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Historical Introduction

Qur immersion in the present state of physics makes it hard for us to
understand the difficulties of physicists even a few years ago, or to profit
from their experience. At the same time, a knowledge of our history is a
mixed blessing — it can stand in the way of the logical reconstruction of
physical theory that seems to be continually necessary.

I have tried in this book to present the quantum theory of fields in
a logical manner, emphasizing the deductive trail that ascends from the
physical principles of special relativity and quantum mechanics. This
approach necessarily draws me away from the order in which the subject
in fact developed. To take one example, it is historically correct that
quantum field theory grew in part out of a study of relativistic wave
equations, including the Maxwell, Klein-Gordon, and Dirac equations.
For this reason it is natural that courses and treatises on quantum field
theory introduce these wave equations early, and give them great weight.
Nevertheless, it has long seemed to me that a much better starting point is
Wigner’s definition of particles as representations of the inhomogeneous
Lorentz group, even though this work was not published until 1939 and
did not have a great impact for many years after. In this book we start
with particles and get to the wave equations later.

This is not to say that particles are necessarily more fundamental than
fields. For many years after 1950 it was generally assumed that the
laws of nature take the form of a quantum theory of fields. 1 start
with particles in this book, not because they are more fundamental, but
because what we know about particles is more certain, more directly
derivable from the principles of quantum mechanics and relativity. If it
turned out that some physical system could not be described by a quantum
field theory, it would be a sensation; if it turned out that the system did
not obey the rules of quantum mechanics and relativity, it would be a
cataclysm.

In fact, lately there has been a reaction against looking at quantum
field theory as fundamental. The underlying theory might not be a theory
of fields or particles, but perhaps of something quite different, like strings.
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2 I Historical Introduction

From this point of view, quantum electrodynamics and the other quantum
field theories of which we are so proud are mere ‘effective field theories,’
low-energy approximations to 4 more fundamental theory. The reason that
our field theories work so well is not that they are fundamental truths,
but that any relativistic quantum theory will look like a field theory when
applied to particles at sufficiently low energy. On this basis, if we want to
know why quantum field theories are the way they are, we have to start
with particles,

But we do not want to pay the price of altogether forgetting our past.
This chapter will therefore present the history of quantum field theory
from earliest times to 1949, when it finally assumed its modern form. In
the remainder of the book I will try to keep history from intruding on
physics.

One problem that I found in writing this chapter is that the history of
quantum field theory is from the beginning inextricably entangled with
the history of quantum mechanics itself, Thus, the reader who is familiar
with the history of quantum mechanics may find some material here that
he or she already knows, especially in the first section, where I discuss the
early attempts to put together quantum mechanics with special relativity.
In this case | can only suggest that the reader should skip on to the less
famthar parts,

On the other hand, readers who have no prior familiarity with quantum
field theory may find parts of this chapter too brief to be altogether clear.
I urge such readers not to worry. This chapter is not intended as a
self-contained introduction to quantum field theory, and is not needed as
a basis for the rest of the book. Some readers may even prefer to start
with the next chapter, and come back to the history later. However, for
many readers the history of quantum field theory should serve as a good
introduction to quantum field theory itself,

I should add that this chapter is not intended as an original work
of historical scholarship. T have based it on books and articles by real
historians, plus some historical reminiscences and original physics articles
that I have read. Most of these are listed in the bibliography given at the
end of this chapter, and in the list of references. The reader who wants
to go more deeply into historical matters is urged to consult these listed
works.

A word about notation. In order to keep some of the flavor of past
times, in this chapter I will show explicit factors of % and ¢ (and even
h), but in order to facilitate comparison with modern physics literature,
I will use the more modern rationalized electrostatic units for charge, so
that the fine structure constant o ~ 1/137 is e?/4nhec. In subsequent
chapters I will mostly use the ‘natural’ system of units, simply setting
Ai=c¢=1
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1.1 Relativistic Wave Mechanics

Wave mechanics started out as relativistic wave mechanics. Indeed, as
we shall see, the founders of wave mechanics, Louis de Broglie and
Erwin Schrddinger, took a good deal of their inspiration from special
relativity. It was only later that it became generally clear that relativistic
wave mechanics, in the sense of a relativistic quantum theory of a fixed
number of particles, is an impossibility. Thus, despite its many successes,
relativistic wave mechanics was ultimately to give way to quantum field
theory. Nevertheless, relativistic wave mechanics survived as an important
element in the formal apparatus of quantum field theory, and it posed a
challenge to field theory, to reproduce its successes.

. The possibility that material particles can like photons be described in
terms of waves was first suggested! in 1923 by Louis de Broglie. Apart
from the analogy with radiation, the chief clue was Lorentz invariance: if
particles are desctibed by a wave whose phase at position x and time ¢
is of the form 2x(x - x — vt), and if this phase is to be Lorentz invariant,
then the vector x and the frequency v must transform like x and ¢, and
hence like p and E. In order for this to be possible ¥ and v must have the
same velocity dependence as p and E, and therefore must be proportional
to them, with the same constant of proportionality. For photons, one had
the Einstein relation E = hv, so it was natural to assume that, for material
particles,

x=p/h , y=E/h (1.1.1)

just as for photons. The group velocity év/dx of the wave then turns
out to equal the particle velocity, so wave packets just keep up with the
particle they represent.

By assuming that any closed orbit contains an integral number of
particle wavelengths 4 = 1/|x|, de Broglic was able to derive the old
quantization conditions of Niels Bohr and Arnold Sommerfeld, which
though quite mysterious had worked well in accounting for atomic spectra.
Also, both de Broglie and Walter Elsasser’ suggested that de Broglie’s
wave theory could be tested by leoking for interference effects in the
scattering of electrons from crystals; such effects were established a few
years later by Clinton Joseph Davisson and Lester H. Germer.> However,
it was still unclear how the de Broglie relations (1.1.1) should be modified
for non-free particles, as for instance for an electron in a general Coulomb
field.

Wave mechanics was by-passed in the next step in the history of
quantum mechanics, the development of matrix mechanics® by Werner
Heisenberg, Max Born, Pascual Jordan and Wolfgang Pauli in the years
1925-1926. At least part of the inspiration for matrix mechanics was the
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insistence that the theory should involve only observables, such as the
energy levels, or emission and absorption rates. Heisenberg’s 1925 paper
opens with the manifesto: ‘The present paper seeks to establish a basis
for theoretical quantum mechanics founded exclusively upon relationships
between quantities that in principie are observable.” This sort of positivism
was to reemerge at various times in the history of quantum field theory,
as for instance in the introduction of the S-matrix by John Wheeler and
Heisenberg (see Chapter 3) and in the revival of dispersion theory in the
1950s (see Chapter 10), though modern quantum field theory is very far
from this ideal. It would take us too far from our subject to describe
matrix mechanics in any detail here.

As everyone knows, wave mechanics was revived by Erwin Schradinger,
In his 1926 series of papers,® the familiar non-relativistic wave equation
is suggested first, and then used to rederive the results of matrix mechan-
ics. Only later, in the sixth section of the fourth paper, is a relativistic
wave equation offered. According to Dirac,’ the history is actualiy quite
different: Schrodinger first derived the relativistic equation, then became
discouraged because it gave the wrong fine structure for hydrogen, and
then some months later realized that the non-relativistic approximation
to his relativistic equation was of value even if the relativistic equation
itself was incorrect! By the time that Schrodinger came to publish his
relativistic wave equation, it had already been independently rediscovered
by Oskar Klein’ and Walter Gordon,* and for this reason it is usually
called the *Klein-Gordon equation.’

Schrodinger’s relativistic wave equation was derived by noting first
that, for a ‘Lorentz electron’ of mass m and charge e in an external vector
potential A and Coulomb potential ¢, the Hamiltonian H and momenfitm
p are related by”

O0=(H+ed)f —cHp+eA/c) —mic* . (1.1.2)

For a free particle described by a plane wave exp {Zm'(x "X — vt}}, the de
Broglie relations (1.1.1) can be obtained by the identifications

p=hk - —ihV | E:hv—vihg— . (1.1.3)
where % is the convenient symbol (introduced later by Dirac} for h/2x.
By an admittedly formal analogy, Schrodinger guessed that an electron
in the external fields A, ¢ would be described by a wave function p(x, )
satisfying the equation obtained by making the same replacements in

* This is Lotentz invariant, because the quartities A and ¢ have the same Lorentz transformation
property as cp and E. Schridinger actually wrote H and p in terms of partial derivatives of an
action funetion, but this makes no difference ta our present discussion.
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(1.1.2):
2 2
0= {(ih % + ecﬁ:) —¢? (—iﬁV + ?) — mzcd} wix, 1) . (1.1.4)

In particular, for the stationary states of hydrogen we have A = 0 and
¢ = e/4xr, and i has the time-dependence exp(—iEt/h), so (1.1.4) becomes

2\ 2 2
0= KE + %) — WV - mzcd} w(x). (1.1.5)

Solutions satisfying reasonable boundary conditions can be found for the
energy values’

2 4
5 o o n 3
E=mc [1'2n2_2n4 (i+%_1)+m] ; (1.1.6)

where o = ¢?/4nhic is the ‘fine structure constant,’ roughly 1/137; r is a
positive-definite integer, and 7, the orbital angular momentum in units of
%, is an integer with 0 < ¢ < n— 1. The ¢ term gave good agreement
with the gross features of the hydrogen spectrum (the Lyman, Balmer,
etc. series) and, according to Dirac,® it was this agreement that led
Schrodinger eventually to develop his non-relativistic wave equation. On
the other hand, the »? term gave a fine structure in disagreement with
existing accurate measurements of Friedrich Paschen.!

It is instructive here to compare Schrodinger’s result with that of Arnold
Sommerfeld,!“ obtained using the rules of the old quantum theory:

2 4
_2|y_ e o m 3N
E =mc [1 7 T o (k 4)4— ] (1.1.7)

where m is the electron mass. Here k is an integer between 1 and n, which
in Sommetfeld’s theory is given in terms of the orbital angular momentum
#h as k = ¢ + 1. This gave a fine structure splitting in agreement with
experiment: for instance, for n = 2 Eq. (1.1.7) gives two levels (k = 1
and k = 2), split by the observed amount a*mc?/32, or 4.53 x 107 ¢V. In
contrast, Schrodinger’s result (1.1.6) gives an n = 2 fine structure splitting
«*mc? /12, considerably larger than observed.

