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In The Quantum Theory of Fields Nobel Laureate Steven Weinberg com-
bines his exceptional physical insight with his gift for clear exposition to
provide a self-contained, comprehensive, and up-to-date introduction to
quantum field theory.

Volume II gives an up-to-date and self-contained account of the
methods of quantum field theory, and how they have led to an under-
standing of the weak, strong, and electromagnetic interactions of the
elementary particles. The presentation of modern mathematical methods
is throughout interwoven with accounts of the problems of elementary
particle physics and condensed matter physics to which they have been
applied. Topics are included that are not usually found in books on
quantum field theory, such as the BatalinVilkovisky formalism and its
application to renormalization and anomalies in gauge theories; the back-
ground field method; the effective field theory approach to symmetry
breaking; critical phenomena; and superconductivity. The book contains
original material, and is peppered with examples and insights from the
author’s experience as a leader of elementary particle physics. Problems
are included at the end of each chapter.

This will be an invaluable reference work for all physicists and mathe-
maticians who use quantum field theory, as well as a textbook appropriate
to graduate courses on quantum field theory.
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Preface To Volume I1

This volume describes the advances in the quantum theory of fields that
have led to an understanding of the electroweak and strong interactions
of the clementary particles. These interactions have all turned out to be
governed by principles of gauge invariance, so we start here in Chapters
15-17 with gauge theories, generalizing the familiar gauge invariance of
electrodynamics to non-Abelian Lie groups.

Some of the most dramatic aspects of gauge theories appear at high
energy, and are best studied by the methods of the renormalization group.
These methods are introduced in Chapter 18, and applied to quantum
chromodynamics, the modern non-Abelian gauge theory of strong in-
teractions, and also to critical phenomena in condensed matter physics.
Chapter 19 deals with general spontaneousty broken global symmetries,
and their application to the broken approximate SU(2) x SU(2) and
SU(3) x SU(3) symmetries of quantum chromodynamics. Both the renot-
malization group method and broken symmetries find some of their most
interesting applications in the context of operator product expansions,
discussed in Chapter 20.

The key to the understanding of the electroweak interactions is the
spontancous breaking of gauge symmetries, which are explored in Chap-
ter 21 and applied to superconductivity as well as to the electroweak
interactions. Quite apart from spontaneous symmetry breaking is the
possibility of symmetry breaking by quantum-mechanical effects known
as anomalies. Anomalies and various of their physical implications are
presented in Chapter 22. This volume concludes with a discussion in
Chapter 23 of extended field configurations, which can arise either as new
ingredients in physical states, such as skyrmions, monopoles, or vortex
tines, or as non-perturbative quantum corrections to path integrals, where
anomalies play a crucial role.

It would not be possible to provide a coherent account of these de-
velopments if they were presented in a historical order. 1 have chosen
instead to describe the material of this book in an order that seems to
me to work best pedagogically — I introduce each topic at a point where

xXvil



xviil Preface

the motivation as well as the mathematics can be understood with the
least possible reference to material in subsequent chapters, even where
logic might suggest a somewhat different order. For instance, instead of
having one long chapter to introduce non-Abelian gauge theories, this
material is split between Chapters 15 and 17, because Chapter 15 provides
a motivation for the external field formalism introduced in Chapter 16,
and this formalism is necessary for the work of Chapter 17.

In the course of this presentation, the reader will be introduced to
various formal devices, including BRST invariance, the quantum effec-
tive action, and homotopy theoty. The Batalin—Vilkovisky formalism is
presented as an optional side track. It is introduced in Chapter 15 as
a compact way of formulating gauge theories, whether based on open
or closed symmetry algebras, and then used in Chapter 17 to study the
canceliation of infinities in ‘non-renormalizable’ gauge theories, including
general relativity, and in Chapter 22 to show that certain gauge theo-
ries are anomaly-free to all orders of perturbation theory. The effective
field theory approach is extensively used in this volume, especially in
applications to theories with broken symmetry, including the theory of
superconductivity. | have struggled throughout for the greatest possible
clarity of presentation, taking time to show detailed calculations where 1
thought it might help the reader, and dropping topics that could not be
clearly explained in the space available.

The guiding aim of both Volumes I and II of this book is to explain to
the reader why quantum field theory takes the form it does, and why in
this form it does such a good job of describing the real world. Volume I
outlined the foundations of the quantum theory of fields, emphasizing the
reasons why nature is described at accessible energies by cffective quantum
field theories, and in particular by gauge theories. (A list of chapters of
Volume I is given al the end of the table of contents of this volume.) The
present volume takes quantum field theory and gauge invariance as its
starting points, and concentrates on their implications.

This volume should be accessible to readers who have some familiarity
with the fundamentals of quantum ficld theory. It is not assumed that
the reader is familiar with Volume I (though it wouldn’t hurt). Aspects of
group theory and topology are explained where they are introduced.

Some of the formal methods described in this volume (such as BRST
invariance and the renormalization group) have important applications
in speculative theories that involve supersymmetry or superstrings. 1 am
enthusiastic about the future prospects of these theories, but I have not
included them in this book, because it seems to me that they require a
whole book to themselves. (Perhaps supersymmetry and supergravity will
be the subjects of a Volume I11.) I have excluded some other interesting
topics here, such as finite temperature field theory, lattice gauge calcula-
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tions and the large N, approximation, because they were not needed to
provide either motivation or mathematical techniques for the rest of the
book, and the book was long enough.

The great volume of the literature on quantum ficld theory and its
applications makes it impossible for me to read or quote all relevant
articles. I have tried to supply citations to the classic papers on each
topic, as well as to papers that describe further developments of matetial
covered here, and to references that present detailed calculations, data, or
proofs referred to in the text. As before, the mere absence of a citation
should not be interpreted as a claim that the material presented is original,
but some of it 1s.

In my experience this volume provides enough material for a onc-year
course for graduate students on advanced topics in quantum field theory,
or on elementary particle physics. Selected parts of Volumes I and II
would be suitable as the basis of a compressed one-year course on both
the foundations and the modern applications of quantum field theory. I
have supplied problems for each chapter. Some of these problems aim
simply at providing exercise in the use of techniques described in the
chapter; others are intended to suggest extensions of the results of the
chapter to a wider class of theories.

®* % &

I must acknowledge my special intellectual debt to colleagues at the
University of Texas, notably Luis Boya, Phil Candelas, Bryce and Cecile
De Witt, Willy Fischler, Joaquim Gomis, and Vadim Kaplunovsky, and
especially Jacques Distler. Also, Luis Alvarez-Gaume, Sidney Coleman,
John Dixon, Tony Duncan, Jiirg Frohtich, Arthur Jaffe, Marc Henneaux,
Roman Jackiw, Joe Polchinski, Michael Tinkham, Cumrun Vafa, Don
Weingarten, Edward Witten and Bruno Zumino gave valuable help with
special topics. Jonathan Evans read through the manuscript of this
volume, and made many valuable suggestions. Thanks are due to Alyce
Wilson, who prepared the illustrations and typed the IATEX input files
until 1 learned how to do it, to Terry Riley for finding countless books
and articles, and to Jan Duffy for many helps. T am grateful to Maureen
Storey and Alison Woollatt of Cambridge University Press for working to
ready this book for publication, and especially to my editor, Rufus Neal,
for his continued friendly good advice.

STEVEN WEINBERG
Austin, Texas
December, 1995



Notation

Latin indices i, j, k, and so on generally run over the three spatial coordi-
nate labels, usually taken as 1, 2, 3. Where specifically indicated, they run
over values 1, 2, 3, 4, with x* = ir.

Greek indices p, v, etc. from the middle of the Greek alphabet generally
run over the four spacetime coordinate labels 1, 2, 3, 0, with x® the time
coordinate.

Greek indices o, B, etc. from the beginning of the Greek alphabet generally
run over the generators of a symmetry algebra.

Repeated indices are generally summed, unless otherwise indicated.

The spacetime metric #,, is diagonal, with elements #;; = 23 = 533 =
1, floo = —1.

The d’Alembertian is defined as O = p#'9?/dx*dx" = V* — 8%/0t%, where
V2 is the Laplacian 92/9x!dx!.

The ‘Levi-Civita tensor’ e”*#° is defined as the totally antisymmetric
quantity with %123 = 41,

Spatial three-vectors are indicated by letters in boldface.
Three-vectors in isospin space are indicated by arrows.

A hat over any vector indicates the corresponding unit vector: Thus,
v=v/lv.

A dot over any quantity denotes the time-derivative of that quantity,

Dirac matrices y, are defined so that y,p, + %y, = 2n,. Also, y5 =
iy0y17273, and f = iy® = y,.

The step function 8(s) has the value +1 for s > 0 and 0 for s < 0.

XX



Notation XXI

The complex conjugate, transpose, and Hermitian adjoint of a matrix or
vector A are denoted A°, AT, and A" = A*T, respectively. The Hermitian
adjoint of an operator O is denoted O', except where an asterisk is used to
emphasize that a vector or matrix of operators is not transposed. +H.c. or
+c.c. at the end of an expression indicates the addition of the Hermitian
adjoint or complex conjugate of the foregoing terms. A bar on a Dirac
spinor u is defined by # = uff. The antifield of a field y in the Batalin—
Vitkovisky formalism is denoted v+ rather than y* to distinguish it from
the ordinary complex conjugate or the antiparticle field.

Units are usually used with % and the speed of light taken to be unity.
Throughout —e is the rationalized charge of the electron, so that the fine
structure constant is a = % /4n ~ 1/137.

Numbers in parenthesis at the end of quoted numerical data give the
uncertainty in the last digits of the quoted figure. Where not otherwise
indicated, experimental data are taken from ‘Review of Particle Properties,’
Phys. Rev. D50, 1173 (1994).



15
Non-Abelian Gauge Theories

The quantum field theories that have proved successful in describing the
real world are all non-Abelian gauge theories, theories based on principles
of gauge invariance more general than the simple U(1) gauge invariance
of quantum electrodynamics. These theorics share with electrodynamics
the attractive feature, outlined at the end of Section 8.1, that the existence
and some of the properties of the gauge fields follow from a principle
of invariance under local gauge transformations. In electrodynamics,
fields wa(x) of charge e, undergo the gauge transformation y,(x) —
explie, A(x))pa(x) with arbitrary A(x). Since é,yn(x) does not transform
like 1,(x), we must introduce a field A,(x) with the gauge transformation
property A,(x) — A,u(x)+3,A(x), and use it to construct a gauge-covanant
derivative 8,pn(x)—iend,(x)Pa(x), which transforms just like y,(x) and can
therefore be used with 1,(x) to construct a gauge-invarjant Lagrangian. In
a similar way, the existence and some of the properties of the gravitational
field g, (x) in general relativity follow from a symmetry principle, under
general coordinate transformations.” Given these distinguished precedents,
it was natural that local gauge invariance should be extended to invariance
under local non-Abelian gange transformations.

