Rijkl = g(R(Xi, Xj)Xk, Xl).

Then

Rijkl =
m∑
s=1

gsl

(
∂Γs

jk

∂xi
− ∂Γs

ik

∂xj
+

m∑
r=1

{Γr
jk · Γs

ir − Γr
ik · Γs

jr}
)
,

where Γk
ij are the Christoffel symbols of the Levi-Civita connection ∇

of (M, g) with respect to (U, x).

Proof. Using the fact that [Xi, Xj] = 0 we obtain

R(Xi, Xj)Xk = ∇Xi
∇Xj

Xk −∇Xj
∇Xi

Xk

=
m∑
s=1

{∇Xi
(Γs

jk ·Xs)−∇Xj
(Γs

ik ·Xs)}

=
m∑
s=1

(
∂Γs

jk

∂xi
·Xs +

m∑
r=1

Γs
jkΓ

r
isXr −

∂Γs
ik

∂xj
·Xs −

m∑
r=1

Γs
ikΓ

r
jsXr

)

=
m∑
s=1

(
∂Γs

jk

∂xi
− ∂Γs

ik

∂xj
+

m∑
r=1

{Γr
jkΓ

s
ir − Γr

ikΓ
s
jr}

)
Xs.

�

For the m-dimensional vector space Rm equipped with the Eu-
clidean metric ⟨, ⟩Rm the set {∂/∂x1, . . . , ∂/∂xm} is a global frame for
the tangent bundle TRm. In this situation we have gij = δij, so Γk

ij ≡ 0
by Example 6.12. This implies that R ≡ 0 so Em is flat.

Example 8.12. The standard sphere Sm has constant sectional
curvature +1 (see Exercises 8.7 and 8.8) and the hyperbolic space Hm

has constant sectional curvature −1 (see Exercise 8.9).

Our next aim is a formula for the curvature tensor for manifolds of
constant sectional curvature. This we present in Corollary 8.16. First
we need some preparations.

Lemma 8.13. Let (M, g) be a Riemannian manifold, p ∈ M and
Y ∈ TpM . Then the map Ỹ : TpM → TpM given by

Ỹ : X 7→ R(X, Y )Y

is a symmetric endomorphism of the tangent space TpM .
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Proof. For Z ∈ TpM we have

g(Ỹ (X), Z) = g(R(X,Y )Y, Z) = g(R(Y, Z)X,Y )

= g(R(Z, Y )Y,X) = g(X, Ỹ (Z)).

�

For a tangent vector Y ∈ TpM with |Y | = 1 letN (Y ) be the normal
space to Y

N (Y ) = {X ∈ TpM | g(X,Y ) = 0}.
The fact that Ỹ (Y ) = 0 and Lemma 8.13 ensure the existence of an
orthonormal basis of eigenvectors X1, . . . , Xm−1 for the restriction of
the symmetric endomorphism Ỹ to N (Y ). Without loss of generality,
we can assume that the corresponding eigenvalues satisfy

λ1(p) ≤ · · · ≤ λm−1(p).

If X ∈ N (Y ), |X| = 1 and Ỹ (X) = λX then

Kp(X, Y ) = g(R(X, Y )Y,X) = g(Ỹ (X), X) = λ.

This means that the eigenvalues satisfy

δ(p) ≤ λ1(p) ≤ · · · ≤ λm−1(p) ≤ ∆(p).

Definition 8.14. Let (M, g) be a Riemannian manifold. Then
define the smooth tensor field R1 : C∞

3 (TM) → C∞
1 (TM) of type

(3, 1) by

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y.

Proposition 8.15. Let (M, g) be a smooth Riemannian manifold
and X,Y, Z be vector fields on M . Then

(i) |R(X,Y )Y − δ+∆
2
R1(X, Y )Y | ≤ 1

2
(∆− δ)|X||Y |2

(ii) |R(X,Y )Z − δ+∆
2
R1(X, Y )Z| ≤ 2

3
(∆− δ)|X||Y ||Z|

Proof. Without loss of generality we can assume that |X| = |Y | =
|Z| = 1. If X = X⊥ + X⊤ with X⊥ ⊥ Y and X⊤ is a multiple of Y
then R(X, Y )Z = R(X⊥, Y )Z and |X⊥| ≤ |X| so we can also assume
that X ⊥ Y . Then R1(X,Y )Y = ⟨Y, Y ⟩X − ⟨X, Y ⟩Y = X.