Schriodinger correctly recognized that the source of this discrepancy
was his neglect of the spin of the electron. The splitting of atomic
energy levels by non-inverse-square electric fields in alkali atoms and by
weak external magnetic fields (the so-called anomalous Zeeman effect)
had revealed a multiplicity of states larger than could be accounted for
by the Bohr-Sommerfeld theory; this led George Uhlenbeck and Samuel
Goudsmit!! in 1925 to suggest that the electron has an intrinsic angular
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momentum /2. Also, the magnitude of the Zeeman splitting'? allowed
them to estimate further that the electron has a magnetic moment

= . (1.1.8}

It was clear that the electron’s spin would be coupled to its orbital
angular momentum, so that Schrédinger’s relativistic equation should not
be expected to give the correct fine structure splitting.

Indeed, by 1927 several authors!® had been able to show that the
spin—orbit coupling was able to account for the discrepancy between Sch-
rodinger’s result (1.1.6) and experiment. There are really two effects here:
one is a direct coupling between the magnetic moment (1.1.8) and the
magnetic field felt by the electron as it moves through the electrostatic
field of the atom; the other is the relativistic ‘Thomas precession’ caused
{(even in the absence of a magnetic moment) by the circular motion of
the spinning electron.!* Together, these two effects were found to lift the
level with total angular momentum j = / +% to the energy (1.1.7) given

by Sommerfeld for k = /41 = j + }, while the level with j =/ — 1 was

lowered to the value given by Sommerfeld for k = ¢/ = j + 1. Thus the
energy was found to depend only on » and j, but not separately on #:

2 4

2 o o n 3
= 1— — — - Sl 1.19
E mc]: 53 2n4(j+% 4)+ ] (1.1.9)
By accident Sommerfeld’s theory had given the correct magnitude of the
splitting in hydrogen {j + 1 like k runs over integer values from 1 to »)
though it was wrong as to the assignment of orbital angular momentum
values £ to these various levels. In addition, the muitiplicity of the fine

structure levels in hydrogen was now predicted to be 2 for j = | and

2(2j + 1) for j > § (corresponding to £ values j + 1), in agreement with
experiment.

Despite these successes, there still was not a thorough relativistic theory
which incorporated the electron’s spin from the beginning. Such a theory
was discovered in 1928 by Paul Dirac. However, he did not set out
simply to make a relativistic theory of the spinning electron; instead, he
approached the problem by posing a question that would today seem
very strange. At the beginning of his 1928 paper,’® he asks *‘why Nature
should have chosen this particular model for the electron, instead of
being satisfied with the point charge.” To us today, this question is like
asking why bacteria have only one cell: having spin #%/2 is just one of
the properties that define a particle as an electron, rather than one of the
many other types of particles with various spins that are known today.
However, in 1928 it was possible to believe that all matter consisted
of electrons, and perhaps something similar with positive charge in the
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atomic nucleus. Thus, in the spint of the times in which it was asked,
Dirac’s question can be restated: “Why do the fundamental constituents
of matter have to have spin /27

For Dirac, the key to this question was the requirement that probabilities
must be positive. It was known!® that the probability density for the non-
relativistic Schrodinger equation is jip|?, and that this satisfies a continuity
equation of the form
i . .
—V - {(p’Vp—pVp }=0

ot Zm

so the space-integral of |yp|? is time-independent. On the other hand,
the only probability density p and current J, which can be formed from
solutions of the relativistic Schrodinger equation and which satisfy a
conservation law,

.
%4_7.']:[}, {1.1.10)
dt

are of the form

' L8 ded
J=Nimy (v+ %) Y, (1.1.12)

with N an arbitrary constant. It is not possible to identify p as the
probability density, because (with or without an external potential ¢) p
does not have definite sign. To quote Dirac’s reminiscences!’ about this
problem

I remember once when I was in Copenhagen, that Bohr
asked me what 1 was working on and I told him I was trying
to get a satisfactory relativistic theory of the electron, and Bohr
said ‘But Klein and Gordon have already done that!” That
answer first rather disturbed me. Bohr seemed quite satisfied
by Klein’s solution, but I was not because of the negative
probabilities that it led to. I just kept on with it, worrying about
getting a theory which would have only positive probabilities.

According to George Gamow,1® Dirac found the answer to this problem
on an evening in 1928 while staring into a fireplace at St John’s College,
Cambridge. He realized that the reason that the Klein—Gordon (or
relativistic Schriodinger) equation can give negative probabilities is that
the p in the conservation equation (1.1.10) involves a time-derivative of the
wave {unction, This in turn happens because the wave function satisfies
a differential equation of second order in the time. The problem therefore
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was to replace this wave equation with another one of first order in time
derivatives, like the non-relativistic Schrodinger equation.

Suppose the electron wave function is a multi-component quantity y,(x),
which satisfies a wave equation of the form,

iﬁ—@- =#y, (1.1.13)
ot
where 2 is some matrix function of space derivatives. In order to have a
chance at a Lorentz-invartant theory, we must suppose that because the
equation is linear in time-derivatives, 1t 1s also linear in space-derivatives,
so that s takes the form:

#H = —ifica - V + ogmc”, (1.1.14)

where ay, ap, a3, and a4 are constant matrices. From (1.1.13) we can derive
the second-order equation

a2 2

o1 3 5 5 it
—i? — = #p = —KFa,

az ¥ " Fxidx;

—iﬁmc3(d;0¢4 + o4 _@i -+ mzc‘*ozﬁw )
&'x;
{The summation convention is in force here; i and j run over the values
1, 2, 3, or x, v, z2.) But this must agree with the free-field form of the
relativistic Schrodinger equation (1.1.4), which just expresses the relativistic
relation between momentum and energy. Therefore, the matrices « and a4

must satisfy the relations

At + L0y = 2(5,'}'1 , (1.1.15)
ooty + orq0t; = 0, (1.1.16)
B=1, (1.1.17)

where d;; is the Kronecker delta (unity for i = j; zero for i # j} and 1 is
the unit matrix. Dirac found a set of 4 x 4 matrices which satisfy these
relations

00 0 1 0 0 0 —if
_1120010 e |00 i 0
010 01" 2 0 —i 0 0]
100 0 i 00 0]
(1.1.18)
0 01 0 10 0 07
2y = 0 0 0 —1 2y = 01 0 0
- 1 00 0] 00 -1 0
0 -1 0 0 00 0 —1._
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To show that this formalism is Lorentz-invariant, Dirac multiplied
Eq. (1.1.13) on the left with a4, so that it could be put in the form
[hc*y“

-

O

+mc32}1p =0, (1.1.19)

Oxt

where
Y = —loga, 70 = —ing (1.1.20)

(The Greek indices u, v, etc. will now run over the values 1, 2, 3, 0, with
x¥ = et. Dirac used x4 = ict, and correspondingly 4 = 04.) The matrices
»# satisfy the anticommutation relations

+1 u=v=1273
{ —1 u=v=10 . (1.1.21)

0 HFEY

Dirac noted that these anticommutation relations are Lorentz-invariant,
in the sense that they are also satisfied by the matrices A*,y", where A is
any Lorentz transformation. He concluded from this that A#,7” must be
related to v# by a similarity transformation:

ANy = STHAWS(A).

It follows that the wave equation is invariant if, under a Lorentz transfor-
mation x* — A*,x", the wave function undergoes the matrix transforma-
tion p — S(A)y. (These matters are discussed more fully, from a rather
different point of view, in Chapter 5.)

To study the behavior of electrons in an arbitrary external electromag-
netic field, Dirac followed the *usual procedure’ of making the replacements

1 .
E(?“?" +y' ) =0 =

L0 0 , : e
Iﬁa — zﬁEJreqb — thV — uth+EA (1.1.22)
as in Eq. (1.1.4). The wave equation (1.1.13) then takes the form

5
(ih % + eqb) p = (—ihcV + eA) - ap + mclouqy (1.1.23)

Dirac used this equation to show that in a central field, the conservation
of angular momentum takes the form

[#, —ihe xV +ha/2] =0, (1.1.24)

where # is the matrix differential operator (1.1.14) and & is the 4 x 4
version of the spin matrix introduced earlier by Paulil®

0 010
® . (1.1.23)

= = O
_— O
jnte Bt [ e
e
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Since each component of ¢ has eigenvalues 11, the presence of the extra
term in (1.1.24) shows that the electron has intrinsic angular momentum
fif2.

Dirac also iterated Eq. (1.1.23), obtaining a second-order equation,
which turned out to have just the same form as the Klein—Gordon equation
(1.1.4) except for the presence on the right-hand-side of two additional
terms

[—ehco - B — iefica - E] . (1.1.26)

For a slowly moving electron, the first term dominates, and represents a
magnetic moment in agreement with the value (1.1.8) found by Goudsmit
and Uhlenbeck.!! As Dirac recognized, this magnetic moment, together
with the relativistic nature of the theory, guaranteed that this theory
would give a fine structure splitting in agreement (to order a*mc?} with
that found by Heisenberg, Jordan, and Charles G. Darwin.!? A little later,
an ‘exact’” formula for the hydrogen energy levels in Dirac’s theory was
derived by Darwin?® and Gordon?!

=172

2 o?
1+ 3 . (1.1.27}

ey )

The first three terms of a power series expansion in &’ agree with the
approximate result (1.1.9).
This theory achieved Dirac’s primary aim: a relativistic formalism with
positive probabilities. From (1.1.13) we can derive a continuity equation
dp

- +J=0 .
5 TV (1.1.28)

with

p =iyl T=cyp'ay, (1.1.29)
50 that the positive quantity |ip|> can be interpreted as a probability
density, with constant total probability [ |yp|?d3x. However, there was
another difficulty which Dirac was not immediately able to resolve.

For a given momentum p, the wave equation (1.1.13) has four solutions

of the plane wave form
P oC eXp [% {p*x—Er)} . (1.1.30)

Two solutions with E = ++/p2e? + m?¢* correspond to the two spin states
of an electron with J, = +k/2. The other two solutions have E =
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—+/p2ct + m2c?, and no obvious physical interpretation. As Dirac pointed
out, this problem artses also for the relativistic Schriodinger equation: for
each p, there are two solutions of the form (1.1.30), one with positive E
and one with negative E.