In the original 1954 work of Yang and Mills,' the non-Abelian gauge
group was taken to be the SU(2) group of isotopic spin rotations, and
the vector fields analogous to the photon field were interpreted as the
fields of strongly-interacting vector mesons of isotopic spin unity. This
proposal immediately encountered the obstacle that these vector mesons
would have to have zero mass, like photons, and it scemed that any such
particles would already have been detected. Another problem was that,
like all strong-interaction theorics at that time, there was nothing that

* Of course, both local gauge invariance and gencral covariance can be realized in
a trivial way, by taking A,(x) and g,(x) to be non-dynamical c-number functions
that simply charactcrize a choice of phase or coordinate system, respectively. These
symmetries become physically significant when we treat 4,(x) and g;..(x) as dynamical
fields, over which we integrate in calculating S-matrix clements.

1



2 15 Non-Abelian Gauge Theories

could be done with it; it seemed that the large coupling constant of the
theory would preclude any use of perturbation theory.

Gauge theories were soon generalized to arbitrary non-Abelian gauge
groups,® and their quantization continued to be studied mathematically,
notably by Feynman, Faddeev and Popov,* and De Witt®> in part as
a warming up exercise for the harder problem of quantizing general
relativity. They showed that the naive Feynman rules obtained by simply
inspecting the Lagrangian need to be supplemented by additional ‘ghost’
loops. However, the physical relevance of these theories did not begin to
be understood until the late 1960s. It eventually turned out that all of
the observed interactions of elementary particles are generated by vector

fields associated with local gauge symmetries; the corresponding spin 1
partic]eg are either very henvy, asg a result of a spontaneous breakdown of
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the gauge symmetry, or are ‘trapped’, as a result of the rise of the coupling
constant at long distances. These matters will be the subjects respectively
of Chapters 21 and 18. In this chapter we shall explore the formulation
of the non-Abelian gauge theories, and the derivation of their Feynman
rules.

15.1 Gauge Invariance

We assume that the Lagrangian of our theory is invariant under a set of
infinitesimal transformations on the matter fields p/(x)

Sp(x) = 18 (x)(t)e ™ pm(X) (15.1.1)

with some set of independent constant matrices™ t,, and with real in-
finitesimal parameters ¢*(x) which (as for gauge transformations in elec-
tradunamiirol ara allamesd 4 Asmand An macitinan in crmanatitvaas e acortma
uuu_yua.uu\..)) div dllVYwed LY \.IU}_JU]J\.I il }_JUDII.IUII 111 DPCLUUI.IJ.].J.U. Y¥ow Aodulllv
that these symmetry transformations are the infimitesimal part of a Lie
group; as shown in Section 2.2, this requires that the ¢, obey commutation

relations
[ta, tﬁ] == icyaﬁr? i (15.1.2)

where C7,p are a set of real constants, known as the structure constants
of the group. The antisymmetry of the commutator immediately tells us

** In this book we shall generally label symmetry generators with letters «, 3, etc. from
the beginning of the Greek alphabet, in order to keep these labels distinct from the
indices u, v, etc. from the middle of the Greek alphabet that arc used to label spacetime
coordinates. Later, in dealing with broken symmetries, we will often use letters g, b,
etc. from the beginning of the Latin alphabet to label generators of spontaneously
broken symmetries, and letters i, j, etc. from the middle of the Latin alphabet to label
generators of unbroken symmetries.
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that the structure constants are similarly antisymmetric:

Clag = —CVp, . (15.1.3)
Also, from the Jacobi identity
0= [[ta,fﬁ],fy] + ]:[t},,fm],fﬁ] + [[tﬁ,fy],ta] (15.1.4)
we see that the Cs satisfy the further constraint
0=C2yC%, + C%uC%p + C°3,C%. (15.1.5)

Any set of constants C7,4 that satisfy Eqs. (15.1.3) and (15.1.5) define at
least one set of matrices t*, :

that satisfy the commutation relations with structure constants
¥
Clap
A A .y A
[t a,r '6] —_ IC [xﬁt ¥ (15.1.7)

This 1s known as the ‘adjoint’ (or ‘regular’) representation of the Lie
algebra with structure constants C*g,.

For example, in the original Yang-Mills theory, the matter fields were
the doublet consisting of proton and neutron fields y, and y,:

o= ()

and the ¢, with « = 1,2, 3 were the isospin matrices

t_lOl r—l 0 —i t—ilo

Y2810/ PTa2li o) BTa2lo0 1)
These satisfy the commutation relations (15.1.2) with

Cﬂ')aﬁ = Eyaff ,

where as usual €45 is +1 or —1 if y,a, B is an even or an odd permutation
of 1, 2, 3, respectively, and vanishes otherwise. We recognize this as
the same as the Lie algebra (2.4.18) of the three-dimensional rotation
group; the matrices t, here furmish what we recognize as the spin 1/2

representation of this Lie algebra. The matrices (15.1.6) of the adjoint
representation are here (in a basis with rows and columns labelled 1,2,3):

00 0 00 i 0 — 0
=100 —i|, 4= 00 0/, tt=]11 0 0|.

0 i 0 —i 0 0 0 00
This is the spin 1 representation of the Lie algebra of the rotation group.

Now consider what is needed to make the Lagrangian invariant under
the transformations (15.1.1). If there were no derivatives acting on the
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fields, the task would be easy — any function of the matter fields that was
invariant under the transformation (15.1.1) with ¢* constant would also
be invariant with * arbitrary real functions of the spacetime coordinates.
This is not the case if the Lagrangian involves derivatives of the fields (as it
must), because with position-dependent functions €*(x), the derivatives of
the matter fields do not transform like the fields themselves. Differentiating
Eq. (15.1.1) gives

8 (2upe(x)) = 1)) ™ (Bupm(x)) + i(04€* () ) (t2)r "pmlx) . (15.18)

To make the Lagrangian invariant, we need a field A%, whose transfor-
mation rule involves a term Jd,¢%, which can be used to cancel the second
term in Eq. (15.1.8). Since this field carries an a-index, we would expect
it also to undergo a matrix transformation like Eq. (15.1.1), but with #,
replaced with the adjoint representation matrices (15.1.6). Let us therefore
tentatively take the transformation relation of these new ‘gauge’ fields as

sA*, =2, + ie*(t* )P4,
or, using Eq. (15.1.6),

3AF, =68, + CPuetd?,. (15.1.9)
This allows us to construct a ‘covariant derivative’:T
(Dup(x)), = dupe(x) — i AP (x)tg)e ™Mpm(x) . (15.1.10)

As planned, the term d,¢f in the transformation of AP, in the second term
of Eq. (15.1.10}) cancels the term proportional to d,, ¢# in the transformation
of the first term, leaving us with

5(DMP)/—I€ (tot) pwm_lc you € *A? ( ) " Pm
+ A4 P (I}’)J’ (tudm Vn
or, using Eq. (15.1.2),

S(Dup)e = i€ (ta)e " (Dy)m (15.1.11)

so that D,y transforms just like 1 itself.

We also need to worry about derivatives of the gauge field. In order
to eliminate the term &,8,¢f in the transformation of d,4%,, we antisym-
metrize with respect to u and v, just as in electrodynamics. However, we
still have terms in the transformation of 8,4#, — 8,48, proportional to
first derivatives of e(x), arising from the second term in Eq. (15.1.9). The
easiest way to construct a ‘covariant curl’, F?,, in whose transformation

t As discussed in the next section, in writing Eq. (15.1.10) we are tacitly supposing that
any coupling-constant factors like the electric charge are included in the ¢3, and hence
also in the structure constants.
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rule all such derivatives of e(x) cancel, is to consider the commutator of
two covariant derivatives acting on a matter field y:

([DWD;L]IP)/ = —i(ty)r "F¥ytom , (15.1.12)
where
Fl = 6,47, — 8,47, + Clypd*, AP (15.1.13)

Eq. (15.1.12) makes it obvious that F7,, must transform just like a matter
field that happens to belong to the adjoint representation:

SFB,, =i (th )P Yy, = *CPuFTy, . (15.1.14)

The reader may check by direct calculation (using the relation (15.1.5))
that the quantity F*,, defined in (15.1.13) actually has the simple trans-
formation rule (15.1.14),

For some purposes, it is useful to know that these infinitesimal gauge
transformations can be upgraded to finite transformations. A group
element can be parameterized by a set of real functions A%(x) so that it
acts on a general matter field y,(x) through the matrix transformation

Pe(x) = yealx) = [exp (itA(X)) |, wmlx). (15.1.15)
We want the covarjiant derivative to transform in the same way:
Oy — ity A% A YA = explityA™) (O — ita AR (15.1.16)

s0 we must impose on A%, the transformation rule A7 — A7, with

0 explitgAFy — ity exp(it,A") AL, = —i exp(it,A*)tgA”
or in other words

ta A% ya = expli tﬁAﬁ)th“H exp(—itﬁAﬁ) —i [a_u exP(itﬁAﬁ)} exp(—itﬁ/\ﬁ) .
(15.1.17)
Eqgs. (15.1.15) and (15.1.17) reduce to the previous transformation rules
(15.1.1) and (15.1.9) in the limit where A%(x) is an infinitesimal €*(x).
From Eq. (15.1.17), we can see that by a suitable choice of A#(x), it
is always possible to make A% A(x) vanish at any one point, say x = z.
(Simply take A%(z) to vanish, and dA%(x)/dx#* = —A%,(x) at x = z.) Also,
it is always possible to choose AP(x) so that any one spacetime component
of A%, (x) vanishes for all o everywhere in at least a finite domain around
any given point. For instance, to make A*35(x) vanish, we must solve the
set of ordinary first-order differential equations for the parameters A#(x):

83 exp(ityAP) = —i exp(itgAP) 1, A%3 (15.1.18)

which always have a solution in at least a finite domain around any
ordinary point.
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However, in general it is not possible to choose A*(x) to make all four
components A*,4(x) vanish in a finite region. For this purpose, we would
have to be able to satisfy the partial differential equatjons

8, exp(ityAF) = —i exp(itgAf) 1, A%, (15.1.19)

which cannot be solved unless certain integrability conditions are satisfied.
In particular, if A", A(x) vanishes everywhere then so does F*,,A(x), but
since the field strength transforms homogeneously, F*,,A(x) can vanish
only if F*,,(x) does. A gauge field A% ,(x) is called a “pure gauge’ field if
there exists a gauge transformation which makes it vanish everywhere. It is
not difficult to show that the condition that F*,, should vanish everywhere
is not only necessary but also sufficient for A%,(x) to be expressible in any
simply connected region as a pure gauge field.®

* % ok

There is a deep analogy between the construction here of objects that
transform simply under gauge transformations and the construction in
general relativity of objects that transform covariantly under general co-
ordinate transformations. Just as we use the gauge field to construct
covariant derivatives Dy, of matter fields with the same gauge trans-
formation properties as the matter fields themselves, so we use the affine
connection ['%,;(x) to construct covariant derivatives of tensors 7°7" ;..