The first statement follows from the fact that the symmetric endo-
morphism of TpM with

X 7→ {R(X, Y )Y − ∆+ δ

2
·X}

restricted to N (Y ) has eigenvalues in the interval [ δ−∆
2
, ∆−δ

2
].
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It is easily checked that the operator R1 satisfies the conditions of
Proposition 8.7 and hence D = R− ∆+δ

2
·R1 as well. This implies that

6 ·D(X,Y )Z = D(X, Y + Z)(Y + Z)−D(X,Y − Z)(Y − Z)

+ D(X + Z, Y )(X + Z)−D(X − Z, Y )(X − Z).

The second statement then follows from

6|D(X, Y )Z| ≤ 1

2
(∆− δ){|X|(|Y + Z|2 + |Y − Z|2)

+|Y |(|X + Z|2 + |X − Z|2)}

=
1

2
(∆− δ){2|X|(|Y |2 + |Z|2) + 2|Y |(|X|2 + |Z|2)}

= 4(∆− δ).

�
As a direct consequence of Proposition 8.15 we have the following

useful result.

Corollary 8.16. Let (M, g) be a Riemannian manifold of constant
curvature κ. Then the curvature tensor R is given by

R(X, Y )Z = κ · (g(Y, Z)X − g(X,Z)Y ).

Proof. The result follows directly from κ = δ = ∆. �
Proposition 8.17. Let (G, g) be a Lie group equipped with a left-

invariant metric such that for all X ∈ g the endomorphism

adX : g → g

is skew-symmetric with respect to g. Then for any left-invariant vector
fields X,Y, Z ∈ g the curvature tensor R is given by

R(X, Y )Z = −1

4
[[X, Y ], Z].

Proof. See Exercise 8.6. �
We shall now prove the important Gauss equation comparing the

curvature tensors of a submanifold and its ambient space in terms of
the second fundamental form.

Theorem 8.18. Let (N, h) be a Riemannian manifold and M be a
submanifold of N equipped with the induced metric g. Let X,Y, Z,W ∈
C∞(TN) be vector fields extending X̃, Ỹ , Z̃, W̃ ∈ C∞(TM). Then

g(R̃(X̃, Ỹ )Z̃, W̃ )− h(R(X,Y )Z,W )

= h(B(Ỹ , Z̃), B(X̃, W̃ ))− h(B(X̃, Z̃), B(Ỹ , W̃ )).
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Proof. Using the definitions of the curvature tensors R, R̃, the
Levi-Civita connection ∇̃ and the second fundamental form of M̃ in
M we obtain

g(R̃(X̃, Ỹ )Z̃, W̃ )

= g(∇̃X̃∇̃̃YZ̃ − ∇̃̃Y∇̃X̃Z̃ − ∇̃[X̃, Ỹ ]Z̃, W̃ )

= h((∇X(∇YZ −B(Y, Z)))⊤ − (∇Y (∇XZ −B(X,Z)))⊤,W )

−h((∇[X, Y ]Z −B([X,Y ], Z))⊤,W )

= h(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W )

−h(∇X(B(Y, Z)),W ) +∇Y (B(X,Z)),W )

= h(R(X, Y )Z,W )

+h((B(Y, Z)),∇XW )− h(B(X,Z)),∇YW )

= h(R(X, Y )Z,W )

+h(B(Y, Z), B(X,W ))− h(B(X,Z), B(Y,W )).

�

We shall now apply the Gauss equation to the classical situation of
a regular surface Σ as a submanifold of the 3-dimensional Euclidean
space R3. Let {X̃, Ỹ } be a local orthonormal frame for the tangent
bundle TΣ of Σ around a point p ∈ Σ and Ñ be the local Gauss map
with Ñ = X̃ × Ỹ . If X,Y,N are local extensions of X̃, Ỹ , Ñ then the
second fundamental form B of Σ in R3 satisfies

B(X̃, Ỹ ) = < ∂XY ,N > N

= − < Y, ∂XN > N

= − < Y, dN(X) > N

= < Y, Sp(X) > N,

where Sp : TpΣ → TpΣ is the shape operator at p. If we now apply
the fact that R3 is flat, the Gauss equation tells us that the sectional
curvature K(X̃, Ỹ ) of Σ at p satisfies

K(X̃, Ỹ ) = < R̃(X̃, Ỹ )Ỹ , X̃ >

= < B(Ỹ , Ỹ ), B(X̃, X̃) > − < B(X̃, Ỹ ), B(Ỹ , X̃) >

= detSp.