Of course, even in classical physics, the relativistic relation
E? = p*c? + m?c* has two solutions, E = i\/pzcﬁ +m?c* . However,
in classical physics we can simply assume that the only physical particles
are those with positive E. Since the positive solutions have E > me? and
the negative ones have E < —mc?, there is a finite gap between them,
and no continuous process can take a particle from positive to negative
energy.

The problem of negative energies is much more troublesome in rela-
tivistic quantum mechanics. As Dirac pointed out in his 1928 paper,!’ the
interaction of electrons with radiation can produce transitions in which a
positive-energy electron falls into a negative-energy state, with the energy
carried off by two or more photons. Why then is matter stable?

In 1930 Dirac offered a remarkable solution.?? Dirac’s proposal was
based on the exclusion principle, so a few words about the history of this
principle are in order here.

The periodic table of the elements and the systematics of X-ray spec-
troscopy had together by 1924 revealed a pattern in the population of
atomic energy levels by electrons:>* The maximum number N, of electrons
in a shell characterized by principal quantum number » 1s given by twice
the number of orbital states with that n

n—1
Ny=2> (2/+1D)=2"=2,818,.... (1.1.31)
£=0

Wolfgang Pauli®* in 1925 suggested that this pattern could be understood if
N, is the total number of possible states in the nth shell, and if in addition
there is some mysterious ‘exclusion principle’ which forbids more than one
electron from occupying the same state. He explained the puzzling factor
2 in (1.1.31} as due to a ‘peculiar, classically non-describable duplexity’ of
the electron states, and as we have seen this was understood a little later
as due to the spin of the electron.!! The exclusion principle answered a
question that had remained obscure in the old atomic theory of Bohr and
Sommerfeld: why do not all the electrons in heavy atoms fall down into
the shell of lowest energy? Subsequently Pauli's exclusion principle was
formalized by a number of authors?® as the requirement that the wave
function of a multi-electron system is antisymmetric in the coordinates,
orbital and spin, of all the electrons. This principle was incorporated into
statistical mechanics by Enrico Fermi®S and Dirac,?’ and for this reason
particles obeying the exclusion principle are generally called ‘fermions,’
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just as particles like photons for which the wave function is symmetric
and which obey the statistics of Bose and Einstein are called ‘bosons.” The
exclusion principle has played a fundamental role in the theory of metals,
white dwarf and neutron stars, etc., as well as in chemistry and atomic
physics, but a discussion of these matters would take us too far afield
here.

Dirac’s proposal was that the positive energy electrons cannot fall down
into negative energy states because ‘all the states of negative energy are
occupied except perhaps a few of small velocity” The few vacant states,
or ‘holes, in the sea of negative energy electrons behave like particles with
opposite quantum numbers: positive energy and positive charge. The only
particle with positive charge that was known at that time was the proton,
and as Dirac later recalled,’” ‘the whole climate of opinion at that time
was against new particles’ so Dirac identified his holes as protons; in fact,
the title of his 1930 article®® was ‘A Theory of Electrons and Protons.”

The hole theory faced a number of immediate difficulties. One obvi-
ous problem was raised by the infinite charge density of the ubiquitous
negative-energy electrons: where is their electric field? Dirac proposed to
reinterpret the charge density appearing in Maxwell’'s equations as ‘the
departure from the normal state of electrification of the world” An-
other problem has to do with the huge dissimilarity between the observed
masses and interactions of the electrons and protons. Dirac hoped that
Coulomb interactions between electrons would somehow account for these
differences but Hermann Weyl?® showed that the hole theory was in fact
entirely symmetric between negative and positive charge. Finally, Dirac??
predicted the existence of an electron—proton annihilation process in which
a positive-energy electron meets a hole in the sea of negative-energy elec-
trons and falls down into the unoccupied level, emitting a pair of gamma
ray photons. By itself this would not have created difficulties for the hole
theory; it was even hoped by some that this would provide an explana-
tion, then lacking, of the energy source of the stars. However, it was
soon pointed out® by Julius Robert Oppenheimer and Igor Tamm that
electron—proton annihilation in atoms would take place at much too fast
a rate to be consistent with the observed stability of ordinary matter. For
these reasons, by 1931 Dirac had changed his mind, and decided that the
holes would have to appear not as protons but as a new sort of positively
charged particle, of the same mass as the electron. %

The second and third of these problems were eliminated by the discovery
of the positron by Carl D. Anderson,*® who apparently did not know of
this prediction by Dirac. On August 2, 1932, a peculiar cosmic ray track
was observed in a Wilison cloud chamber subjected to a 15 k(G magnetic
field. The track was observed to curve in a direction that would be
expected for a positively charged particle, and yet its range was at least
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ten times greater than the expected range of a proton! Both the range
and the specific ionization of the track were consistent with the hypothesis
that this was a new particle which differs from the electron only in the
sign of its charge, as would be expected for one of Dirac’s holes. (This
discovery had been made earlier by PM.S. Blackett, but not immediately
published by him. Anderson quotes press reports of evidence for light
positive particles in cosmic ray tracks, obtained by Blackett and Giuseppe
Occhialini.) Thus it appeared that Dirac was wrong only in his original
identification of the hole with the proton.

The discovery of the more-or-less predicted positron, together with the
earlier successes of the Dirac equation in accounting for the magnetic
moment of the electron and the fine structure of hydrogen, gave Dirac’s
theory a prestige that it has held for over six decades. However, althonugh
there seems little doubt that Dirac’s theory will survive in some form in
any future physical theory, there are serious reasons for being dissatisfied
with its original rationale:

(1) Dirac’s analysis of the problem of negative probabilities in Sch-
riédinger’s relativistic wave equation would seem to rule out the existence
of any particle of zero spin. Yet even in the 1920s particles of zero spin
were known — for instance, the hydrogen atom in its ground state, and
the helium nucleus, Of course, it could be argued that hydrogen atoms
and alpha particles are not elementary, and therefore do not need to
be described by a relativistic wave equation, but it was not {and still is
not) clear how the idea of elementarity is incorporated in the formalism
of relativistic quantum mechanics. Today we know of a large number
of spin zero particles — 7 mesons, K mesons, and so on -— that are
no less elementary than the proton and neutron. We also know of spin
one particles — the W+ and Z% — which seem as elementary as the
electron or any other particle. Further, apart from effects of the strong
interactions, we would today calculate the fine structure of ‘mesonic
atoms, consisting of a spinless negative n or K meson bound to an
atomic nucleus, from the stationary solutions of the relativistic Klein-
Gordon-Schrbdinger equation! Thus, it is difficult to agree that there is
anything fundamentally wrong with the relativistic equation for zero spin
that forced the development of the Dirac equation — the problem simply
i that the electron happens to have spin A/2, not zero.

(1) As far as we now know, for every kind of particle there is an
‘antiparticle’ with the same mass and opposite charge. (Some purely
neutral particles, such as the photon, are their own antiparticles.) But
how can we interpret the antiparticles of charged bosons, such as the
n¥ mesons or WT particles, as holes in a sea of negative energy states?
For particles quantized according to the rules of Bose—Einstein statistics,

)
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there is no exclusion principle, and hence nothing to keep positive-energy
particles from falling down into the negative-energy states, occupied or
not. And if the hole theory does not work for bosonic antiparticles, why
should we believe it for fermions? I asked Dirac in 1972 how he then felt
about this point; he told me that he did not regard bosons like the pion
or W as ‘important” In a lecture?’® a few years later, Dirac referred
to the fact that for bosons *we no longer have the picture of a vacuum
with negative energy states filled up’, and remarked that in this case ‘the
whole theory becomes more complicated” The next section will show
how the development of quantum field theory made the interpretation of
antiparticles as holes unnecessary, even though unfortunately it lingers
on in many textbooks. To quote Julian Schwinger,’® ‘The picture of an
infinite sea of negative energy electrons is now best regarded as a historical
curiosity, and forgotten.’

(i1} One of the great successes of the Dirac theory was its correct
prediction of the magnetic moment of the electron. This was particularly
striking, as the magnetic moment (1.1.8) is twice as large as would be
expected for the orbital motion of a charged point particle with angular
momentum A/2; this factor of 2 had remained mysterious until Dirac’s
theory. However, there is really nothing in Dirac’s line of argument that
leads unequivocally to this particular value for the magnetic moment. At
the point where we brought electric and magnetic fields into the wave
equation (1.1.23), we could just as well have added a ‘Pauli term™!

Ko [V, ?F]U)F;w (1.1.32)

with arbitrary coeflicient k. (Here F,, is the usual electromagnetic field
strength tensor, with F'2 = B;, F® = E,;, etc) This term could be
obtained by first adding a term to the free-field equations proportional
to [y#, p*](8%/8xHéx" wp, which of course equals zero, and then making
the substitutions (1.1.22) as before. A more modern approach would be
simply to remark that the term (1.1.32) is consistent with all accepted
invariance principles, including Lorentz invariance and gauge invariance,
and so there is no reason why such a term should net be included in the
field equations. (See Section 12.3.) This term would give an additional
contribution proportional to k to the magnetic moment of the electron, so
apart from the possible demand for a purely formal simplicity, there was
no reason to expect any particular value for the magnetic moment of the
electron in Dirac’s theory.

As we shall see in this book, these problems were all eventually to be
solved (or at least clarified) through the development of quantum field
theory.
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1.2 The Birth of Quantum Field Theory

The photon is the only particle that was known as a field before it was
detected as a particle. Thus it is natural that the formalism of quantum
field theory should have been developed in the first instance in connection
with radiation and only later applied to other particles and fields.

In 1926, in one of the central papers on matrix mechanics, Born,
Heisenberg, and Jordan®® applied their new methods to the free radiation
field. For simplicity, they ignored the polarization of electromagnetic
waves and worked in one space dimension, with coordinate x running
from O to L; the radiation field w(x,t) if constrained to vanish at these
endpoints thus has the same behavior as the displacement of a string with
ends fixed at x = 0 and x = L. By analogy with either the case of a string
or the full electromagnetic field, the Hamiltonian was taken to have the

form
1L 7ouN? 5 [ 0uN?