Tpmic---;v =0, TP + e, T;Lm;c--- + r'uvrchmu"- )

which are themselves tensors. Also, from the derivatives of the gauge
field we constructed a field strength F*,, with the gauge transformation
property of a matter field belonging to the adjoint representation of the
gauge group; correspondingly, from the derivatives of the affine connection
we may construct a quantity:

; art

or”
R 'Juwc =

pv Ul norA 4
dx¥ axv 1 e = T
which transforms as a tensor, the Riemann Christoffel curvature tensor.
The commutator of two gauge-covariant derivatives D, and D, may
be expressed in terms of the field-strength tensor F*,,; similarly, the
commutator of two covariant derivatives with respect to x* and x* may

be expressed in terms of the curvature:

VR »

A 2... j_ e Z...
T weviE T gy — R GVE T e +or - Ro‘uw‘: T . =

The necessary and sufficient condition for the existence of a gauge in which
the gauge field vanishes in a finite simply connected region is the vanishing
of the field-strength tensor, and the necessary and sufficient condition for
the existence of a coordinate system in which the affine connection vanishes
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in a fimte simply connected region is the vanishing of the Riemann-
Christoffel curvature tensor. The analogy breaks down in one important
respect: 1n general relativity the affine connection is itself constructed from
first derivatives of the metric tensor, while in gauge theories the gauge
fields are not expressed in terms of any more fundamental fields.

15.2 Gauge Theory Lagrangians and Simple Lie Groups

The transformation rules of the gauge-field tensor F*,, and the matter
fields  and their gauge-covariant derivatives do not involve the deriva-
tives of the transformation parameters €*(x), so if the Lagrangian is con-
structed solely from these ingredients, and if it is invariant under global
transformations with €* constant, then it 1s invariant under gauge trans-
formations with general position-dependent ¢*(x). We therefore assume
that the Lagrangian satisfies these conditions: that is,

L =L, Dy, DDy, - [ F*,, D F% ) (15.2.1)
with the invariance condition:

" + 5 ) (D)

+ #D Do) i(ta)/™ (DyDypm) + - + aiiv ClaFy

+ 5—5%;cﬁyappf“"fuﬂ +:0=0. (15.2.2)

On the other hand, the Lagrangian may not depend on the gauge field it-
self, except insofar as it appears in F*,,, and in gauge-covariant derivatives
D,,. In particular, a mass term — { m“,g A,,A4# is ruled out.

We shall concentrate now on the terms in the Lagrangian that depend
only on F*,,. Just as in electrodynamics, for any massless particle of
unit spin the Lagrangian must contain a free-particle term quadratic in
0,A% — 6,4%,, and gauge invariance then dictates that this free-particle
term should appear as part of a term quadratic in the field-strength tensor
F?%,,. Lorentz invariance and parity conservation dictate its form as

Ly=— 1 gyyF* FF (15.2.3)
with a constant matrix g,g. If we do not assume parity (or GP or T)
conservation, then we may also include in the Lagrangian a term
L= — 4 Oy " F* FP

with another constant matrix ,5. This term is actually a derivative, and
therefore does not affect the field equations or the Feynman rules. Such a
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term would, however, have non-perturbative quantum mechanical effects,
to be discussed in Section 23.6.

Before going on to consider the properties of the matrix gug, it is worth
drawing attention to the fact that it is not possible to introduce a kinematic
term for the gauge field A%,(x) without also including interactions, the
terms in Eq. (15.2.3) arising from the quadratic part of the field strength
F%,, defined by Eq. (15.1.13). This is one more respect in which non-
Abelian gauge theories resemble general relativity, where the kinematic
part of the Lagrangian for the gravitational field is contained in the
Einstein—Hilbert Lagrangian density —\/ER/S::G, which also contains
self-interactions of the field. The reasons in both cases are similar: the
oravitational field interacts with itself because it interacts with anything
that carries energy and momentum, and the gauge field interacts with
itself because it interacts with anything that transforms according to a
non-trivial representation (in this case the adjoint representation) of the
gauge group. This is in contrast to the case of electrodynamics, where the
photon does not carry electric charge, the quantum number with which
it interacts, and it is consequently possible to introduce a kinematic term
—%F w F# for the electromagnetic field that does not entail interactions.

The numerical matrix g, may be taken symmetric, and must be taken
real to give a real Lagrangian. In order for this term to satisfy the
gauge-invariance requirement (15.2.2), we must have for all J:

gup P CP s F = 0.

In order for this to be true without having to impose any functional
relations among the Fs, the matrix g,g must satisfy the condition:

gaﬁcﬁ'y@ = = gyﬁcﬁocé . (15.2.4)

There is one more important condition on the matrix g,g. Just as in
quantum electrodynamics, the rules of canonical quantization and the
positivity properties of the quantum mechanical scalar product require
that the matrix gy in the Lagrangian (15.2.3) must be positive-definite.
(That is, gugu*u? is positive for all real u, and vanishes for some real u
only if u* = 0 for all «.) This is analogous to the requirement that in the
kinematic Lagrangian —1Zd,$3#¢ — im*¢?* for a real scalar field ¢, the
constant Z must be positive-definite.

These requircments on the matrix g,p have far reaching implications.
They form one of a set of three equivalent conditions:

a: There exists a real symmetric positive-definite matrix g, that satisfies
the invariance condition (15.2.4).

b: There is a basis for the Lic algebra (that is, a set of generators 7, =
S apty, with & a real non-singular matrix) for which the structure
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constants C%_ are antisymmetric not only in the lower indices # and
v but in all three indices «, § and y. (In this basis i1t 18 convenient to
drop the distinction between upper and lower indices «, §, etc., and
write Cam, in place of C »)

c: The Lie algebra 1s the dlrect sum of commuting compact simple and
U(1) subalgebras.”

Appendix A of this chapter presents a proof of the equivalence of the
conditions a, b, and ¢.”

Before going on to discuss the physical implications of this result, it will
be useful to say a bit more about the condition of compactness. We will
not use this here, but a compact Lie algebra consists of the generators of
a compact Lie group: one for which the invariant volume of the group
is finite. For instance, the rotation group is compact; the Lorentz group
is not. As a simple example of a simple Lic algebra that is not compact,
consider the commutation relations

[t,t2] = —its, [t2,t3] =ity, [t3,0] =it2.

The structure constant here is real, but not completely antisymmetric; its
non-vanishing components are

Cla=-Cly=—-1 Cluy=-Clp=1, Ch=-Cp=1.
The metric given by Eq. (15.A.10) 1s here diagonal, with elements:
g1t =gn=-—gy=-2.

This is not a positive matrix, so the Lie algebra i1s not compact. It is in
fact the Lie algebra of the non-compact group O(2,1), the Lorentz group
in two space and one time dimensions.

" Some definitions: A subalgebra # of a Lie algebra % is a linear space, spanned by
certain real linear combinations f, = % ,f, of the generators f, of ¥, such that 3 is
itself a Lie algebra, in the sense that the commutators of the ¢, with each other are
of the form [t.t,] = ick, it A subalgebra # is called invariant if the commutator of
any element of the whole algebra % with any ¢lement of the subalgebra 5 is in the
subalgehra . A simple Lic algebra is one without invariant subalgebras. A U(1)
subalgebra of % is one with just a single generator that commutes with all generators
of the whole algebra ¥. A semi-simple Lie algebra is one that has no invariant
Abelian subalgebras, ie., invartant subalgebras whosc gencrators all commute with
cach othcr. Scmi-simple Lic algebras are dircct sums of simple (but not U(l)) Lie
algebras. A simple or semi-simple Lie algebra is said to be compact if the matrix
Tr{t* 143} = —C74s5C%, is positive-definite. The meaning and importance of the
properties of simplicity and compactness will be discussed further below. In saying
that a Lie algebra % is a direct sum of subgroups .3, it is meant that it is possible to
find a basis for ¥ with generators t,, for which the structure constants take the form

Cf nambh = 5#‘m5mnc ﬂ)rab s

where C™", is 1he structure constani of the subalgebra ..
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Two sets of generators that differ by a real non-singular linear transfor-
mation are considered to span the same Lie algebra, and generate the same
group. This is not true for complex linear transformations of generators.
In particular, any simple Lie algebra can be put into a compact form by
a change of phase of the generators in a suitable basis. For instance, for
the Lie algebra of the above example, it is only necessary to define new
generators ¢| = ity, t = ita, t; = t3, for which the commutation relations
are

[t 6] =ith, [thi3) =it], [.6]=it.

The structure constant is now real and totally antisymmetric: C%,; = eap.-
Here g.p = 204, and the algebra is compact. We recognize this, of course,
as the familiar algebra of the compact group O(3) of rotations in three
dimensions. To see that this is always possible for any simple Lie algebra,
note that the matrix g, defined by Eq. (15.A.10) is real, symmetric, and
non-singular, so that by a real orthogonal transformation it may be put
in a diagonal form with non-zero clements along the main diagonal. It is
then only necessary to multiply all the generators that correspond in this
basis to the negative diagonal elements of g, by factors i.

We note without proof that the finite-dimensional representations of
compact Lie groups are all unitary, and the finite-dimensional repre-
sentations of compact Lie algebras are correspondingly all Hermitian.
Furthermore, it is easy to see that the only Lie algebras that can have
any non-trivial representation by independent finite-dimensional Hermi-
tian matrices ¢, are direct sums of U(1) and compact simple Lie algebras.
To show this, we may simply define

8ap = Tt{taty) .