In other word, the sectional curvature K(X̃, Ỹ ) is the determinant of
the shape operator Sp at p i.e. the classical Gaussian curvature.
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As a direct consequence of the Gauss equation we have the following
useful result, see for example Exercises 8.8 and 8.9.

Corollary 8.19. Let (N, h) be a Riemannian manifold and (M, g)
be a totally geodesic submanifold of N . Let X, Y, Z,W ∈ C∞(TN) be
vector fields extending X̃, Ỹ , Z̃, W̃ ∈ C∞(TM). Then

g(R̃(X̃, Ỹ )Z̃, W̃ ) = h(R(X, Y )Z,W ).

We conclude this chapter by defining the Ricci and scalar curvatures
of a Riemannian manifold. These are obtained by taking traces over the
curvature tensor and play an important role in Riemannian geometry.

Definition 8.20. Let (M, g) be a Riemannian manifold, then

(i) the Ricci operator r : C∞
1 (TM) → C∞

1 (M) is defined by

r(X) =
m∑
i=1

R(X, ei)ei,

(ii) the Ricci curvature Ric : C∞
2 (TM) → C∞

0 (TM) by

Ric(X, Y ) =
m∑
i=1

g(R(X, ei)ei, Y ), and

(iii) the scalar curvature s ∈ C∞(M) by

s =
m∑
j=1

Ric(ej, ej) =
m∑
j=1

m∑
i=1

g(R(ei, ej)ej, ei).

Here {e1, . . . , em} is any local orthonormal frame for the tangent bun-
dle.

Corollary 8.21. Let (M, g) be a Riemannian manifold of constant
sectional curvature κ. Then the following holds

s = m · (m− 1) · κ.

Proof. Let {e1, . . . , em} be an orthonormal basis, then Corollary
8.16 implies that

Ric(ej, ej) =
m∑
i=1

g(R(ej, ei)ei, ej)

=
m∑
i=1

g(κ(g(ei, ei)ej − g(ej, ei)ei), ej)

= κ(
m∑
i=1

g(ei, ei)g(ej, ej)−
m∑
i=1

g(ei, ej)g(ei, ej))
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= κ(
m∑
i=1

1−
m∑
i=1

δij) = (m− 1) · κ.

To obtain the formula for the scalar curvature s we only have to mul-
tiply the constant Ricci curvature Ric(ej, ej) by m. �

For further reading on different notions of curvature we recommend
the interesting book, Wolfgang Kühnel, Differential Geometry: Curves
- Surfaces - Manifolds, AMS (2002).
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Exercises

Exercise 8.1. Let (M, g) be a Riemannian manifold. Prove that
the tensor field g of type (2, 0) is parallel with respect to the Levi-Civita
connection.

Exercise 8.2. Let (M, g) be a Riemannian manifold. Prove that
the curvature R is a tensor field of type (3, 1).

Exercise 8.3. Find a proof for Proposition 8.7.

Exercise 8.4. Find a proof for Lemma 8.8.

Exercise 8.5. Let Rm and Cm be equipped with their standard
Euclidean metric g given by

g(z, w) = Re
m∑
k=1

zkw̄k

and let

Tm = {z ∈ Cm| |z1| = ... = |zm| = 1}
be the m-dimensional torus in Cm with the induced metric. Find an
isometric immersion ϕ : Rm → Tm, determine all geodesics on Tm and
prove that the torus is flat.

Exercise 8.6. Find a proof for Proposition 8.17.

Exercise 8.7. Let the Lie group S3 ∼= SU(2) be equipped with the
metric

g(Z,W ) =
1

2
Re(trace(Z̄tW )).

(i) Find an orthonormal basis for TeSU(2).
(ii) Prove that (SU(2), g) has constant sectional curvature +1.