In order to reduce this expression to a sum of squares, the field v was
expressed as a sum of Fourier components with u = 0 at both x = { and
x=1L:

u(x,t) =S g(t) sin (@) , (1.2.2)
k=1 '
wy = kne/L, (1.2.3)
so that
L x ]
H=7% {@0+olgo}. (1.2.4)

k=1

Thus the string or field behaves like sum of independent harmonic oscilla-
tors with angular frequencies wy, as had been anticipated 20 years earlier
by Paul Ehrenfest.’?

In particular, the ‘momentum’ py(t) canonically conjugate to g{t) is
determined, as in particle mechanics, by the condition that if H is expressed
as a function of the ps and gs, then

4

Epilt)

grit) = Hip(i),q{r)) .

This yields a ‘momentum’

L
pielt} = 3 gk (r) (1.2.5)
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so the cancnical commutation relations may be written

a0,010] = 7 @ g0] = 22 5, (1.26)

(0. q;(0)] = 0. (1.2.7)

Also, the time-dependence of g(t) is governed by the Hamiltonian equa-
tion of motion

2 dH

0= £ 0 = =] 50 = —ola(0). (1.28)

The form of the matrices defined by Egs. (1.2.6)-(1.2.8) was already
known to Born, Heisenberg, and Jordan through previous work on the
harmonic oscillator. The g-matrix is given by

qi(t) = \Hfi“;;: [ak exp{—iwyt) + a,: exp{+iwkr)] (1.2.9)

with a; a time-independent matrix and al its Hermitian adjoint, satisfying
the commutation relations

EIEL N (1.2.10)
la, o] =0. (1.2.11)
The rows and columns of these matrices are labelled with a set of positive

integers ny, ny,..., one for each normal mode. The matrix elements are
(W)t .t e = [P Ot [ ] Bt (1.2.12)

J#k
(ai)n—,,,,;,__‘,n.m,.. =V + L0y vt [T 0 - (1.2.13)
J#k

For a single normal mode, these matrices may be written explicitly as

'0(00...' 0 0 00 .. ]
0 0 2 0 . VI 0 00

0 0 0 3 0 V2 00
a=]0 0 0 0 , d=1 0 o 30

It is straightforward to check that (1.2.12) and (1.2.13) do satisfy the
commutation relations (1.2.10) and (1.2.11).

The physical interpretation of a column vector with integer components
ny,#y,... is that it represents a state with n; quanta in each normal mode

k. The matrix a, or az acting on such a column vector will respectively
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lower or raise n; by one unit, leaving all n, with ¢ # k unchanged; they
may therefore be interpreted as operators which annihilate or create one
quantum in the kth normal mode. In particular, the vector with all m
equal to zero represents the vacuum; it 1s annthilated by any a;.

This interpretation is further borne out by inspection of the Hamuilto-
nian. Using (1.2.9) and (1.2.10) in (1.2.4) gives

H= hoy (alac+ §) . (1.2.14)
k

The Hamiltonian is then diagonal in the n-representation

(H )t s = ; By (e + 1) ]:[ Sui, - (1.2.15)

We see that the energy of the state is just the sum of energies fiey, for
each quantum present in the state, plus an infinite zero-point energy
Eo = 1 Y fin,. Applied to the radiation field, this formalism justified the
Bose method of counting radiation states according to the numbers ny of
guanta in each normal mode.

Born, Heisenberg, and Jordan used this formalism te derive an expres-
sion for the r.m.s. energy fluctuations in black-body radiation. (For this
purpose they actually only used the commutation relations (1.2.6)~(1.2.7).)
However, this approach was soon applied to a more urgent problem, the
calculation of the rates for spontaneous emission of radiation.

In order to appreciate the difficulties here, it is necessary to go back
in time a bit. In one of the first papers on matrix mechanics, Born and
Jordan®? had assumed in effect that an atom, in dropping from a state
B to a lower state «, would emit radiation just like a classical charged
oscillator with displacement

r(t) = rg, exp(—2mive) + rg," exp(2nivt) (1.2.16)
where
hv = Ez — E, (1.2.17)

and rg, is the B, element of the matrix associated with the electron
position. The energy E of such an oscillator is

E= %m (i'2 + (m}lr?) — 8lmv?|rp,!” . (1.2.18)

A straightforward classical calculation then gives the radiated power, and
dividing by the energy hv per photon gives the rate of photon emission

16732y

Alp = 2) = 3hc3

Irgal? - (1.2.19)
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However, it was not at all clear why the formulas for emission of radiation
by a classical dipole should be taken over in this manner in dealing with
spontaneous emission.

A little later a more convincing though even less direct derivation was
given by Dirac.** By considering the behavior of quantized atomic states
in an oscillating classical electromagnetic field with energy density per
frequency interval u at frequency (1.2.17), he was able to derive formulas
for the rates uB(x — f) and uB(f — «) for absorption or induced
emission:
2nle?

3h2
(Note that the expression on the right is symmetric between states o
and f, because r,g is just rg,*.) Einstein®*® had already shown in 1917
that the possibility of thermal equilibrium between atoms and black-body
radiation imposes a relation between the rate A(f — o) of spontaneous
emission and the rates uB for induced emission or absorption:

Shy?

A(p — o) = ( 3 ) B(f —a). (1.2.21)

Blo — 8)=B(f - 2} ~ ITpal” . (1.2.20)

Using (1.2.20} in this relation immediately yields the Born-Jordan result
(1.2.19}) for the rate of spontaneous emission. Nevertheless, it still seemed
unsatisfactory that thermodynamic arguments should be needed to derive
formulas for processes involving a single atom.

Finally, in 1927 Dirac® was able to give a thoroughly quantum me-
chanical treatment of spontaneous emission. The vector potential A(x, ¢}
was expanded in normal modes, as in Eq. (1.2.2), and the coefficients were
shown to satisfy commutation relations like {(1.2.6). In consequence, each
state of the free radiation field was specified by a set of integers ng, one
for each normal mode, and the matrix elements of the electromagnetic
interaction ef - A took the form of a sum over normal modes, with matrix
cocflicients proportional to the matrices a, and a,t defined in Eqs. {1.2,10)—
(1.2.13). The crucial result here is the factor ./, + 1 in Eq. (1.2.13); the
probability for a transition in which the number of photons in a normal
mode k rises from ny to n + 1 is proportional to the square of this factor,
or m, + 1. But in a radiation field with n; photons in a normal mede k,
the energy density u per frequency interval is

)
u(vy) = (@) ng X hvg
C

so the rate for emission of radiation in normal mode k is proportional to

c3u(vk}

]_ fr—
e+ thvf
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The first term is interpreted as the contribution of induced emission, and
the second term as the contribution of spontaneous emission. Hence,
without any appeal to thermodynamics, Dirac could conclude that the
ratio of the rates uB for induced emission and A for spontaneous emission
1s given by the Einstein relation, Eq. (1.2.21). Using his earlier result (1.2.20)
for B, Dirac was thus able to rederive the Born—Jordan formula®® (1.2.19)
for spontancous emission rate 4. A little later, similar methods were
used by Dirac to give a quantum mechanical treatment of the scattering
of radiation and the lifetime of excited atomic states,® and by Victor
Weisskopf and Eugene Wigner to make a detailed study of spectral line
shapes.?® Dirac in his work was separating the electromagnetic potential
into a radiation field A and a static Coulomb potential A%, in a manner
which did not preserve the manifest Lorentz and gauge invariance of
classical electrodynamics. These matters were put on a firmer foundation
a little later by Enrico Fermi® Many physicists in the 1930s learned
their quantum electrodynamics from Fermi’s 1932 review.

The use of canonical commutation relations for ¢ and p or g and a
also raised a question as to the Lorentz invartance of the quantized theory.
Jordan and Pauli*’ in 1928 were able to show that the commutators of
fields at different spacetime points were in fact Lorentz-invariant. {These
commutators are calculated in Chapter 5.) Somewhat later, Bohr and
Leon Rosenfeld®® used a number of ingenious thought experiments to
show that these commutation relations express limitations on our ability
to measure ficlds at spacetime points separated by time-Ike intervals.

It was not long after the successful quantization of the eleciromagnetic
field that these techniques were applied to other fields. At first this was
regarded as a ‘second quantization’; the fields to be quantized were the
wave functions used in one-particle quantum mechanics, such as the Dirac
wave function of the electron. The first step in this direction seems to
have been taken in 1927 by Jordan.*® In 1928 an essential element was
supplied by Jordan and Wigner.*® They recognized that the Pauli exclusion
principle prevents the occupation number #; of electrons in any normal
mode k (counting spin as well as position variables) from taking any values
other than 0 or 1. The electron field therefore cannot be expanded as a
superposition of operators satisfying the commutation relations (1.2.10),
(1.2.11), because these relations require ng to take all integer values from
0 to oo. Instead, they proposed that the electron field should be expanded

in a sum of operators ax, az satisfying the anticommutation relations

acal + aja = op (1.2.22)
ty &) + ;o =0. (1.2.23)

The relations can be satisfied by matrices labelled by a set of integers
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n1, B2, -, one for each normal mode, each integer taking just the values
zero and one:

1 0, =0,m=1,n,=n;forj#k
(@t i, = { 0 othorwice gt Eh 04
1 M. =1m=0,n=n;forjk
(az)n’l,n;,-..,n1,nz,". = { 0 O!i:chel’wisek. d ! U (1.2.25)

For instance, for a single normal mode we have just two rows and two
columns, corresponding to the values unity and zero of #" and n; the a
and ' matrices take the form

_[06 o + [0 1
=11 o] “=lo o]
'The reader may check that {1.2.24) and (1.2,25) do satisfy the anticommu-
tation relations (1.2.22) and (1.2.23).

The interpretation of a column vector characterized by integers ny, n3,...
is that 1t represents a state with ng quanta in each normal mode k, just as
for bosons. The difference is, of course, that since each m; takes only the
values 0 and 1, there can be at most one quantum in each normal mode,
as required by the Pauli exclusion principle. Again, a; destroys a quantum
in normal mode £ if there is one there already, and otherwise gives zero;
also, a; creates a quanfum in normal mode k unless there is one there
already, in which case it gives zero. Much later it was shown by Fierz
and Pauli*® that the choice between commutation and anticommutation
relations is dictated solely by the particle’s spin: commutators must be
used for particles with integer spin like the photon, and anticommutators
for particles with half-integer spin like the electron. (This will be shown
in a different way in Chapter 5.)