This matrix is obviously positive-definite, because g pu*uf = Tr{(u*t,)*}
is positive for any real u* and vanishes only if u*t, = 0, which is not
possible unless all #* vanish because the ¢* are assumed independent.
Furthermore this g,z satisfies the invariance condition (15.2.4), as can be
seen by multiplying the commutation relation (15.1.2) with t; and taking

the trace; this gives
iCT oy Tr{tytsy = Tr {{ta, tgl ts} = Tr {tstaty — tytats} ,

which is obviously antisymmetric in f and 8. Having verified a, we can
rely on the above theorem to infer condition ¢, so that the Lie algebra
must be a direct sum of compact simple and U(1) subalgebras.

Let’s now return to the physics of gauge theories. In this section we have
inferred the existence of a positive symmetric real matrix g, that satisfies
the invariance condition (15.2.4), from the necessity of constructing a
suitable kinematic term in the Lagrangian for the gauge field, and in
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Appendix A of this chapter we have shown that this result is equivalent to
a condition on the Lie algebra, that it is a direct sum of compact simple
and U(1) subalgebras. For our purposes, the important thing about this
result is that the simple Lie algebras are all of certain limited types and
dimensionalities. For instance, it is easy to see that these is no simple Lie
algebra with less than three generators, because in one or two dimensions
there can be no non-zero totally antisymmetric structure constants with
three indices, With three generators, an invariant subalgebra can be
avoided by taking C3 |3, C?31, and C'53 all non-zero. In the basis in which
the structure constant is real and totally antisymmetric, there is obviously
only one possibility:

Caﬁ'}! - CE(xﬁ‘P -

Here ¢ is an arbitrary non-zero real constant, which can be eliminated by
a change of scale of the generators, {, — f,/c, so the Lie algebra is

[Ta,fﬁ] = i €ypyty .

This may be recognized as the Lie algebra of the three-dimensional
rotation group ({3), and also of the group SU(2) of unitary unimodular
matrices in two dimensions, and was used as a basis for the original
non-Abelian gauge theory of Yang and Mills. Continuing in the same
way, it can be shown that there are no simple Lie algebras with 4, 5, 6, or
7 generators, one with 8§ generators, and so on. Mathematicians {notably
Killing and E. Cartan) have been able to catalog all simple Lic algebras.
The compact forms of the simple Lie algebras form several infinite classes
of algebras of the ‘classical’ Lie groups — the unitary unimodular, unitary
orthogonal, and unitary symplectic groups — plus just five exceptional
Lie algebras. This catalog is presented in Appendix B of this chapter.

It is also shown in Appendix A that under the equivalent conditions a,
b, or ¢, the metric takes the form

Bmanh = g;zémnéab (1525)

with real g,,, where m and n label the simple or U{1) subalgebras, and
a and b label the individual generators of these subalgebras. We can
eliminate the constants g, > by a rescaling of the gauge fields

I At = =1 qH
Amﬂ _’A%a—gm Ama:

(15.2.6)

but then in order to keep the same formulas {15.1.10) and (15.1.13) for
D,y and Fe*', we must also redefine the matrices ¢z, and the structure
constants

tma — Ema = Lmlma » (1527)
Cop = Cliy = gnClop (15.2.8)

cab cah *
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That is, we can always define the scale of the gauge fields (now dropping
the tildes) so that g, in Eq. (15.2.5) is unity:

gup = Oup , (15.2.9)

but then the transformation matrices ¢, and the structure constants C,g,
contain an unknown multiplicative factor g, for each simple or U(1)
subalgebra. These factors are the coupling constants of the gauge theory.
Alternatively, it is sometimes more convenient to adopt some fixed though
arbitrary normalization for the t, and structure constants within each
simple or U(1) subalgebra, in which case the coupling constants appear
in the gauge-field Lagrangian (15.2.3) as the factors g,.* in Eq. (15.2.5).

15.3 Field Equations and Conservation Laws

Using Eq. (15.2.9) for the matrix g,g in Eq. (15.2.3), the full Lagrangian
density is

& = — 1 Fpu F™ + @ u(p, D) (15.3.1)

where in the absence of gauge fields %y (1, é,p) would be the ‘matter’
Lagrangian density. We could, in principle, include a dependence of s
on Fy,, as well as higher covariant derivatives D, D,yw, D, F,,, etc, but
we exclude these non-renormalizable terms here for the same reason as in
electrodynamics: as discussed in Section 12.3, such terms would be highly
suppressed at ordinary energies by negative powers of some very large
mass. For this reason the standard model of the weak, electromagnetic
and strong interactions has a Lagrangian of the general form (15.3.1).
The equations of motion of the gauge field are here

' 0.
0, ———— =—0,F =
H 0(0,A4) o 0 Ay
L0
= _F./vﬂCyaﬁAﬁ” —1 ﬁ tatp
and so
Ot = =44, (15.3.2)
where #,” is the current:
v v . aﬂ'gf)f\/f
jz = “’“F}' FcyaﬁAﬁp —1 mfoﬂp ; (15.3.3)

The current #," is conserved in the ordinary sense

& fs" =0, (15.3.4)
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as can be seen either from the Euler-Lagrange equations for y and
the invariance equivalent (15.2.2) or, more easily, directly from the field
equations (15.3.2).

The derivatives in Egs. (15.3.2) and (15.3.4) are ordinary derivatives,
not the gauge-covariant derivatives D,, so the gauge invariance of these
equations is somewhat obscure. It can be made manifest by rewriting
Eq. (15.3.2) in terms of the gauge-covariant derivative of the field strength

DiF," = 0;Fy" — i(t})ay AgAF, "

= 1 F — CoppApi 1Y . (15.3.5)
Then Eq. (15.3.2) reads
D#Fg‘uv = _Jav 5 (15.3.6)
where J,” is the current of the matter fields alone
0P\
=i . 15.3.
J IaDvw e (15.3.7)

This is gauge-covariant, if ¥, is gauge-invariant. Also, by operating on
Eq. (15.3.6) with D,, using the commutation relation

[Dy, D, )F;” = _i(tA?)aﬁF?vﬂFﬁpa = —CyapFpuuFs"™
we see that J,* satisfies a gauge-covariant conservation law
D,J,S =0, (15.3.8)

rather than the ordinary conservation law (15.3.4) obeyed by the full
current #,". Also, it is straightforward (using Eq. (15.1.5)) to derive the
identities:

DuFav,t'i'Dv Foc/lv"‘DlFatpv =0, (1539)

which hold whether or not the gauge fields satisfy the field equations.

These results serve to underscore the profound analogy mentioned in
Section 15.1 between non-Abelian gauge theories and general relativity.
In general relativity there is a matter energy-momentum tensor TV,
analogous to J®, which satisfies a generally covariant conservation law
TV, =0, and stands on the right-hand side of the Einstein field equations
in their generally covariant form, R*, — %6” R = —8xGT",. However,
T, is not conserved in the ordinary sense: 0, T", does not vanish. On
the other hand, moving the non-linear terms on the left-hand side of the
Einstein equation to the right-hand side gives a field equation®

(k=L ok)  —saoe,.

) LINEAR
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where 1", is the non-tensor

1 1
v, =T —|-—-F(R" _—5"R) ,
g # 7 8rG A2 NONLINEAR

analogous to #,". Like #,', ', 18 conserved in the ordinary sense
Vv
avl’ H = 0

and may be regarded as the current of energy and momentum:

P, = f"coudz'x )

It contains a purely gravitational term, because gravitational fields carry
energy and momentum; without this term, 17, could not be conserved.
Similarly, #! contains a gauge-field term (the first term on the right
in Eq. (15.3.3)) because for non-Abelian groups (those with C;iﬁ + 0) the
gauge fields carry the quantum numbets with which they interact. Because
#4 is conserved in the ordinary sense, it can be regarded as the current
of these quantum numbers, with the symmetry generators given by the
time-independent quantities

T, =ffa°d3x. (153.10)

(Also, the homogeneous equations (15.3.9) involve covariant derivatives,
just as do the Bianchi identities of general relativity.) In contrast, none of
these complications arises in quantum electrodynamics, because photons
do not carry the guantum number, electric charge, with which they
interact.

154 Quantization

We now proceed to quantize the gauge theories described in the previous
two sections. The Lagrangian density is taken in the form (15.3.1):

L =— % quvFa#v+$M(w:DMW)s (1541)
with
Fouy = OpAay — Oy Auy + Cocﬁ'yAﬁ,uAyv ’
'D,(UP = apw - itO!ACC.H-w .

We cannot immediately quantize this theory by setting commutators equal
to i times the corresponding Poisson brackets. The problem is one of
constraints. In the terminology of Dirac, described in Section 7.6, there is
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a primary constraint that
i
Mpy= —>+ = 154.2
and a secondary constraint provided by the field equation for A9:

0¥ 83’

O 3@uAn) T 9dm

= 0,F,° + F,*CupAg, + J,°

= GILF + 1L, CrpApr + 1,2 =0,  (15.4.3)

where H§ = 0% /0(CoAw) = FL‘O is the ‘momentum’ conjugate to Ay,
with k running over the values 1,2,3. The Poisson brackets of Il and
AL 4+T1,5C, 3 Ag e +J,° vanish (because the latter quantity is independent

of A,"), so these are first class constraints, which cannot be dealt with by

replacing Poisson brackets with Dirac brackets.

As in the case of electrodynamics, we deal with these constraints by
choosing a gauge. The Coulomb gauge adopted for electrodynamics would
lead to painful complications here,” so instead we will work in what is
known as axial gauge, based on the condition

A3 =0, (15.4.4)

The canonical variables of the gauge field are then A,;, with i now running
over the values 1 and 2, together with their canonical conjugates
¥
moo 0%
(00 Ax)
The field 4.9 is not an independent canonical variable, but rather is

defined in terms of the other variables by the constraint (15.4.3). To see
this, note that the ‘electric’ field strengths F,* are

FO=T1,;, F% =04, (15.4.6)

= -—Faﬂf = OgAai — 0;Aa0 + CmﬁyAﬁ(]Ayi . (15.4.5)

so the constraint (15.4.3) reads
— (63)* 40 = &Ly + Ty Coup A + Jo° (15.4.7)

which can easily be solved {(with reasonable boundary conditions} to give
A,V as a functional of II; , Ag, and J.0. (We are using a summation

*In addition to purely algebraic complications, Coulomb gauge (like many other
gauges) has a problem known as the Gribov ambiguity:” even with the condition
that A, vanishes at spatial infinity, for each solution of the Coulomb gauge condition
V' A, = O therc are other solutions that differ by finite gauge transformations. The
Gribov ambiguity will not bother us here, because we quantize in axial gauge where
it is absent, and we shall use other gauges like Lorentz gauge only to generaie a
perturbation series.
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convention, with indices i, j, etc. summed over the values 1 and 2.) It
should be noted that the canonical conjugate to the matter field vy, 1s

0F  0FMm
M0oywr)  ODoyr)
so the time component of the matter current can be expressed in terms of
the canonical variables of the matter fields alone

0%, _
J.d = —i3 Do (tanmwm = —in{ta)tmPm - (15.4.9)

Tty = (15.4.8)

Hence Eq. (15.4.7) defines Am0 at a given time as a functional of the
canonical variables I1,;, Agi, ns, and p,, at the same time.