Exercise 8.8. Let Sm be the unit sphere in Rm+1 equipped with
the standard Euclidean metric ⟨, ⟩Rm+1 . Use the results of Corollaries
7.26, 8.19 and Exercise 8.7 to prove that (Sm, ⟨, ⟩Rm+1) has constant
sectional curvature +1.

Exercise 8.9. LetHm be them-dimensional hyperbolic space mod-
elled on the upper half space R+×Rm−1 equipped with the Riemannian
metric

g(X, Y ) =
1

x21
⟨X,Y ⟩Rm ,
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where x = (x1, . . . , xm) ∈ Hm. For k = 1, . . . ,m let the vector fields
Xk ∈ C∞(THm) be given by

(Xk)x = x1 ·
∂

∂xk
and define the operation ∗ on Hm by

(α, x) ∗ (β, y) = (α · β, α · y + x).

Prove that

(i) (Hm, ∗) is a Lie group,
(ii) the vector fields X1, . . . , Xm are left-invariant,
(iii) [Xk, Xl] = 0 and [X1, Xk] = Xk for k, l = 2, ...,m,
(iv) the metric g is left-invariant,
(v) (Hm, g) has constant curvature −1.

Compare with Exercises 6.4 and 7.1.



CHAPTER 9

Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of Rie-
mannian manifolds and how this is controlled by the curvature tensor.
For this we introduce the notion of a Jacobi field which is a useful
tool in differential geometry. With this at hand we yield a funda-
mental comparison result describing the curvature dependence of local
distances.

Let (M, g) be a Riemannian manifold. By a smooth 1-parameter
family of geodesics we mean a C∞-map

Φ : (−ϵ, ϵ)× I →M

such that the curve γt : I →M given by γt : s 7→ Φ(t, s) is a geodesic for
all t ∈ (−ϵ, ϵ). The variable t ∈ (−ϵ, ϵ) is called the family parameter
of Φ.

Proposition 9.1. Let (M, g) be a Riemannian manifold and Φ :
(−ϵ, ϵ) × I → M be a 1-parameter family of geodesics. Then for each
t ∈ (−ϵ, ϵ) the vector field Jt : I → C∞(TM) along γt given by

Jt(s) =
∂Φ

∂t
(t, s)

satisfies the second order ordinary differential equation

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

Proof. Along Φ we put X(t, s) = ∂Φ/∂s and J(t, s) = ∂Φ/∂t.
The fact that [∂/∂t, ∂/∂s] = 0 implies that

[J,X] = [dΦ(∂/∂t), dΦ(∂/∂s)] = dΦ([∂/∂t, ∂/∂s]) = 0.

Since Φ is a family of geodesics we have ∇XX = 0 and the definition
of the curvature tensor then gives

R(J,X)X = ∇J∇XX −∇X∇JX −∇[J,X]X

= −∇X∇JX
= −∇X∇XJ.

99
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Hence for each t ∈ (−ϵ, ϵ) we have

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

�
Definition 9.2. Let (M, g) be a Riemannian manifold, γ : I →M

be a geodesic and X = γ̇. A C2 vector field J along γ is called a
Jacobi field if

(5) ∇X∇XJ +R(J,X)X = 0

along γ. We denote the space of all Jacobi fields along γ by Jγ(TM).

We shall now give an example of a 1-parameter family of geodesics
in the (m+ 1)-dimensional Euclidean space Em+1.

Example 9.3. Let c, n : R → Em+1 be smooth curves such that
the image n(R) of n is contained in the unit sphere Sm. If we define a
map Φ : R× R → Em+1 by

Φ : (t, s) 7→ c(t) + s · n(t)
then for each t ∈ R the curve γt : s 7→ Φ(t, s) is a straight line and
hence a geodesic in Em+1. By differentiating with respect to the family
parameter t we yield the Jacobi field J ∈ Jγ0(TE

m+1) along γ0 with

J(s) =
d

dt
Φ(t, s)|t=0 = ċ(0) + s · ṅ(0).