The theory of general quantum fields was first laid out in 1929, in a
pair of comprehensive articles by Heisenberg and Pauli*! The starting
point of their work was the application of the canonical formalism to
the fields themselves, rather than to the coefficients of the normal modes
appearing in the fields. Heisenberg and Pauli took the Lagrangian L as
the space-integral of a local function of fields and spacetime derivatives
of fields; the field equations were then determined from the principle
that the action [ Ldr should be stationary when the fields are varied;
and the commutation relations were determined from the assumption
that the variational derivative of the Lagrangian with respect to any
field’s time-derivative behaves like a ‘momentum’ conjugate to that field
(except that commutation relations become anticommutation relations for
fermion fields). They also went on to apply this general formalism to the
electromagnetic and Dirac fields, and explored the various invariance and
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conservation laws, including the conservation of charge, momentum, and
energy, and Lorentz and gauge mvariance.

The Heisenberg—Pauli formalism is essentially the same as that described
in our Chapter 7, and so for the present we can limit ourselves to a single
example which will turn out to be useful later in this section. For a free
complex scalar field ¢(x) the Lagrangian is taken as

2
L= / Px {@H};—cz(w}*-(w)— (1’-‘;) ¢‘f¢] . (1.2.26)

If we subject ¢(x) to an infinitesimal variation d¢(x), the Lagrangian is
changed by the amount

5L — f Lx [@"fa& + bdt — VT Vod — Ve - Vs

me2\* me2\*
—(7) ﬁf’Tf)ff’—(T) pg!

[t is assumed in using the principle of stationary action that the variation
in the fields should vanish on the boundaries of the spacetime region of
integration. Thus, in computing the change in the action [ Ldt, we can
immediately integrate by parts, and write

rS/Ldr - 52/d4x [5¢’f‘ (m _ (-’%‘-)2) b+ 80 (m _ (Tﬁ":)z) ¢T] .

But this must vanish for any é¢ and 847, so ¢ must satisfy the familiar
relativistic wave equation

. (1.2.27)

0_ (%)1 $=0 (1.2.28)

and its adjoint. The ‘momenta’ canonically conjugate to the fields ¢ and
¢! are given by the variational derivatives of L with respect to ¢ and ¢,
which we can read off from (1.2.27) as

—_— - ‘T
m= 5% o', (1.2.29)
oL .
T= =
n = 5o : {1.2.30)

These field variables satisfy the usual canonical commutation relations,
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with a delta function in place of a Kronecker delta
00,400 = [7T(x, 0, 67(r.0)] = —ihd*x —y). (1.2.31)
7x.0.9'(v.0] = [z 0. o(y.8] = 0, (12.32)
[n{x, £, mly, 1)} = :n‘*{x,:), nf(y,:}} = [ﬂ:(x, aty0| =0, (1233
900 v 1)] = [6Tx 0l 0] = [pcn. oty 0] =0, (1234)

The Hamiltonian here is given (just as in particle mechanics) by the ‘sum’
of all canonical momenta times the time-derivatives of the corresponding
fields, minus the Lagrangian:

H= [d%[«::{fu +al¢l] — L (1.2.35)
or, using {1.2.26), (1.2.29), and (1.2.30):

il

2.4
H= / Px [—n’fn + AV (V) + (mhf ) ot ¢] . (1.2.36)

After the papers by Heisenberg and Pauli one element was still missing
before quantum field theory could reach its final pre-war form: a solution
to the problem of the negative-energy states. We saw in the last section
that in 1930, at just about the time of the Heisenberg—Pauli papers, Dirac
had proposed that the negative-energy states of the electron were all filled,
but with only the holes in the negative-energy sea observable, rather than
the negative-energy electrons themselves. After Dirac’s idea was seemingly
confirmed by the discovery of the positron in 1932, his ‘hole theory’ was
used to calculate a number of processes to the lowest order of perturbation
theory, including electron—positron pair production and scattering.

At the same timne, a great deal of work was put into the development
of a formalism whose Lorentz invariance would be explicit. The most
influential effort was the ‘many-time’ formalism of Dirac, Vladimir Fock,
and Boris Podolsky,* in which the state vector was represented by a
wave function depending on the spacetime and spin coordinates of all
clectrons, positive-energy and negative-energy. In this formalism, the total
number of electrons of either positive or negative energy is conserved;
for instance, production of an electron—positron pair is described as the
excitation of a negative-energy electron to a positive-energy state, and the
annihilation of an electron and positron is described as the corresponding
deexcitation. This many-time formalism had the advantage of manifest
Lorentz invariance, but it had a number of disadvantages: In particular,
there was a profound difference between the treatment of the photon,
described in terms of a quantized electromagnetic field, and that of the
electron and positron. Not all physicists felt this to be a disadvantage;



1.2 The Birth of Quantum Field Theory 23

the electron field unlike the electromagnetic field did not have a classical
limit, so there were doubts about its physical significance. Also, Dirac?*
conceived of fields as the means by which we observe particles, so that
he did not expect particles and fields to be described in the same terms.
Though I do not know whether it bothered anyone at the time, there was
a more practical disadvantage of the many-time formalism: it would have
been difficult to use it to describe a process like nuclear beta decay, in
which an electron and antineutring are created without an accompanying
positron or neutrino. The successful calculation by Fermi*? of the electron
energy distribution in beta decay deserves to be counted as one of the
early triumphs of quantum field theory.

The essential idea that was needed to demonstrate the equivalence of
the Dirac hole theory with a quantum field theory of the electron was
provided by Fock®* and by Wendell Furry and Oppenheimer?* in 19334
To appreciate this idea from a more modern standpoint, suppose we try
to construct an electron field in analogy with the electromagnetic field or
the Born—Heisenberg—Jordan field (1.2.2). Since electrons carry a charge,
we would not like to mix annihilation and creation operators, so we might
try to write the field as

pix) = up(x)e ey , (1.2.37)
k

where u(x)e™*! are a complete set of orthonormal plane-wave solutions
of the Dirac equation (1.1.13} {(with k now labelling the three-momentum,
spin, and sign of the energy):

Ky, = hoouy, | (1.2.38)
# = —ihcot - V + oqmc? | (1.2.39)
[ujus d*x = 8, , (1.2.40)

and ay, are the corresponding annihilation operators, satisfying the Jordan-
Wigner anticommutation relations (1.2.22)—(1.2.23}). According to the
ideas of ‘second quantization’ or the canonical quantization procedure
of Heisenberg and Pauli,! the Hamiltonian is formed by calculating the
‘expectation value’ of # with a ‘wave function’ replaced by the quantized
field (1.2.37)

H= f Ex vty =3 howala . (1.2.41)
k

The trouble is, of course, that this is not a positive operator — half the «wy
are negative while the operators a;ak take only the positive eigenvalues
1 and 0. (See Egs. (1.2.24} and (1.2.25).) In order to cure this disease,
Furry and Oppenheimer picked up Dirac’s idea®? that the positron is the
absence of a negative-energy electron; the anticommutation relations are
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symmetric between creation and annihilation operators, so they defined
the positron creation and annihilation operators as the corresponding
annihilation and creation operators for negative-energy electrons

b =a, by = af (for @y, < 0) (1.2.42)

where the label &k on b denotes a positive-energy positron mode with
momenta and spin opposite to those of the electron mode k. The Dirac
field (1.2.37} may then be written

Z{“akuﬁ« +Z‘ bl (x) (1.2.43)

where (+) and (—) indicate sums over normal modes kK with w; > 0
and w; < 0, respectively, and u(x) = w(x)e ™ Similarly, using the
anticommutation relations for the bs, we can rewrite the energy operator
{1.2.41) as

H=Y Mhowala +3 Thlag|blbe + Eo, (1.2.44)
k k

where Eg 1s the infinite c-number
— > Tilax . (1.2.45)
&

In order for this redefinition to be more than a mere formality, it is
necessary also to specify that the physical vacuum is a state ¥y containing
no positive-energy electrons or positrons:

a Wy = 0 (0 > 0), (1.2.46)
bWy = 0 (o0 < 0). (1.2.47)

Hence (1.2.44} gives the energy of the vacuum as just Eg. If we measure
all energies relative to the vacuum energy FEp, then the physical energy
operator 18 H — Ey; and Eq. (1.2.44) shows that this is a positive operator.

The problem of negative-energy states for a charged spin zero particle
was also resolved in 1934, by Pauli and Weisskopf,* in a paper written
in part to challenge Dirac’s picture of filled negative-energy states. Here
the creation and annihilation operators satisfy commutation rather than
anticommutation relations, so it is not possible to interchange the roles of
these operators freely, as was the case for fermions. Instead we must return
to the Heisenberg—Pauli canonical formalism*! to decide which coefficients
of the various normal modes are creation or annihilation operators.

Pauli and Weisskopf expanded the free charged scalar field in plane
waves in a cube of spatial volume V = L3:

P, )= —= > gik r)e™~ (1.2.48)
7
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with the wave numbers restricted by the periodicity condition, that the
quantities k;L/2rx for j = 1,2,3 should be a set of three positive or
negative integers. Similarly the canonically conjugate variable (1.2.29) was
expanded as

n(x, ) = \F 3 plk,r)e % {1.2.49)
The minus sign is put into the exponent here so that (1.2.29) now becomes:
plk, 1) = g'(k,1) . (1.2.50)

The Fourier inversion formula gives
a(k, 1 dex H(x, e w (1.2.51)
pik, 1) = W [d3x rix, et kx| (1.2.52)

and therefore the canonical commutation relations {1.2.31)-(1.2.34) yield
for the gs and ps:

- / £x XV = _ingy (1.2.53)
pk.2).q7L 0] = [ piLo)| = [p(k,r),p*u,n]
= [q(k, Dalln] = [alkon,g'ln] =0 (1254)

together with other relations that may be derived from these by taking
their Hermitian adjoints. By inserting (1.2.48) and (1.2.49) in the formula
(1.2.36) for the Hamiltonian, we can also write this operator in terms of
ps and gs:

H=Y[r'opko) + ofq'knqk 0], (1.2.55)

k

where
232
wi =k + (f’—u—) . (1.2.56)
h

The time-derivatives of the ps are then given by the Hamiltonian equation
k. 1) = — = - k 1.2.57
plk.7) oq(k, 1) wic q'(k, 1) ( )

(and its adjoint), a result which in the light of Eq. (1.2.50} is just equivalent
to the Klein—Gordon—Schrodinger wave equation (1.2.28).