Now that we have identified the canonical variables in this gauge, we
can proceed to the construction of a Hamiltonian. The Hamiltonian
density 1s

H = y0pAg + 00y — &
= Il (Faoi + 0idswo — CapyApoAyi) + melowy
- l th(]i «0i + i FacijFacij + % Foci3Fo:i3
— L Foa3Fo3 — Zu. (15.4.10)
Using Eqgs. (15.4.4) and (15.4.6), this is

H =Hpy+ ]_[af(aiAC!O - CaByA,BOAyi) + % 1111,
+1 FaijFacij + 1 03440345 — 103A4003Ax , (154.11)

where ) is the matter Hamiltonian density:
V.%QM =Ty 601;:; — EM . (15.4.12)

Following the general rules derived in Section 9.2, we can now use this

Hamiltonian density to calculate matrix elements as path integrals over
Agi, Ty, vy, and 7y, with weighting factor exp(il ), where

I = fd4x [HaiaoAaf + sl — K + € terms] , (15.4.13)

in which the ‘e terms’ serve only to supply the correct imaginary infinites-
imal terms in propagator denominators. (See Section 9.2.) We note that
Egs. (15.4.7) and (15.4.9) give A2 as a functional of the canonical variables,
linear in Il and n,. Inspection of Eq. (15.4.11) shows then {(assuming
¥y to be no more than quadratic in D,y) that the integrand of the
complete action (15.4.13) is no more than quadratic in ITy; and =,. We
could therefore carry out the path integral over these canonical ‘momenta’
by the usual rules of Gaussian integration. The trouble with this proce-
dure is that the coefficients of the terms in Eq. (15.4.13} of second order
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in I1,; are functions of the A,;, so the Gaussian integral would yield an
awkward field-dependent determinant factor. Also, the whole formalism
at this point looks hopelessly non-Lorentz-invariant.

Instead of proceeding in this way, we will apply a trick like that used
in the path integral formulation of electtodynamics in Section 9.6. Note
that if for a moment we think of 4,9 as an independent variable, then
the action (15.4.13) is evidently quadratic in A,g, with the coefficient of
the second-order term A,o(x)Ago(¥) equal to the field-independent kernel
(03)28%(x — ¥). As we saw in the appendix to Chapter 9, the integral
of such a Gaussian over A,(x} is, up to a constant factor, equal to the
value of the integrand at the stationary ‘point’ of the argument of the
exponential. But the variational derivative of the action here is

sy 2 wp
e} (o 4 0
3 A = _aAacO =Jy +0illy + CﬁacynﬁiAyi - 5%140[0 s

so the stationary ‘point’ of the action is the solution of the constraint equa-

tion (15.4.7). Hence, instead of using for A, the solution of Eq. (15.4.7),
" we can just as well treat it as an independent variable of integration.

With A,5 now regarded as an independent variable, the Hamiltonian
[ dx.# is evidently quadratic in I1,;, with the coefficient of the second-
order term Il;{x)IIz;(y) given by the field-independent kernel 16%(x —
¥)0;;. Assuming that the same is true for the matter variable n;, we can
evaluate path integrals over %, and Il,; up to a constant factor by simply
setting n, and Il at the stationary ‘points’ of the action cotresponding
to Eq. (15.4.1):

or CH w
0= — = doywr — ,
(57‘1:; v 57‘5/
~ 51 ~ - ™ -~ Pl . oy a Pl -— ™
U= SIL. OpAgi — 1y — Cidwy + CagpAgodyi = Faoi — Ly .
4]

Inserting these back into Eq. (15.4.13) gives
1= [ |%u+ § P P

— L FuijFuij — 103450345 + H03A50)
_ f dx & (15.4.14)
where .# 1s the Lagrangian (15.3.1) with which we started! In other words,
we are to do path integrals over wy(x) and all four components of Ay (x),

with a manifestly covariant weighting factor exp(il) given by Eqs. (15.4.14)
and (15.3.1), but with the axial-gauge condition enforced by inserting a
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factor

I1 5(Am3(x)) . (15.4.15)

As long as (04, Og - -+ are gauge-invariant, we have

(T{O408" " }yacuum < f[HdW(x)] [H dAau(x)jl
£.x

040X

X 040p - exp{il + ¢ terms} [0 (4u(x)) , (15.4.16)
X,

with Lorentz- and gauge-invariant action I given by Eq. (15.4.14).

¥k k%

For future reference, we note that the volume element [], , . ddq,(x)
for the integration over gauge fields in (15.4.16) is gauge-invariant, in the
sense that

T 444 wu(x) = [ d4uu(x) (15.4.17)

a '!M !x a ’H’x

where A 4,(x) is the result of acting on A,,(x) with a gauge transformation
having transformation parameters Aq{x). It will be enough to show that
this is true for transformations near the identity, say with infinitesimal
transformation parameters A,{x). In this case,

so the volume elements are related by

11 d4; ou(x) = Det(A") [ | dAuulx).
AT o, X
where A7 is the ‘matrix’;
5/4). Au (-x)
‘SAﬁv(y)

The determinant of 4" s unity to fitst order in A, because the trace Cyy,
vanishes.

In this chapter we shall assume that the volume element [, dyn(x)
for the integration over matter fields is also gauge-invariant. There are
important subtleties here, to which we shall return in Chapter 22, but
as shown there this assumption turns out to be valid in our present
non-Abelian gauge theories of strong and electroweak interactions.

N yx vy = = 0% (x —y) O [5“3 + Caﬁ?i?(x)] '
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15,5 The De Witt—-Faddeev—Popov Method

Our formula (15.4.16) for the path integral was derived in a gauge that is
convenient for canonical quantization, but the Feynman rules that would
be derived from this formula would hide the underlying rotational and
Lorentz invariance of the theory. In order to derive manifestly Lorentz-
invariant Feynman rules, we need to change the gauge.

We first note that Eq. (15.4.16) is {(up to an unimportant constant factor)
a special case of a general class of functional integrals, of the form:

= [H_dqbn(x)] G91Bf[9]] DetF[g],  (155.1)

where ¢n(x) are a set of gauge and matter fields; [T, d¢,(x) is a volume

element; and %[¢] 1s a functional of the ¢,(x), satisfying the gauge-
invariance condition:

G2l [ [ depsntx) = 91 [ [ dpn(x) (15.5.2)
X nx

where ¢1.(x) 1s the result of operating on ¢ with a gauge transformation
having parameters A,{(x). {Usually when this is satisfied both the functional
% and the volume element are separately invariant, but Eq. {(15.5.2) is
all we need here.) Also, f,[¢;x] is a non-gauge-invariant ‘gauge-fixing
functional’ of these fields that also depends on x and «:; B[f] is some
numerical functional defined for general functions f,(x) of x and «; and
F 1s the ‘matrix’:

_ Ofulpa;x]

#19] 0Ap(¥) =0 (15:35)

(In accordance with our usual notation for functionals of functions or

§

of functionals, Brf [d:-ﬂ is understood to depend on the values taken by
f«l¢;x] for all values of the undisplayed variables & and x, with the
displayed variable, the function ¢,(x), held fixed.) Eq. (15.5.1) does not
represent the widest possible generalization of Eq. (15.4.16); we will see
i Section 15.7 that there is a further generalization that is needed for
some purposes. We start here with Eq. (15.5.1) because it will help to
motivate the formalism of Section 15.7, and it is adequate for dealing with
non-Abelian gauge theories in the most convenient gauges.

We now must check that the path integral (15.4.16) is in fact a special
case of Eq. (15.5.1). In Eq. (15.4.16) the fields ¢,(x) consist of both A,,(x)
and matter fields y,(x), and

fald,p x] = Aplx), (15.54)
Bl = [To(fo09). (15.5.5)
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G[A,p] =exp{il +eterms} 0405 -+ , (15.5.6)
[ ddnx) = {H dw(X)} [H dA;‘(x)} : (15.5.7)
nx {.x &x X

(We are now dropping the distinction between upper and lower indices
o, f,--~) Compatison of Eq. (15.4.16) with Eqs. (15.5.1)(15.5.3) shows
that these path integrals are indeed the same, aside from the factor
Det % [¢]. For the particular gauge-fixing functional (15.5.4), this factor
is field-independent: if A(x) = 0, then the change in A(x) under a gauge
transformation with parameters /,(x) is

A = 230 = [ &y main) s ).
so that here Eq. (15.5.3) is the field-independent ‘matrix’

F axpyld] = 8,5 8:38%x — y) .

The determinant in Eq. (15.5.1) is therefore also field-independent in
this gauge. As discussed in Chapter 9, field-independent factors in the
functional integral affect only the vacuum-fluctuation part of expectation
values and S-matrix elements, and so are irrelevant to the calculation of
the connected parts of the S-matrix.

The point of recognizing the functional integral (15.4.16) for non-
Abelian gauge theories as a special case of the general path integral (15.5.1)
is that in this form we may freely change the gauge. Specifically, we have
a theorem, that the integral (15.5.1) is actually independent (within broad
limits) of the gauge-fixing functional f,[¢;x], and depends on the choice of
the functional B[f] only through an irrelevant constant factor.