The Jacobi equation (5) on a Riemannian manifold is linear in J .
This means that the space of Jacobi fields Jγ(TM) along γ is a vector
space. We are now interested in determining the dimension of this
space

Proposition 9.4. Let γ : I → M be a geodesic, 0 ∈ I, p = γ(0)
and X = γ̇ along γ. If v, w ∈ TpM are two tangent vectors at p then
there exists a unique Jacobi field J along γ, such that Jp = v and
(∇XJ)p = w.

Proof. Let {X1, . . . , Xm} be an orthonormal frame of parallel vec-
tor fields along γ, see Proposition 7.8. If J is a vector field along γ,
then

J =
m∑
i=1

aiXi

where ai = g(J,Xi) are smooth functions on I. The vector fields
X1, . . . , Xm are parallel so

∇XJ =
m∑
i=1

ȧiXi and ∇X∇XJ =
m∑
i=1

äiXi.
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For the curvature tensor we have

R(Xi, X)X =
m∑
k=1

bkiXk,

where bki = g(R(Xi, X)X,Xk) are smooth functions on I depending on
the geometry of (M, g). This means that R(J,X)X is given by

R(J,X)X =
m∑

i,k=1

aib
k
iXk.

and that J is a Jacobi field if and only if

m∑
i=1

(äi +
m∑
k=1

akb
i
k)Xi = 0.

This is equivalent to the second order system

äi +
m∑
k=1

akb
i
k = 0 for all i = 1, 2, . . . ,m

of linear ordinary differential equations in a = (a1, . . . , am). A global
solution will always exist and is uniquely determined by a(0) and ȧ(0).
This implies that J exists globally and is uniquely determined by the
initial conditions

J(0) = v and (∇XJ)(0) = w.

�

Corollary 9.5. Let (M, g) be an m-dimensional Riemannian man-
ifold and γ : I →M be a geodesic inM . Then the vector space Jγ(TM)
of all Jacobi fields along γ has the dimension 2m.

The following Lemma shows that when proving results about Ja-
cobi fields along a geodesic γ we can always assume, without loss of
generality, that |γ̇| = 1.

Lemma 9.6. Let (M, g) be a Riemannian manifold, γ : I →M be
a geodesic and J be a Jacobi field along γ. If λ ∈ R∗ and σ : λI → I
is given by σ : t 7→ t/λ, then γ ◦ σ : λI →M is a geodesic and J ◦ σ is
a Jacobi field along γ ◦ σ.

Proof. See Exercise 9.1. �

Next we determine the Jacobi fields which are tangential to a given
geodesic.
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Proposition 9.7. Let (M, g) be a Riemannian manifold, γ : I →
M be a geodesic with |γ̇| = 1 and J be a Jacobi field along γ. Let J⊤

be the tangential part of J given by

J⊤ = g(J, γ̇)γ̇ and J⊥ = J − J⊤

be its normal part. Then J⊤ and J⊥ are Jacobi fields along γ and there
exist a, b ∈ R such that J⊤(s) = (as+ b)γ̇(s) for all s ∈ I.

Proof. We now have

∇̇γ∇̇γJ
⊤ +R(J⊤, γ̇)γ̇ = ∇̇γ∇̇γ(g(J, γ̇)γ̇) +R(g(J, γ̇)γ̇, γ̇)γ̇

= g(∇̇γ∇̇γJ, γ̇)γ̇

= −g(R(J, γ̇)γ̇, γ̇)γ̇
= 0.

This shows that the tangential part J⊤ of J is a Jacobi field. The
fact that Jγ(TM) is a vector space implies that the normal part J⊥ =
J − J⊤ of J also is a Jacobi field.

By differentiating g(J, γ̇) twice along γ we obtain

d2

ds2
(g(J, γ̇)) = g(∇̇γ∇̇γJ, γ̇) = −g(R(J, γ̇)γ̇, γ̇) = 0

so g(J, γ̇(s)) = (as+ b) for some a, b ∈ R. �
Corollary 9.8. Let (M, g) be a Riemannian manifold, γ : I → M

be a geodesic and J be a Jacobi field along γ. If

g(J(t0), γ̇(t0)) = 0 and g((∇̇γJ)(t0), γ̇(t0)) = 0

for some t0 ∈ I, then g(J(t), γ̇(t)) = 0 for all t ∈ I.