We see that, just as in the case of the 1926 model of Born, Heisenberg,
and Jordan? the free field behaves like an infinite number of coupled




26 I Historical Introduction

harmonic oscillators. Pauli and Weisskopf could construct p and g op-
erators which satisfy the commutation relations (1.2.53)—(1.2.54) and the
‘equations of motion” {1.2.50) and (1.2.57), by introducing annihilation
and creation operators a, b, af, b' of two different kinds, corresponding
to particles and antiparticles:

gk, t) = iy/ 2—:)—k [a(k] exp(—iwgt) — b (k) exp(iwkr}} (1.2.58)

pik, ) = fi% (k) exp(—ient) + a'(k) exp(+iont)|  (1259)
where
[a(k), aT(l)] = [b(K). bT(l)] = Su, (1.2.60)
[a(k),a(l)] = :b(k), b{l)} ~0, (1.2.61)
[a(k), b(l)] = ia(k),b*(l)] — [af(k},b(n}
= |a'(k), 6" )] = 0. (1.2.62)

It is straightforward to check that these operators do satisfy the desired
relations (1.2.53), (1.2.54), (1.2.50), and (1.2.57). The field (1.2.48) may be

written
P(x, 1) = ﬁ Z \/ if—": [a(k) explik - x — leyt)
k

—bt{—Kk)exp(—ik - x + imkt}} (1.2.63)

and the Hamiltonian (1.2.55) takes the form

H= Xk: % T [b*‘(k)b(k) + b(k)bT(k) + al (K)a(k) + a(k}a“(k)]

or, using (1.2.60)-(1.2.62)
H=Y hoy [b*(k)b(kj +qf (k)a(k)} + Eg, (1.2.64)
k

where Ejy is the infinite c-number
Ey = Z ficog . (1.2.65)
k

The existence of two different kinds of operators a and b, which appear
in precisely the same way in the Hamiltonian, shows that this is a theory
with two kinds of particles with the same mass. As emphasized by Pauli
and Weisskopf, these two varicties can be identified as particles and the
corresponding antiparticles, and if charged have opposite charges. Thus,
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as we stressed above, bosons of spin zero as well as fermions of spin 1/2
can have distinct antiparticles, which for bosons cannot be identified as
holes in a sea of negative energy particles.

We now can tell whether ¢ and b or a' and b are the annihilation
operators by taking the expectation values of commutation relations in
the vacuum state ¥y, For instance, if a: were an annihilation operator
it would give zero when applied to the vacuum state, so the vacuum
expectation value of (1.2.60) would give

— |a(k)¥o||? = (‘Pg, [a(k}, aT(k)]‘Po) = +1 (1.2.66)

in conflict with the requirement that the left-hand side must be negative-
definite. In this way we can conclude that it is g, and by that are the
annihilation operators, and therefore

alky¥y = b(k)¥o = 0. ' (1.2.67)

This is consistent with all commutation relations. Thus, the canonical
formalism forces the coefficient of the e™™* in the field (1.2.58) to be a
creation operator, as it also is in the Furry-Oppenheimer formalism* for
spin 1/2.

Equations (1.2.64} and (1.2.67) now tell us that Ey is the energy of the
vacuum state. If we measure all energies relative to Eg, then the physical
energy operator is H — Ep, and (1.2.64) shows that this again is positive.

What about the problem that served Dirac as a starting point, the
problem of negative probabilities? As Dirac had recognized, the only
probability density p, which can be formed from solutions of the Klein-
Gordon-Schrodinger free scalar wave equation (1.2.28), and which satisfies
a conservation law of the form (1.1.10), must be proportional to the
quantity

p=2Im { fﬁ] (1.2.68)

and therefore is not necessarily a positive quantity. Similarly, in the
‘second-quantized’ theory, where ¢ is given by Eq. (1.2.63), p is not a
positive operator. Since ¢’(x) does not commute with $(x) here, we can
write (1.2.68) in various forms, which differ by infinite c-numbers; it proves
convenient to write it as

. O 1-
p == { i ¢' — o9 (b] . (1.2.69)
The space-integral of this operator is then easily calculated to be
_ / pdx =3 (alKak) — bl(k)b(k)) (1.2.70)
k

and clearly has eigenvalues of either sign.
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However, in a sense this problem appears in quantum field theory for
spin 1/2 as well as spin zero. The density operator piy of Dirac is
indeed a positive operator, but in order to construct a physical density
we ought to subtract the contribution of the filled electron states. In
particular, using the plane-wave decomposition (1.2.43), we may write the
total number operator as

N= / P yphy = ; gt (K)a(k) + ; )bb' (k) .

The anticommutation relations for the bs allow us to rewrtte this as

N—No=3 Wala -5 by, (1.2.71)
k k

where Ng 1s the infinite constant
No=>_ ""1. (1.2.72)
k

According to Egs. (1.2.46) and (1.2.47), Np its the number of particles
i the vacuum, so Furry and Oppenheimer reasoned that the physical
number operator 18 N — Ny, and this now has both negative and positive
eigenvalues, just as for spin zero.

The solution to this problem provided by quantum field theory is that
netther the p of Furry and Oppenheimer nor the ¢ of Pauli and Weisskopf
are probability amphtudes, which would have to define conserved positive
probability densities. Instead, the physical Hilbert space is spanned by
states defined as containing definite numbers of particles and/or antipar-
ticles in each mode. If @, are 4 complete orthonormal set of such states,
then a measurement of particle numbers in an arbitrary state ¥ will vield
a probability for finding the system in state ®©,, given by

Py = (@)1, (1.2.73)

where (D, W} 1s the usual Hilbert space scalar product. Hence, no question
as to the possibility of negative probabilities will arise for any spin. The
wave fields ¢, y, etc, are not probability amplitudes at all, but operators
which create or destroy particles in the various normal modes. It would
be a good thing if the misleading expression ‘second quantization’ were
permanently retired.

In particular, the operators N and N — Ny of Eqgs. (1.2.70) and (1.2.71)
are not to be interpreted as total probabilities, but as number operators:
specifically, the number of particles minus the number of antiparticles. For
charged particles, the conservation of charge forces the charge operators to
be proportional to these number operators, so the minus signs in (1.2.70)
and (1.2.71) allow us immediately to conclude that particles and antipar-
ticles have opposite charge. In this field-theoretic formalism, tnteractions
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contribute terms to the Hamiltonian which are of third, fourth, or higher
order in field variables, and the rates of various processes are given by
using these interaction operators in a time-dependent perturbation theory.
The conceptual framework described in the above brief remarks will serve
as the basis for much of the work in this book.

Despite its apparent advantages, quantum field theory did not imme-
diately supplant hole theory; rather, the two points of view coexisted for
a while, and various combinations of field-theoretic and hole-theoretic
ideas were used in calculations of physical reaction rates. This period saw
a number of calculations of cross sections to lowest order in powers of
e’ for various processes, such as ¢~ +7 — ¢~ + 7 in 1929 by Klein and
Nishina:* et + ¢~ — 2v in 1930 by Dirac;* ¢ +¢~ — e~ +¢™ in 1932 by
Mgller:® ¢=+Z - e +7+Z and y+Z — ¢t +e¢~ +Z (where Z denotes
the Coulomb field of a heavy atom) in 1934 by Bethe and Heitler;* and
et +¢~ — et +e in 1936 by Bhabha3? (Rules for the calculation of such
processes are given in Chapter 8, and worked out in detail there for the
case of electron—photon scattering.) These lowest-order calculations gave
finite results, in reasonable agreement with the experimental data.

Nevertheless, a general feeling of dissatisfaction with gquantum field
theory (whether or not in the form of hole theory) persisted throughout
the 1930s. One of the reasons for this was the apparent failure of
quantum electrodynamics to account for the penetrating power of the
charged particles in cosmic ray showers, noted in 1936 by Oppenheimer
and Franklin Carlson" Another cause of dissatisfaction that turned
out to be related to the first was the steady discovery of new kinds
of particles and interactions. We have already mentioned the electron,
photon, positron, neutrino, and, of course, the nucleus of hydrogen, the
proton. Throughout the 1920s it was generally believed that heavier nuclei
are composed of protons and electrons, but it was hard to see how a light
particle like the electron could be confined in the nucleus. Another severe
difficulty with this picture was pointed out in 1931 by Ehrenfest and
Oppenheimer:>! the nucleus of ordinary nitrogen, N4, in order to have
atomic number 7 and atomic weight 14, would have to be composed of
14 protons and 7 electrons, and would therefore have to be a fermion, in
conflict with the result of molecular spectroscopy’® that N'* is a boson.
This problem (and others) were solved in 1932 with the discovery of the
neutron,”> and by Heisenberg’s subsequent suggestion® that nuclei are
composed of protons and neutrons, not protons and electrons. It was
clear that a strong non-electromagnetic force of short range would have
to operate between neutrons and protons to hold nucler together.

After the success of the Fermi theory of beta decay, several authors®*
speculated that nuclear forces might be explained in this theory as due
to the exchange of electrons and neutrinos. A few years later, in 1935,
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Hideki Yukawa proposed a quite different quantum field theory of the
nuclear force.® In an essentially classical calculation, he found that the
interaction of a scalar field with nucleons (protons or neutrons) would
produce a nucleon—nucleon potential, with a dependence on the nucleon
separation r given by

Vir) o« % exXp{—ar) (1.2.74)

instead of the 1/r Coulomb potential produced by electric fields. The
quantity A was introduced as a parameter in Yukawa'’s scalar field equation,
and when this equation was quantized, Yukawa found that it described
particles of mass hi/c. The observed range of the strong interactions
within nuclei led Yukawa to estimate that fii/c is of the order of 200
electron masses. In 1937 such ‘mesons’ were discovered in cloud chamber
experiments®® by Seth Neddermeyer and Anderson and by Jabez Curry
Street and Edward Carl Stevenson, and it was generally believed that
these were the hypothesized particles of Yukawa.