Proof: Replace the integration variable ¢ everywhere in Eq. (15.5.1) with
a new integration variable ¢, with A%(x) any arbitrary (but fixed) set of
gauge transformation parameters:

5=/ [H d%(x)] %l ¢al B[f[9]| Det F(pal (15.58)

(This step is a mathematical triviality, like changing an integral [ f(x)dx
to read [0 f(y)dy, and does not vet make use of our assumptions regard-
ing gauge invariance.) Now use the assumed gauge invariance (15.5.2) of
the measure IId¢ times the functional %[¢] to rewrite this as

s=| [quﬁn(x)] S191B[f[gal] Det F[pal (15.59)

Since A%(x) was arbitrary, the left-hand side hete cannot depend on it.
Integrating over A*(x) with some suitable weight-functional p[A] (to be
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chosen below) thus gives

s [ [Hd/\“(x)] plA1= [ lH dwx)] SI4ICIHl,  (15510)

where
ciel= [ [H aN (x) ] pIAIB[f[$al|Det F[pal.  (15511)
X
Now, Eq. (15.5.3) gives
Ofulla)a; X]
X = . 15.5.12
We are assuming that these transformations form a group; that is, we may

PRLIFIgHERVY S PSR g SRy P e T Y S Py Ty

WIIl€ 1€ 1esuit Ul pCllUlllllllB I.IIU gaugc lldllblUlllldLlUll Wllll Pcll.dll.lcl.clb
A%*(x) followed by the gauge transformation with parameters 1*(x) as
the action of a single ‘product’ gauge transformation with parameters
A%x: A, A),

(¢’A)i = qj’K(A,j) . (15.5.13)
Using the chain rule of partial {functional) differentiation, we have then
L‘?J’—-ch,,\‘fi'jv[‘b/\] = /jccx,yz[qby A]‘@}’zﬁy[/\]d“'z , (15514)
where
Ofuldpa;x] 0faldpa; x]
wxnzly A] = —=—"— =t 15.5.15
Pl N =SS =TS (155.15)
and
SAT(z; A, 4)
R p,[A] = ——7—— . 15.5.16
It follows that
Det Z[¢pa] = Det #[p, A] Det Z[A] . (15.5.17)

We note that Det #[¢, A] is nothing but the Jacobian of the transforma-
tion of integration variables from the A%*(x) to (for a fixed ¢) the f,{¢a;x].
Hence, if we choose the weight-function p(A) as

p(A) = l/Det R[A] (15.5.18)
then

Clg] = f [HdA“(x)] Det #1¢, Al B[fl¢al]

=/ [dea(x)] Bifl=C, (15.5.19)
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which is clearly independent of ¢. (Eq. (15.5.18) may be recognized by
the reader as giving the invariant (Haar) measure on the space of group
parameters.) We have then at last

_ Cf[and‘Ff’n x]] [05]
S| Man dA%00)| pIA]

This is clearly independent of our choice of f,[¢:x], which has been
reduced to a mere variable of integration, and it depends on B[f] only
through the constant C, as was to be proved.

Before proceeding with the applications of this theorem, we should
pause to note a tricky point in the derivation. The integrals in the
numerator and denominator of Eq. (15.5.20) are both ill-defined for the
same reason. Since %[¢] is assumed to be gauge-invariant, its integral over
¢ cannot possibly converge; the integrand is constant along all ‘orbits;
obtained by sending ¢ into ¢, with all possible A*(x). Likewise, the
integrand in the denominator is divergent, because p(A)IIdA is nothing
but the usual invariant volume element for integrating over the group,
and this is also constant along ‘orbits’ A — A(A, 4). This divergence can
be eliminated in both the numerator and denominator of Eq. (15.5.20)
by formulating the theory on a finite spacetime lattice, in which case the
volume of the gauge group is just the volume of the global Lie group itself
times the number of lattice sites. Because the gauge-fixing factor B[f]
eliminates this divergence in the original definition (15.5.1) of the left-hand
side of Eq. (15.5.20), we may presume that, as the number of lattice sites
goes Lo infinity, it cancels between the numerator and denominator of the
right-hand side of Eq. (15.5.20).

Now to the point. We have seen that the vacuum expectation value
(15.4.16) in axial gauge is given by a functional integral of the general

R b LY Sy A e S R al

form (15 5.1). Armed with the above theorem, we conclude then that

Hdw(x)] [HdA” ]

oL pLx

(15.5.20)

T{CC'ACOB Yy oC f

X (4Cp - -expl{i] + € terms} B[f[A,w]] Det #[A,y] (15.5.21)

for (almost) any choice of f,[4,y;x] and B[f]. We are now therefore free
to use Eq. (15.5.21) to derive the Feynman rules in a more convenient
gauge.

The path integrals that we understand how to calculate are of Gaussians
times polynomials, so we will generally take

BIf) = exp (—; [ a*x fulfuto)) (15.5.22)
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with arbitrary real parameter £. With this choice, the effect of the factor
B in Eq. (15.5.21) is just to add a term to the effective Lagrangian

1
LEerp =% — Efaf[x . (15.5.23)
The simplest Lorentz-invariant choice of the gauge-fixing function f, is
the same as in electrodynamics:
fa= 0,45 . (15.5.24)

The bare gauge-field propagator can then be calculated just as in quantum
electrodynamics. The free-vector-boson part of the effective action can be
written

1 o4 v Y4 LN
log = — /f d'x [Z(‘?ﬂf‘iav — Oy Aup)(0"As” — 0" Ay")
1
+ E(ﬁﬂAg“)(B,,Ax”) + € terms
1 . v
== [ % Duprr AL A5 0)
where
02 4
@x,ux,ﬁvy = Huv m o (x - y)
1 P2
— (1 — E) Pty 0Mx —y) + eterms
a4 f : 1 i (x—
= (2m)™* / d'p {’}'W(pz — ie) — (1 - f) pupr} Py

Taking the reciprocal of the matrix in square brackets, we find the prop-
agator:

Aa:;t,ﬁv(xay) = (-@_l)a#x,ﬁw
— p£ ¥
= (27) 4/ d*p {nm +(E—1) ;,f ]

This is a generalization of both Landau and Feynman gauges, which
are recovered by taking & = 0 and & = 1, respectively. For & — 0, the
functional (15.5.22) oscillates very rapidly except near f, = 0, so this
functional acts like a delta-function imposing the Landau gauge condition
duA* = O, leading naturally to a propagator satisfying the corresponding
condition 3*A,, g, = 0. For non-zero values of ¢ the functional B[f] does
not pick out gauge fields satisfying any specific gauge condition on the
field A4y, but it is common to refer to the propagator (15.5.25) as being in
a ‘generalized Feynman gauge’ or “generalized £-gauge’. It is often a good

el (x—y)

e (15529
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strategy to calculate physical amplitudes with £ left arbitrary, and then at
the end of the calculation check that the results are {-independent.

With one qualification, the Feynman rules are now obvious: the contri-
butions of vertices are to be read off from the interaction terms in the orig-
inal Lagrangian .#, with gauge-field propagators given by Eq. (15.5.25),
and matter-field propagators calculated as before. To be specific, the
trilinear interaction term in %

— 3 Capy(OpAay — avAcw)AﬁﬂAi’v

corresponds to a vertex to which are attached three vector boson lines. If
these lines carry (incoming) momenta p,q,k and Lorentz and gauge-field
indices ux, vB, py, then according to the momentum-space Feynman rules,

a rnntribiitian naf o
L)}

o . .
tie contriouucn h a vertex to the integrand 1s

a1
v LB W a ¥ AL L\JEL (2 WL

i(27‘£)454(p +q+k)[—i chﬁy] [pv Nua — Pifuy +qattvy = Qutiva +ku’ﬂv “'kvmlp] .
(15.5.26)
Also, the A* interaction term in %,

— 1 ConpClys AupApy AP A5

corresponds to a vertex to which are attached four vector boson lines.
If these lines carry (incoming) momenta p,q,k,Z, and Lorentz and gauge
indices px, vf, py, and ¢4, then the contribution of such a vertex to the
integrand is

i(27r)454(p +qg+k+£) % [ ~ Ceup Cf",ré (Mupve — Huctivp)

_Cfocy Ceéﬁ(’?uaﬂpv - ﬂpv’?ap) — Ceus Ceﬁy(’?pv??pa - f?up?’]av)] .
(15.5.27)

(Recall that the structure constants C,g, contain coupling constant factors,
so the factors (15.5.26) and (15.5.27) are respectively of first and second
order in coupling constants.)

The one complication in the Feynman rules with which we have not
yet dealt is the presence in Eq. (15.5.21) of the factor Det #, which for
general gauges is not a constant. We now turn to a consideration of this
factor.

15.6 Ghosts

We now consider the effect of the factor Det % in Eq. (15.5.22) on the
Feynman rules for a non-Abelian gauge theory. In order to be able to treat
this effect as a modification of the Feynman rules, recall that as shown in



15.6 Ghosts 25

Section 9.5, the determinant of any matrix # ., may be expressed as a
path integral

Det # o f [Hdm;(x)] [H da)a(x)] exp(ilgy) , (15.6.1)
where
oy = / dxdy wl(x) 0p(0) Fanpy - (15.6.2)

Here w; and o, are a set of independent anticommuting classical variables,
and the constant of proportionality is field-independent. (We have to
choose the w, and w; field variables to be fermionic in order to reproduce

the factor Det % ; had we chosen these field variables to be bosonic,
tha nath inteoral f1< A1Y wanld haogyae khaan nranartianal A Tat QZ-'\—l 3y

the path integral (15.6.1) would have been proportional to (Det #)™°.)
The fields @, and w, are not necessarily related by complex conjugation;
indeed, in Section 15.7 we shall see that for some purposes we need to
assume that @, and w, are independent real variables. The whole effect
of the factor Det & is the same as that of including Igy(w,®") in the
full effective action, and integrating over ‘fields’ @ and w*. That is, for
arbitrary gauge-fixing functionals f,(x),

(T{O4 My « f[Hdtp x)] []‘[ dAa#(x]

LT
x [Hdwa(x)dw;m] exp (imoply, 4,0,0°71) 4+, (1563)
ox

where Inyjop is a modified action

Tvop = / ix {g’ - % fu fa} oy . (15.6.4)
The fields wy and w, are Lorentz scalars (at least in covariant gauges)
but satisfy Fermi statistics. The connection between spin and statistics is
not really violated here, because there are no particles described by these
fields that can appear in initial or final states. For that reason, w, and
w, are called the fields of ‘ghost’ and ‘antighost’ particles. Inspection of
Eq. (15.6.2) shows that the action respects the conservation of a quantity
known as ‘ghost number,’ equal to +1 for w,, —1 for w,, and zero for all
other fields.
The Feynman rules for the ghosts are simplest in the case in which the
‘matrix’ & may be expressed as

F =Fs+ 5, (15.6.5)

where J’o is field-independent and of zeroth order in coupling constants,
while % is ficld-dependent and proportional to one or more coupling
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constant factors. In this case, the ghost propagator is just
Aup(%,¥) = (F 5 oy (15.6.6)
and the ghost vertices are to be read off from the interaction term
Igy = / Fxd*y wy(x) Op(YNF axpy (15.6.7)