Proof. This is a direct consequence of the fact that the function
g(J, γ̇) satisfies the second order ordinary differential equation f̈ = 0

and the initial conditions f(0) = 0 and ḟ(0) = 0. �
Our next aim is to show that if the Riemannian manifold (M, g)

has constant sectional curvature then we can solve the Jacobi equation

∇X∇XJ +R(J,X)X = 0

along any given geodesic γ : I →M . For this we introduce the follow-
ing notation. For a real number κ ∈ R we define the cκ, sκ : R → R
by

cκ(s) =


cosh(

√
|κ|s) if κ < 0,

1 if κ = 0,

cos(
√
κs) if κ > 0.
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and

sκ(s) =


sinh(

√
|κ|s)/

√
|κ| if κ < 0,

s if κ = 0,

sin(
√
κs)/

√
κ if κ > 0.

It is a well known fact that the unique solution to the initial value
problem

f̈ + κ · f = 0, f(0) = a and ḟ(0) = b

is the function f : R → R satisfying f(s) = acκ(s) + bsκ(s).

Example 9.9. Let C be the complex plane with the standard Eu-
clidean metric ⟨, ⟩R2 of constant sectional curvature κ = 0. The ro-
tations about the origin produce a 1-parameter family of geodesics
Φt : s 7→ seit. Along the geodesic γ0 : s 7→ s we get the Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = is

with |J0(s)| = |s| = |sκ(s)|.

Example 9.10. Let S2 be the unit sphere in the standard Eu-
clidean 3-space C × R with the induced metric of constant sectional
curvature κ = +1. Rotations about the R-axis produce a 1-parameter
family of geodesics Φt : s 7→ (sin(s)eit, cos(s)). Along the geodesic
γ0 : s 7→ (sin(s), cos(s)) we get the Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = (isin(s), 0)

with |J0(s)|2 = sin2(s) = |sκ(s)|2.

Example 9.11. Let B2
1(0) be the open unit disk in the complex

plane with the hyperbolic metric

g(X,Y ) =
4

(1− |z|2)2
⟨, ⟩R2

of constant sectional curvature κ = −1. Rotations about the origin
produce a 1-parameter family of geodesics Φt : s 7→ tanh(s/2)eit. Along
the geodesic γ0 : s 7→ tanh(s/2) we get the Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = i · tanh(s/2)

with

|J0(s)|2 =
4 · tanh2(s/2)

(1− tanh2(s/2))2
= sinh2(s) = |sκ(s)|2.
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Example 9.12. Let (M, g) be a Riemannian manifold of constant
sectional curvature κ and γ : I →M be a geodesic with |X| = 1 where
X = γ̇. Further let P1, P2, . . . , Pm−1 be parallel vector fields along γ
such that g(Pi, Pj) = δij and g(Pi, X) = 0. Any vector field J along γ
may now be written as

J(s) =
m−1∑
i=1

fi(s)Pi(s) + fm(s)X(s).

This means that J is a Jacobi field if and only if

m−1∑
i=1

f̈i(s)Pi(s) + f̈m(s)X(s) = ∇X∇XJ

= −R(J,X)X

= −R(J⊥, X)X

= −κ(g(X,X)J⊥ − g(J⊥, X)X)

= −κJ⊥

= −κ
m−1∑
i=1

fi(s)Pi(s).

This is equivalent to the following system of ordinary differential equa-
tions

(6) f̈m(s) = 0 and f̈i(s) + κfi(s) = 0 for all i = 1, 2, . . . ,m− 1.

It is clear that for the initial values

J(s0) =
m−1∑
i=1

viPi(s0) + vmX(s0),

(∇XJ)(s0) =
m−1∑
i=1

wiPi(s0) + wmX(s0)

or equivalently

fi(s0) = vi and ḟi(s0) = wi for all i = 1, 2, . . . ,m

we have a unique and explicit solution to the system (6) on the whole
of I. They are given by

fm(s) = vm + swm and fi(s) = vicκ(s) + wisκ(s)

for all i = 1, 2, . . . ,m − 1. It should be noted that if g(J,X) = 0 and
J(0) = 0 then

|J(s)| = |(∇XJ)(0)|sκ(s).
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In the next example we give a complete description of the Jacobi
fields along a geodesic on the 2-dimensional sphere.