The discovery of mesons reveated that the charged particles in cosmic
ray showers are not all electrons, and thus cleared up the problem with
these showers that had bothered Oppenheimer and Carlson. At the same
time, however, it created new difficultics. Lothar Nordheim®*® pointed
out in 1939 that the same strong interactions by which the mesons are
copicusly produced at high altitudes (and which are required in Yukawa’s
theory) should have led to the mesons’ absorption in the atmosphere, a
result contradicted by their copious appearance at lower altitudes. In 1947
1t was shown in an experiment by Marcello Conversi, Ettore Pancini, and
Oreste Piccioni®’ that the mesons which predominate in cosmic rays at
low altitude actually interact weakly with nucleons, and therefore could
not be identified with Yukawa’'s particle. This puzzle was cleared up by
a theoretical suggestion,”® and its subsequent experimental confirmation®
by Cesare Lattes, Occhialini, and Cecil Powell — there are two kinds
of mesons with slightly different masses: the heavier (now called the =
meson or pion) has strong interactions and plays the role in nuclear force
envisaged by Yukawa; the lighter (now called the u meson, or muon) has
only weak and electromagnetic interactions, and predominates in cosmic
rays at sea level, being produced by the decay of = mesons. In the same
year, 1947, entirely new kinds of particles (now known as K mesons and
hyperons) were found in cosmic rays by George Rochester and Clifford
Butler.® From 1947 until the present particles have continued to be
discovered in a bewildering variety, but to pursue this story would take
us cutside the bounds of our present survey. These discoveries showed
clearly that any conceptual framework which was limited to photons,
electrons, and positrons would be far too narrow to be taken seriously as
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a fundamental theory. But an even more important obstacle was presented
by a purely theoretical problem -— the problem of infinities.

1.3 The Problem of Infinities

Quantum field theory deals with fields y(x) that destroy and create parti-
cles at a spacetime point x. Earlier experience with classical electron theory
provided a warning that a point electron will have infinite electromagnetic
self-mass; this mass is €%/6mac? for a surface distribution of charge with
radius a, and therefore blows up for 2 — 0. Disappointingly this problem
appeared with even greater severity in the early days of quantum field
theory, and although greatly ameliorated by subsequent improvements in
the theory, it remains with us to the present day.

The problem of infinities in quantum field theory was apparently first
noted in the 1929-30 papers of Heisenberg and Pauli*! Scon after, the
presence of infinities was confirmed in calculations of the electromagnetic
self-energy of a bound electron by Oppenheimer,®! and of a free electron
by Ivar Waller.®? They used ordinary second-order perturbation theory,
with an intermediate state consisting of an ¢lectron and a photon: for
instance, the shift of the energy E, of an ¢lectron in the sth energy level
of hydrogen is given by

B g | <mkAH |n> |2
AEH—%jd’k E—F ke {(1.3.1)

where the sums and Integral are over all intermediate electron states
m, photon helicities A, and photon momenta k, and H' is the term in
the Hamiltonian representing the interaction of radiation and electrons.
This calculation gave a self-energy that is formally infinite; further; if
this infinity is removed by discarding all intermediate states with photon
wave numbers greater than 1/a, then the self-energy behaves like 1/a?
as a — 0. Infinities of this sort are often called ultraviolet divergences,
because they arise from intermediate states containing particles of very
short wavelength.

These calculations treated the electron according to the rules of the
original Dirac theory, without filled negative-clectron states. A few years
later Weisskopf repeated the calculation of the electron seli-mass in the
new hole theory, with all negative-energy states full. In this case another
term appears in second-order perturbation theory, which in a non-hole-
theory language can be described as arising from processes in which the
electron in its final state first appears out of the vacuum together with
a photon and a positron which then annihilate along with the initial
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electron. Initially Weisskopf found a 1/a* dependence on the photon
wave-number cutoff 1/a. The same calculation was being carried out (at
the suggestion of Bohr) at that time by Carlson and Furry. After seeing
Weisskopf’s results, Furry realized that while Weisskopf had included an
electrostatic term that he and Carlson had neglected, Weisskopf had made
a new mistake in the calculation of the magnetic self-energy. After hearing
from Furry and correcting his own error, Weisskopf found that the 1/4?
terms in the total mass shift cancelled! However, despite this cancellation,

an infinity remained: with a wave-number cutoff 1/a, the self-mass was
found to be®?

3o h
e = Em In (ﬁ) s {132)

The weakening of the cut-off dependence, to Ing as compared with the
classical 1/a or the early quantum 1/a4?, was mildly encouraging at the
time and turned out to be of great importance later, in the development
of renormalization theory.

An infinity of quite a different kind was encountered in 1933, apparently
first by Dirac.®* He considered the effect of an external static nearly
uniform charge density &(x) on the vacuum, ie, on the negative-energy
electrons in the filled energy levels of hole theory. The Coulomb interaction
between &(x} and the charge demsity of the negative-energy electrons
produces a “vacuum polarization,” with induced charge density

% 2
§¢ = Ae + B (-—-) Vet (1.3.3)
mc

The constant B is finite, and of order ¢. On the other hand, A4 is
logarithmically divergent, of order « Ina, where 1/a is the wave-number
cutoff.

Infinities also seemed to occur in a related problem, the scattering of
light by light. Hans Euler, Bernard Kockel, and Heisenberg® showed in
1935-6 that these infinities could be eliminated by using a more-or-less ar-
bitrary prescription suggested earlier by Dirac® and Heisenberg®”. They
calculated an effective Lagrangian density for the non-linear electrody-
namic effects produced by virtual electron—positron pairs:

1 (EZ _ Bz) n &'k

¥= 2 360n2mic?

2 2
[(EE_BZ) +7(E-B) }+ , (1.3.4)
valid for frequencies v < myc?/h. Soon after, Nicholas Kemmer and
Weisskopf®® presented arguments that in this case the infinities are spuri-
ous, and that Eq. (1.3.4) can be derived without any subtraction prescrip-
tion.
One bright spot in the struggle with infinities was the successful treat-
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ment of infrared divergences, those that arise from the low-energy rather
than the high-energy part of the range of integration. In 1937 it was
shown by Felix Bloch and Arne Nordsieck®? that these infinities cancel
provided one includes processes in which arbitrary numbers of low-energy
photons are produced. This will be discussed in modern terms in Chapter
13.

Yet another infinity turned up in a calculation by Sidney Michael
Dancoff®® in 1939 of the radiative corrections to the scattering of electrons
by the static Coulomb ficld of an atom. The calculation contained a
mistake (one of the terms was omitted), but this was not realized until
later.5%

Throughout the 1930s, these various infinities were seen not merely as
failures of specific calculations. Rather, they seemed to indicate a gap
in the understanding of relativistic quantum field theory on the most
fundamental level, an opinion reinforced by the problems with cosmic
rays mentioned in the previous section.

One of the symptoms of this uneasy pessimism was the continued
exploration throughout the 1930s and 1940s of alternative formalisms.
As Julian Schwinger®” later recalled, “The preoccupation of the majority
of involved physicists was not with analyzing and carefully applying the
known relativistic theory of coupled electron and electromagnetic fields
but with changing it” Thus in 1938 Heisenberg® proposed the existence
of a fundamental length L, analogous to the fundamental action k and
fundamental velocity ¢. Field theory was supposed to work only for
distances larger than L, so that all divergent integrals would effectively
be cut off at distances L, or momenta h/L. Several specific proposals™
were made for giving field theory a non-local structure. Some theorists
began to suspect that the formalism of state-vectors and quantum fields
should be replaced by one based solely on observable quantities, such
as the S-matrix introduced by John Archibald Wheeler’! in 1937 and
Heisenberg’? in 1943, whose elements are the amplitudes for various
scattering processes. As we shall see, the concept of the S-matrix has now
become a vital part of modern quantum field theory, and for some theorists
a pure S-matrix theory became an ideal, especially as a possible solution
to the problems of the strong interactions.”” In yet another direction,
Wheeler and Richard Feynman’ in 1945 attempted to eliminate the
electromagnetic field, deriving electromagnetic interactions in terms of an
interaction at a distance. They were able to show that a pure retarded (or
pure advanced) potential could be obtained by taking into account the
interaction not only between source and test charges, but also between
these charges and all the other charges in the universe. Perhaps the
most radical modification of guantum mechanics suggested during this
period was the introduction by Dirac™ of states of negative probability,
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as a means of cancelling infinities in sums over states. This idea, of an
‘indefinite metric’ in Hilbert space, has also flourished in quantum field
theory, though not in the form originally suggested.

A more conservative idea for dealing with the infinities was also in
the air during the 1930s. Perhaps these infinities could all be absorbed
into a redefinition, a ‘renormalization’ of the parameters of the theory.
For instance, it was already known that in any Lorentz-invarjant classical
theory the electromagnetic self-energy and self-momentum of an electron
must take the form of corrections to the mass of the electron: hence the
infinities in these quantities can be cancelled by a negative infinity in the
‘bare’ non-electromagnetic mass of the electron, leaving a finite measurable
‘renormalized’ mass. Also, Eq. (1.3.3) shows that the vacuum polarization
changes the charge of the electron, from e = fd’x ¢, to

ETOTAL = /dax(s + de) = (1 + A)e. (1.3.3)

Vacuum polarization gives finite results in lowest order if observables like
scattering cross-sections are expressed in terms of etgrar rather than e.
The question was, whether all infinities in quantum field theory could be
dealt with in this way. In 1936 Weisskopf7® suggested that this is the case,
and verified that known infinities could be eliminated by renormalization
of physical parameters in a variety of sample calculations. However, it
was impossible with the calculational techniques then available to show
that infinities could always be eliminated in this way, and Dancoff’s
calculation® seemed to show that they could not.