For instance, in the generalized £-gauge discussed in the previous sec-
tion, we have

and for infinitesimal gauge parameters 4,, Eq. (15.1.9) gives:
AR Al AR o 1 AR
Ay, = Ay T 0 Ay T Loypdpg A,
so that
53,45 (x)
F — “ gk
BT s i
%
=1 6%x — iy '} 4oy _
0640~ 9) + Cap 5 [A},[x) 54 (x y)} . (15.6.9)
This is of the form (15.6.5), with
(F0)ax py = 16Hx — ¥) 8up (15.6.10)
%
(F Daxpy = =Copyy [ AL x =) - (15.6.11)

From Eqs. (15.6.6) and (15.6.10), we see that the ghost propagator is
Aup(%, ¥) = S2p(2m) f dp (p? — ie)~" &Pt (15.6.12)

so in this gauge the ghosts behave like spinless fermions of zero mass,
transforming according to the adjoint representation of the gauge group.
Using Eqgs. (15.6.7) and (15.6.11) and integrating by parts, we find that the
ghost interaction term in the action is now

a *
Iy = fd4x Copy a% AL ooy . (15.6.13)

This interaction corresponds to vertices to which are attached one outgoing
ghost line, one incoming ghost line, and one vector boson line. If these
lines carry (incoming) momenta p. g, k respectively and gauge group indices
o, 3,y respectively, and the gauge field carries a vector index u, then the
contribution of such a vertex to the integrand is given by the momentum-
space Feynman rules as

i2n)*3*(p +q + k) x ip,Cup, . (15.6.14)
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The ghosts propagate around loops, with single vector boson lines attached
at each vertex along the loops, and with an extra minus sign supplied for
each loop as is usual for fermionic field variables.

The extra minus sign for ghost loops suggests that each ghost field
w, together with the associated antighost field w; represents something
like a negative degree of freedom. These negative degrees of freedom
are necessary because in using covariant gauge field propagators we are
really over-counting; the physical degrees of freedom are the compo-
nents of Af(x), less the parameters A,(x) needed to describe a gauge
transformation.

In summary, the modified action (15.6.4) may be written in generalized
£-gauge as

Imop = _/rd4x ZMOD (15.6.15)
with a modified Lagrangian density:
FEmop = v — %Fﬁvﬂm - 515 (PuANOvAY)
—Cuy 0y + Cop(0,00,) A wg . (15.6.16)

It is important that this Lagrangian is renormalizable (if the matter La-
grangian %'y 1s), in the elementary sense that its terms involve products
of fields and their derivatives of total dimensionality (in powers of mass)
four or less. (The kinematic term —d,w; ¢*w, in Eq. (15.6.16) fixes the
dimensionality of the fields @ and ®" to be mass to the power unity,
just like ordinary scalar and gauge fields.) However, there is more to
renormalizability than power counting; it is necessary also that there be
a counterterm to absorb every divergence. In the next section we shall
consider a remarkable symmetry that will be used in Section 17.2 to show
that non-Abelian gauge theories are indeed renormalizable in this sense,
and that can even take the place of the Faddeev—Popov-De Witt approach
that we have been following,

15.7 BRST Symmetry

Although the Faddeev—Popov-De Witt method described in the previous
two sections makes the Lorentz invariance of the theory manifest, it still
rests on a choice of gauge, and hence naturally it hides the underlying
gauge invariance of the theory. This is a serious problem in trying to
prove the renormalizability of the theory — gauge invariance restricts the
form of the terms in the Lagrangian that are available as counterterms to
absorb ultraviolet divergences, but once we choose a gauge, how do we
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know that gauge invariance still restricts the ways that the infinities can
appear?

Remarkably, however, even after we choose a gauge, the path integral
still does have a symmetry related to gauge invariance. This symmetry
was discovered by Becchi, Rouet, and Stora,'" (and independently by
Tyutin,!!) in 1975, several years after the work of Faddeev and Popov and
De Witt, and is known in honor of its discoverers as BRST symmetry. This
symmetry will be presented more-or-less as it was originally discovered,
as a by-product of the method of Faddeev, Popov, and De Witt, but as
we shall see it can also be regarded as a replacement for the Faddeev—
Popov—De Witt approach.

We have seen in Eqs. (15.6.3) and (15.6.4) that the Feynman rules for
a non-Abelian gauge theory may be obtained from a path integral over
matter, gauge, and ghost fields, with a modified action, which we may
write

Imop = Igpr + Iy = fd4x FMOD , (15.7.1)

Pvop = £ — é%fafm + A, , (15.7.2)
where we have now introduced the quantity
8= [ dy FucpylAvlogl). (1573)
This is for the choice
B[f] o exp (—2—‘6 f d*x fafa) (15.7.4)

of the gauge-fixing functional in Eq. (15.5.21). For our present purposes,
it will be helpful to rewrite B[f] as a Fourier integral:

B[f] = f lHdha(x)] exp [% f hahm] exp {i f d"xfaha} . (1575)

We must now do our path integrals over the field h, (often known as
a ‘Nakanishi-Lautrup’ field'!¢) as well as over matter, gauge, ghost and
antighost fields, with a new modified action

INEW = ] d*x (ff + wyhg + hofy + %ihaha) : (15.7.6)

This modified action is not gauge-invariant — indeed, it had better
not be, if we are to be able to use it in path integrals. However, it is
invariant under a ‘BRST’ symmetry transformation, parameterized by an
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infinitesimal constant 0 that anticommutes with @,, w,, and all fermionic
matter fields. For a given 6, the BRST transformation is

doyp = ity , (15.7.7)
SgAuy = 0Dy = 0[0,04 + CugyApaoy] , (15.7.8)
Sgeo; = —0hy (15.7.9)
dpwy = — 30 Cypywpay (15.7.10)
dohy = 0. (15.7.11)

(Recall that in fermionic path integrals, there is no connection between
and o, so that Eq. (15.7.9) does not need to be the adjoint of Eq. (15.7.10).)
Because h, is BRST-invariant, we could if we like replace the Gaussian
factor exp( %i‘f [ hyhy) in Eq. (15.7.5) with an arbitrary smooth functional
of h,, yielding an arbitrary functional B[f], without affecting the BRST
invariance of the action. However, for the purposes of diagrammatic
calculation and renormalization it will help to leave B[f] as a Gaussian.

In checking the invariance of the action (15.7.1), it will be very useful
first to note that the transformation (15.7.7)—(15.7.11) is nilpotent; that is,
if F is any functional of v, 4, w, »", and A, and we define sF by

ogF = OsF (15.7.12)
then”

dg(sF) =0 (15.7.13)
or equivalently

s(sF)=0. (15.7.14)

It is straightforward to venfy this nilpotence when Jg acts on a single
field. First, acting on a matter field,
Sgsy = ity dg(wap) = — i Copytalwpwyyp — tytgmabwpy
= — 3i Cypytufpw,p + tut gbwewpy

The product m,wg in the second term on the right is antisymmetric in o

and f3, so we can replace t,¢g in this term with %[ra,rﬂ], and this term thus
cancels the first term:

ssip =10. (15.7.15)

*In the original work on BRST symmetry the functional B[f] was left in the form
(15.7.4), so that h, was replaced in Eq. (15.7.9) with —f,/&, and the BRST transfor-
mation was only nilpotent when acting on functions of ¢, and the gauge and matter
fields, but not of ;.
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Next, acting on a gauge field, we have

56-914@” == 59D”(L)a
= ('3“(3960& + Ca’g,}(SgA‘gﬂ(D}, + CmByAﬁp(SB(Uy

= 9( — 3 Capy Oulwpe;) + Capy (Dpop) e,
+Capy CpieAsuoews; — 1Cap,CooeApumsoe)
= ‘9( 1 Capy(0,0)0y + 5Copy (Cuto;Joog
—CoupyCroeAsuetop — %Caﬁycvéffflﬁuwémf) '

The first two terms of the final expression cancel because C,g, is antisym-
metric in § and 7y, and the third and fourth terms cancel because of the
Jacobi identity (15.1.5), so

$$Ag =0. (15.7.16)
Egs. (15.7.9) and (15.7.11) show immediately that
ssw, =0 (15.7.17)
and
sshy, = 0. (15.7.18)
Finally,
0pswy = — 1Cyp. Sp(wpw,)
= 16 (CapyCpoc 050, + CupyCrse Dpapene)
= 10 Cyp,Cyse [ — wswewg + wﬁwawﬁ] .
But wyg commutes with wsw,, so this too vanishes
sswy = 0. (15.7.19)

Now consider a product of two fields ¢y and ¢, either or both of which
may be . A, w, w”, or h, not necessarily at the same point in spacetime.
Then

So(162) = B(s1)d2 + $10(sg2) = 0[(sb1)b2 = b5 ,
where the sign + is plus if ¢ 1s bosonic, minus if ¢ is fermionic. That is,

s(P1p2) = (sp1)d2 = d15¢h .

Since as we have seen Jgp(s¢i) = dp(s¢ps) = 0, the effect of a BRST
transformation on s{¢hi¢p2) 1s

dps(d12) = (s¢1)0(s¢2) T O(s1)(s$2) .
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But s¢ always has statistics opposite to ¢, so moving 6 to the left in the
first term on the right-hand side introduces a sign factor F:

Sos(1dh2) = 8] F (sb1)(sd2) £ (sep1)(s62)] = 0.

Continuing in this way, we see that BRST transformations are nilpotent
acting on any product of fields at arbitrary spacetime points:

Op s(r1gags ) =

Any functional F[¢] can be written as a sum of multiple integrals of such
products with c-number coefficients, so likewise

dp sF[¢p] = OssF[p] = 0. (15.7.20)
This completes the proof of the nilpotency of the BRST transformation.

Now let us return to the verification of the BRST invariance of the
action (15.7.6). First note that for any functional of matter and gauge
fields alone, the BRST transformation is just a gauge transformation with
infinitesimal gauge parameter

Za(x) = Bay(x) . (15.7.21)
Therefore the first term in Eq. (15.7.6) is automatically BRST-invariant:

=

50 f PxP—0. (15.7.22)

To calculate the effect of a BRST transformation on the rest of the action
(15.7.6), note that its effect on the gauge-fixing function is just the gauge

transformation (15.7.21), so
. Ofulx; Asrps] 4
dpfalx; A, =/ — 8w d
of ¥] I N P A

=0 [ Fuplaplopmdy
or in terms of the quantity (15.7.3)
Opfulx; A ] = A (x; A, p, @) . (15.7.23)

(Note that # is a bosonic quantity, so there is no sign change in moving
# to the left here.) Also recall that dyw, = —0h, and dph, = 0. Therefore
the terms in the integrand of the ‘new’ action (15.7.6) other than ¥ may
be written

OyAu+hafo+ 1 = s(wfa + YEwh ) (15.7.24)

or in other words

Ingw = [ dx £+ 5P, (15.7.25)
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where
Y = f dx (0L f o+ LETh) . (15.7.26)

The nilpotence of the BRST transformation tells us immediately that the
term s¥ as well as fd*x % is BRST-invariant.