Example 9.13. Let S2 be the unit sphere in the standard Eu-
clidean 3-space C × R with the induced metric of constant curvature
κ = +1 and γ : R → S2 be the geodesic given by γ : s 7→ (eis, 0). Then
γ̇(s) = (ieis, 0) so it follows from Proposition (9.7) that all Jacobi fields
tangential to γ are given by

JT
(a,b)(s) = (as+ b)(ieis, 0) for some a, b ∈ R.

The vector field P : R → TS2 given by s 7→ ((eis, 0), (0, 1)) satisfies
⟨P, γ̇⟩ = 0 and |P | = 1. The sphere S2 is 2-dimensional and γ̇ is parallel
along γ so P must be parallel. This implies that all the Jacobi fields
orthogonal to γ̇ are given by

JN
(a,b)(s) = (0, a cos s+ b sin s) for some a, b ∈ R.

In more general situations, where we do not have constant curvature
the exponential map can be used to produce Jacobi fields as follows. Let
(M, g) be a complete Riemannian manifold, p ∈ M and v, w ∈ TpM .
Then s 7→ s(v+tw) defines a 1-parameter family of lines in the tangent
space TpM which all pass through the origin 0 ∈ TpM . Remember that
the exponential map

expp|Bm
εp

(0) : B
m
εp(0) → expp(B

m
εp(0))

maps lines in TpM through the origin onto geodesics on M . Hence the
map

Φt : s 7→ expp(s(v + tw))

is a 1-parameter family of geodesics through p ∈M , as long as s(v+tw)
is an element of Bm

εp(0). This means that

J(s) =
∂Φt

∂t
(t, s)|t=0 = d(expp)s(v+tw)(sw)|t=0 = d(expp)sv(sw)

is a Jacobi field along the geodesic γ : s 7→ Φ0(s) with γ(0) = p and
γ̇(0) = v. Here

d(expp)s(v+tw) : Ts(v+tw)TpM → Texpp(s(v+tw))M

is the linear tangent map of the exponential map expp at s(v + tw).
Now differentiating with respect to the parameter s gives

(∇XJ)(0) =
d

ds
(d(expp)sv(sw))|s=0 = d(expp)0(w) = w.

The above calculations show that

J(0) = 0 and (∇XJ)(0) = w.
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The following technical result is needed for the proof of the main
Theorem 9.15 at the end of this chapter.

Lemma 9.14. Let (M, g) be a Riemannian manifold with sectional
curvature uniformly bounded above by ∆ and γ : [0, α] → M be a
geodesic on M with |X| = 1 where X = γ̇. Further let J : [0, α] → TM
be a Jacobi field along γ such that g(J,X) = 0 and |J | ̸= 0 on (0, α).
Then

(i) d2(|J |)/ds2 +∆ · |J | ≥ 0,
(ii) if f : [0, α] → R is a C2-function such that

(a) f̈ +∆ · f = 0 and f > 0 on (0, α),
(b) f(0) = |J(0)|, and
(c) ḟ(0) = |∇XJ(0)|,
then f(s) ≤ |J(s)| on (0, α),

(iii) if J(0) = 0, then |∇XJ(0)| · s∆(s) ≤ |J(s)| for all s ∈ (0, α).

Proof. (i) Using the facts that |X| = 1 and ⟨X, J⟩ = 0 we obtain

d2

ds2
(|J |) =

d2

ds2

√
g(J, J) =

d

ds
(
g(∇XJ, J)

|J |
)

=
g(∇X∇XJ, J)

|J |
+

|∇XJ |
2|J |2 − g(∇XJ, J)

2

|J |3

≥
g(∇X∇XJ, J)

|J |

= −g(R(J,X)X, J)

|J |
= −K(X, J) · |J |
≥ −∆ · |J |.

(ii) Define the function h : [0, α) → R by

h(s) =

{
|J(s)|
f(s)

if s ∈ (0, α),

lims→0
|J(s)|
f(s)

= 1 if s = 0.

Then

ḣ(s) =
1

f 2(s)
(
d

ds
(|J(s)|)f(s)− |J(s)|ḟ(s))

=
1

f 2(s)

∫ s

0

d

dt
(
d

dt
(|J(t)|)f(t)− |J(t)|ḟ(t))dt

=
1

f 2(s)

∫ s

0

(
d2

dt2
(|J(t)|)f(t)− |J(t)|f̈(t))dt
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=
1

f 2(s)

∫ s

0

f(t)(
d2

dt2
(|J(t)|) + ∆ · |J(t)|)dt

≥ 0.