Another effect of the appearance of infinities was a tendency to believe
that any effect which turned out to be infinite in quantum field theory
was actually not there at all. In particular, the 1928 Dirac theory had
predicted complete degeneracy of the 2s,,,-2p;,, levels of hydrogen to
all orders in o; any attempt at a quantum electromagnetic calculation
of the splitting of these two levels ran into the problem of the infinite
self-energy of a bound electron; therefore the existence of such a splitting
was generally not taken seriously. Later Bethe® recalled that ‘This shift
comes out infinite in all existing theories, and has therefore always been
ignored.” This attitude persisted even in the late 1930s, when spectroscopic
experiments’’ began to indicate the presence of a 2s;,,-2p; 7 splitting of
order 1000 MHz. One notable exception was Edwin Albrecht Uehling,’®
who realized that the vacuum polarization effect mentioned earlier would
produce a 2s;,»—2p; » splitting; unfortunately, as we shall see in Chapter
14, this contribution to the splitting is much smaller than 1000 MHz, and
of the wrong sign.

The gloom surrounding quantum field theory began to lift soon after
World War II. On June 1-4, 1947, the Conference on the Foundations of
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Quantum Mechanics at Shelter Island, NY brought theoretical physicists
who had been working on the problems of quantum field theory through
the 1930s together with a younger generation of theorists who had started
scientific work during the war, and — of crucial importance — a few
experimental physicists. The discussion leaders were Hans Kramers, Op-
penheimer, and Weisskopf. One of the experimentalists (or rather theorist
turned experimentalist), Willis Lamb, described a decisive measurement””
of the 2s;,2-2py 2 shift in hydrogen. A beam of hydrogen atoms from an
oven, many in 2s and 2p states, was aimed at a detector sensitive only to
atoms in excited states. The atoms in 2p states can decay very rapidly to
the 1s ground state by one-photon (Lyman o) emission, while the 25 states
decay only very slowly by two-photon emission, so in effect the detector
was measuring the number of atoms in the metastable 2s state. The
beam was passed through a magnetic field, which added a known Zeeman
splitting to any 2s;2-2p;,2 splitting naturally present. The beam was
also exposed to a microwave-frequency electromagnetic field, with a fixed
frequency v ~ 10 GHz. At a certain magnetic field strength the detector
signal was observed to be quenched, indicating that the microwave field
was producing resonant transitions from the metastable 2s state to the 2p
state and thence by a rapid Lyman « emission to the ground state. The
total (Zeeman plus intrinsic) 2s-2p splitting at this value of the magnetic
field strength would have to be just kv, from which the intrinsic splitting
could be inferred. A preliminary value of 1000 MHz was announced,
in agreement with the carlier spectroscopic measurements.”” The impact
of this discovery can be summarized in a saying that was current in
Copenhagen when I was a graduate student there in 1954: ‘Just because
something is infinite does not mean it is zero!

The discovery of the Lamb shift aroused intense interest among the
theorists at Shelter Island, many of whom had already been working on
improved formalisms for calculation in quantum electrodynamics. Kra-
mers described his work on mass renormalization in the classical electro-
dynamics of an extended electron,’® which showed that the difficulties
associated with the divergence of the self-energy in the limit of zero radius
do not appear explicitly if the theory is reexpressed so that the mass pa-
rameter in the formalism is identified with the experimental electron mass.
Schwinger and Weisskopf (who had already heard rumors of Lamb’s re-
sult, and discussed the matter on the trip to Shelter Island) suggested that
since the inclusion of intermediate states involving positrons was known
to reduce the divergence in energy level shifts from 1/ a® to lna, perhaps
the differences of the shifts in atomic energy levels might turn out to be
finite when these intermediate states were taken into account. (In fact,
in 1946, before he learned of Lamb’s experiment, Weisskopf had already
assigned this problem to a graduate student, Bruce French.) Almost im-
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mediately after the conference, during a train ride to Schenectady, Hans
Bethe®® carried out a non-relativistic calculation, still without including
the effects of intermediate states containing positrons, but using a simple
cutoff at virtual photon momenta of order m.c? to eliminate infinities. He
obtained the encouraging approximate value of 1040 MHz. Fully rela-
tivistic calculations using the renormalization idea to eliminate infinities
were soon thereafter carried out by a number of other authors?® with
excellent agreement with experiment.

Another exciting experimental result was reported at Shelter Island by
Isidor 1. Rabi. Measurements in his laboratory of the hyperfine structure
of hydrogen and deuterium had suggested®? that the magnetic moment
of the electron is larger than the Dirac value efi/2mc by a factor of
about 1.0013, and subsequent measurements of the gyromagnetic ratios in
sodium and gallium had given a precise value??

eh
n= e [1.00118 4+ 0.00003] .

Learning of these results, Gregory Breit suggested®*® that they arose from
an order  radiative correction to the electron magnetic moment. At Shel-
ter Island, both Breit and Schwinger described their efforts to calculate this
correction. Shortly after the conference Schwinger completed a successful
calculation of the anomalous magnetic moment of the electron®*

eh & ek
b= e [1 + 27:] - 2me [1.001162]

in excellent agreement with observation. This, together with Bethe’s

calculation of the Lamb shift, at last convinced physicists of the reality of

radiative corrections.

The mathematical methods used in this period presented a bewilder-
ing variety of concepts and formalisms. One approach developed by
Schwinger®® was based on operator methods and the action principle,
and was presented by him at a conference at Pocono Manor in 1948,
the successor to the Shelter Island Conference. Another Lorentz-invariant
operator formalism had been developed earlier by Sin-Itiro Tomonaga®®
and his co-workers in Japan, but their work was not at first known in the
West. Tomonaga had grappled with infinities in Yukawa’s meson theory
in the 1930s. In 1947 he and his group were still out of the loop of
scientific communication; they learned about Lamb’s experiment from an
article in Newsweek.

An apparently quite different approach was invented by Feynman,
and described briefly by him at the Pocono Conference. Instead of in-
troducing quantum field operators, Feynman represented the S-matrix as

a functional integral of exp (EW), where W is the action integral for a

87
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set of Dirac particles interacting with a classical electromagnetic field,
integrated over all Dirac particle trajectories satisfying certain initial and
final conditions for t — +co. One result of great practical importance that
came out of Feynman’s work was a set of graphical rules for calculating
S-matrix elements to any desired order of perturbation theory. Unlike
the old perturbation theory of the 1920s and 1930s, these Feynman rules
automatically lumped together particle creation and antiparticle annihi-
lation processes, and thereby gave results that were Lorentz-invariant at
every stage. We have already seen in Weisskopfs early calculation®? of the
electron self-energy, that it is only in such calculations, including particles
and antiparticles on the same footing, that the nature of the infinities
becomes transparent.

Finally, in a pair of papers in 1949, Freeman Dyson®® showed that the
operator formalisms of Schwinger and Tomonaga would yield the same
graphical rules that had been found by Feynman. Dyson also carried out
an analysis of the infinities in general Feynman diagrams, and outlined a
proof that these are always precisely the sort which could be removed by
renormalization. One of the most striking results that could be inferred
from Dyson’s analysis was a criterion for deciding which quantum field
theories are ‘renormalizable’, in the sense that all infinities can be absorbed
mto a redefinition of a finite number of coupling constants and masses.
In particular, an interaction like the Pauli term (1.1.32), which would have
changed the predicted magnetic moment of the electron, would spoil the
renormalizability of quantum electrodynamics. With the publication of
Dyson’s papers, there was at last a general and systematic formalism that
physicists could easily learn to use, and that would provide a common
language for the subsequent applications of quantum field theory to the
problems of physics.

I cannot leave the infinities without taking up a puzzling aspect of
this story. Oppenheimer® in 1930 had already noticed that most of the
ultraviolet divergence in the self-energy of a bound electron cancels when
one takes the difference between the shifts of two atomic energy levels,
and Weisskopf®® in 1934 had found that most of the divergence in the
self-energy of a free electron cancels when one includes intermediate states
containing positrons. It would have been natural even in 1934 to guess
that including positron intermediate states and subtracting the energy
shifts of pairs of atomic states would eliminate the ultraviolet divergence
in their relative energy shift.” There was even experimental evidence’’ for

* In fact, this guess would have been wrong. As discussed in Seciion 14.3, radiative corrections to
the electron mass affect atomic energy levels not only through a shift in the electron rest energy,
which is the same in all atomic energy levels, but alse through a change in the electron kinetic
energy, that varies from one level t¢ another.
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a 2s)/;-2py2 energy difference of order 1000 MHz. So why did no one
before 1947 attempt an numerical estimate of this energy difference?

Strictly speaking, there was one such attempt®2 in 1939, but it focused
on the wrong part of the problem, the charge radius of the proton, which
has only a tiny effect on hydrogen energy levels. The calcuiation gave
a result in rough agreement with the early experiments.”” This was a
mistake, as shown in 1939 by Lamb 8

A fully relativistic calculation of the Lamb shift including positrons in
intermediate states could have been attempted during the 1930s, using the
old non-relativistic perturbation theory. As long as one keeps all terms up
to a given order, old-fashioned non-relativistic perturbation theory gives
the same results as the manifestly relativistic formalisms of Feynman,
Schwinger, and Tomonaga. [n fact, after Bethe's work, the first precise
calculations®! of the Lamb shift in the USA by French and Weisskopf and
Norman Kroll and Lamb were done in just this way, though Tomonoga’s
group ¥ in Japan was already using covariant methods to solve this and
other problems.

The one missing element was confidence in renormalization as a means
of dealing with infinities. As we have seen, renormalization was widely
discussed in the late 1930s. But it had become accepted wisdom in
the 1930s, and a point of view especially urged by Oppenheimer,*® that
quantum electrodynamics could not be taken seriously at energies of more
than about 100 MeV, and that the solution to its problems could be found
only in really adventurous new ideas,

Several things happened at Shelter Island to change this expectation.
One was news that the problems concerning cosmic rays discussed in
the previous section were beginning to be resolved; Robert Marshak
presented the hypothesis®® that there were two types of ‘meson’ with
similar masses; the muons that had actually been observed, and the pions
responsible for nuclear forces. More important was the fact that now there
were reliable experimental values for the Lamb shift and the anomalous
magnetic moment that forced physicists to think carefully about radiative
corrections. Probably equally important was the fact that the conference
brought together theorists who had in their own individual ways been
thinking about renormalization as a solution to the problem of infinities.
When the revolution came in the late 1940s, it was made by physicists
who though mostly young were playing a conservative role, turning away
from the search by their predecessors for a radical solution.
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