This implies that ḣ(s) ≥ 0 so f(s) ≤ |J(s)| for all s ∈ (0, α).
(iii) The function f(s) = |(∇XJ)(0)| · s∆(s) satisfies the differential

equation

f̈(s) + ∆f(s) = 0

and the initial conditions f(0) = |J(0)| = 0, ḟ(0) = |(∇XJ)(0)| so it

follows from (ii) that |(∇XJ)(0)| · s∆(s) = f(s) ≤ |J(s)|. �
Let (M, g) be a Riemannian manifold of sectional curvature which is

uniformly bounded above, i.e. there exists a ∆ ∈ R such that Kp(V ) ≤
∆ for all V ∈ G2(TpM) and p ∈ M . Let (M∆, g∆) be another Rie-
mannian manifold which is complete and of constant sectional curva-
ture K ≡ ∆. Let p ∈M , p∆ ∈M∆ and identify TpM ∼= Rm ∼= Tp∆M∆.

Let U be an open neighbourhood of Rm around 0 such that the
exponential maps (exp)p and (exp)p∆ are diffeomorphisms from U onto
their images (exp)p(U) and (exp)p∆(U), respectively. Let (r, p, q) be
a geodesic triangle i.e. a triangle with sides which are shortest paths
between their endpoints. Furthermore let c : [a, b] →M be the geodesic
connecting r and q and v : [a, b] → TpM be the curve defined by
c(t) = (exp)p(v(t)). Put c∆(t) = (exp)p∆(v(t)) for t ∈ [a, b] and then
it directly follows that c(a) = r and c(b) = q. Finally put r∆ = c∆(a)
and q∆ = c∆(b).

Theorem 9.15. For the above situation the following inequality for
the distance function d is satisfied

d(q∆, r∆) ≤ d(q, r).

Proof. Define a 1-parameter family s 7→ s · v(t) of straight lines
in TpM through p. Then

Φt : s 7→ (exp)p(s · v(t)) and Φ∆
t : s 7→ (exp)p∆(s · v(t))

are 1-parameter families of geodesics through p ∈ M , and p∆ ∈ M∆,
respectively. Hence

Jt = ∂Φt/∂t and J∆
t = ∂Φ∆

t /∂t

are Jacobi fields satisfying the initial conditions

Jt(0) = J∆
t (0) = 0 and (∇XJ t

)(0) = (∇XJ
∆
t )(0) = v̇(t).

Using Lemma 9.14 we now obtain

|ċ∆(t)| = |J∆
t (1)|
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= |(∇XJ
∆
t )(0)| · s∆(1)

= |(∇XJt)(0)| · s∆(1)
≤ |Jt(1)|
= |ċ(t)|

The curve c is the shortest path between r and q so we have

d(r∆, q∆) ≤ L(c∆) ≤ L(c) = d(r, q).

�
We now add the assumption that the sectional curvature of the

manifold (M, g) is uniformly bounded below i.e. there exists a δ ∈ R
such that δ ≤ Kp(V ) for all V ∈ G2(TpM) and p ∈ M . Let (Mδ, gδ)
be a complete Riemannian manifold of constant sectional curvature δ.
Let p ∈ M and pδ ∈ Mδ and identify TpM ∼= Rm ∼= TpδMδ. Then a
similar construction as above gives two pairs of points q, r ∈ M and
qδ, rδ ∈Mδ and shows that

d(q, r) ≤ d(qδ, rδ).

Combining these two results we obtain locally

d(q∆, r∆) ≤ d(q, r) ≤ d(qδ, rδ).
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Exercises

Exercise 9.1. Find a proof of Lemma 9.6.

Exercise 9.2. Let (M, g) be a Riemannian manifold and γ : I →M
be a geodesic such that X = γ̇ ̸= 0. Further let J be a non-vanishing
Jacobi field along γ with g(X, J) = 0. Prove that if g(J, J) is constant
along γ then (M, g) does not have strictly negative curvature.