In a sense the converse of this result also applies: we shall see in Section
17.2 that a renormalizable Lagrangian that obeys BRST invariance and
the other symmetries of the Lagrangian (15.7.25) must take the form
of Eq. (15.7.25), aside from changes in the values of various constant
coefficients. But this is not enough to establish the renormalizability
of these theories. BRST symmetry transformations act non-linearly on
the fields, and in this case there is no simple connection between the
symmetries of the Lagrangian and the symmetries of matrix elements
and Greens functions. Using the external field methods developed in
the next chapter, it will be shown in Section 17.2 that the ultraviolet
divergent terms in Feynman amplitudes (though not the finite parts) do
obey a sort of renormalized BRST invariance, which allows the proof of
renormalizability to be completed.

Eq. (15.7.25) shows that the physical content of any gauge theory is
contained in the kernel of the BRST operator (that is, in a general BRST-
invariant term fd*x # 4+ s¥), modulo terms in the image of the BRST
transformation (that is, terms of the form s¥). The kernel modulo the
image of any nilpotent transformation is said to form the cohomology of
the transformation. There is another sense in which the physical content
of a gauge theory may be identified with the cohomology of the BRST
operator.'? It is a fundamental physical requirement that matrix elements
between physical states should be independent of our choice of the gauge-
fixing function f,, or in other words, of the functional ¥ in Eq. (15.7.25).
The change in any matrix element («)#) due to a change W in W is

3(alB) = i(aldInewlf) = i(x/s8WIB) . (15.7.27)

(We use a tilde here to distinguish this arbitrary change in the gauge-fixing
function from a BRST transformation or a gauge transformation.) We
can introduce a fermionic BRST ‘charge’ Q, defined so that for any field
operator @,

39® =i[0 0, B] = if [Q, Pz,
or in other words,
Q. D] = isD, (15.7.28)

the sign being — or + according as @ is bosonic or fermionic. The
nilpotence of the BRST transformation then gives

0 =—ss® = [Q,[Q, P]7]+ = [Q°, ®]_ .
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For this to be satisfied for all operators @, it is necessary for Q° either
to vanish or be proportional to the unit operator. But Q? cannot be
proportional to the unit operator, since it has a non-vanishing ghost
quantum number"*, so it must vanish:

0’ =0. (15.7.29)
From Egs. (15.7.27) and (15.7.28), we have
3(alf) = (al[Q, 6 W) - (15.7.30)
In order for this to vanish for all changes ¥ in ¥, it is necessary that
(2|@=QIB)=0. (15.7.31)
Thus physical states are in the kv.uel of the mlpo ent operator Q. Two

physical states that d1ffcr only by a state vector in the image of Q that
is, of form Q|- '), evidently have the same matrix element with all other
physical states, and are therefore physically equivalent. Hence independent
physical states correspond to states in the kernel of @, modulo the image
of O — that is, they correspond to the cochomology of Q.

To see how this works in practice, let us consider the simple example of
pure electrodynamics.! Taking the gauge-fixing function as f = d,4* and
integrating over the auxiliary field h, the BRST transformation (15.7.8)—
(15.7.10) is here

sA, = 0w, sw" =0,A%/¢, sow=0. (15.7.32)
We expand the ficlds in normal modes'?
d3 ; ;
. d3 _ . .
o(x) = 2r)3? \/Tipo @)+ e, (157.33)
') = @ [ Ty 1 b (py ]
vl

** Recall that the ghost quantum number is defined as +1 for w,, —1 for @}, and O for
all gauge and matter fields.

T Bgs. (15.6.11) and (15.6.7) show that because the structure constants vanish in electro-
dynamics, the ghosts here are not coupled to other ficlds. Nevertheless, electrodynamics
provides a good example of the use of BRST symmetry in identifying physical states.
Indeed, in analyzing the physicality conditions on ‘in’ and ‘out’ states wc ignore inter-
actions, so for this purpose a non-Abelian gauge theory is treated like several copies
of quantum electrodynamics.

' Just as @*(x) is not to be thought of as the Hermitian adjoint of w(x), b* and ¢” are
not the adjoints of ¢ and b. But since A*(x) is Hermitian, w(x) is Hermitian if Q is.
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Matching coefficients of X on both sides of Eq. (15.7.28) yields

[Q.a*(p)]- = —pPc(p),  [Q. ¢ (p)]- =p"’(p),
[Q.6(p)]+ = pla,(p)/S, [Q.6° (M) =plap)/E, (15.7.34)
[Q.c(p]+ =[Q.<"(p)l+ =0.

Consider any state |yp) satisfying the physicality condition (15.7.31):
Qly)y =0. (15.7.35)

The states |e,y) = e a”(p)|y) with one additional photon then satisfy the
physicality condition Qle, ) = 0if e,p* = 0. Also, the state [p)’ = b*(p)|y)
satisfies

(15.7.36)
At ¥

e

so e +ap,p) = |e,p) + EaQ|y)Y, and is therefore physically equivalent to
le,y). From this we conclude that e* is physically equivalent to e* + ap*,
which is the usual ‘gauge-invariance’ condition on photon polarization
vectors. On the other hand,

Qb*(p)ly) = p*a’(plly) #0,

so b*|y) does not satisty the physicality condition (15.7.31) Also, for any
e, with e¢-p £ 0,

¢ (Ply) = Qe a ™ (p)ly)/e- p

so ¢*|yp) is BRST-exact, and hence equivalent to zero. Thus the physical
Hilbert space is free of ghosts and antighosts.

To maintain Lorentz invariance, we must interpret all four components
of a*(p) as anmhilation operators, in the sense that

0 = a,(p)|0) . (15.7.37)
where |0) is the BRST-invariant vacuum state. But the canonical commu-
tation relations derived from the BRST-invariant action (say, with ¢ = 1)
give

[0,(0), 4} (B)]- = 7,06’ (p— 1) , (15.7.38)

corresponding to the propagator in Feynman gauge. This violates the
usual positivity rules of quantum mechanics, because Eqs. (15.7.37) and
(15.7.38) yield!?

{Olao(p) ag(p')0) = —(0[0) . (15.7.39)

Nevertheless we can rest assured that all amplitudes among physical
states satisfy the usuval positivity conditions, because these states satisfy
Eq. (15.7.31), and for such states the transition amplitudes are the same
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as they would be in a more physical gauge like Coulomb or axial gauge,
where there is no problem of positivity or unitarity.

The Faddeev-Popov-De Witt formalism described so far necessarily
yields an action that is bilinear in the ghost fields w; and w,. This is
adequate for renormalizable Yang-Mills theories with the gauge-fixing
function f, = J,A4%, but not in more general cases. For instance, as
we shall see in Section 17.2, in other gauges renormalizable Yang—Mills
theories need w’w’ww terms in the action Lagrangian density to serve
as counterterms for the ultraviolet divergences in loop graphs with four
external ghost lines.

Fortunately the Faddeev-Popov-De Witt formalism represents only one
way of generating a class of equivalent Lagrangians that yield the same
unitary $-matrix. The BRST formalism provides a more general approach,
that dispenses altogether with the Faddeev—-Popov-De Witt formalism. In
this approach, one takes the action to be the most general local functional
of matter, gauge, w?, w™ and k! fields with ghost number zero that is
invariant under the BRST transformation (15.7.7)(15.7.11) and under any
other global symmetries of the theory. (For renormalizable theories one
would also limit the Lagrangian density to operators of dimensionality
four or less, but this restriction plays no role in the following discussion.)
In the next section we shall prove, in a context more general than Yang—
Mills theories, that the most general action of this sort is the sum of
a functional of the matter and gauge fields (collectively called ¢) alone,
plus a term given by the action of the BRST operator s on an arbitrary
functional ¥ of ghost number —1:

Inewlg, 0, 0", h] = L[] + s W[, 0, 0", H] , (15.7.40)

as for instance in the Faddeev—Popov-De Witt action (15.7.25), but with
s'¥ now not necessarily bilinear in ghost and antighost fields.

By the same argument as before, the S-matrix elements for states that
arc annihilated by the BRST generator @ are independent of the choice
of ¥ in Eq. (15.7.40), so if there is any choice of ¥ for which the ghosts
decouple, then the ghosts decouple in general. In Yang-Mills theories,
such a ¥ is provided by quantization of the theory in axial gauge, so
in such theories ghosts decouple for arbitrary choices of the functional
Y[, w, ", k], not just those choices like (15.7.25) that are generated by
the Faddeev—Popov De Witt formalism.

We can go further, and free ourselves of all dependence on canonical
quantization in Lorentz-non-invariant gauges like axial gauge. Again, take
the action to be the most general functional of gauge, matter, w4, w*4
and h* fields with ghost number zero, that is invariant under the BRST
transformation (15.7.7)15.7.11) and under any other global symmetries
of the theory, including Lorentz invariance. From the BRST invariance
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of the action we can infer the existence of a conserved nilpotent BRST
generator . With the ghost and antighost fields treated as Hermitian,
Q is also Hermitian. The space of physical states is defined as above as
consisting of states annihilated by @, with two states treated as equivalent
if their difference is Q acting on another state. It has been shown that for
Yang-Mills theories this space is free of ghosts and antighosts and has a
positive-definite norm, and that the S-matrix in this space is unitary. '3
This procedure is known as BRST quantization. It has been extended
to theories with other local symmetries, such as general relativity and
string theories. Unfortunately, it seems so far to be necessary to give
separate proofs in each case that the BRST-cohomology is ghost-free and
that the S-matrix acting in this space is unitary. The key point in these
proofs is that, for each negative-norm degree of freedom, such as the time
components of the gauge fields in Yang-Mills theories, there is one local
symmetry that allows this degree of freedom to be transformed away.

% % %k

Although we shall not use it here, there is a beautiful geometric
interpretation'* of the ghosts and the BRST symmetry that should be
mentioned. The gauge fields 4% may be written as one-forms Ay = Agudx*,
where dx# are a set of anticommuting c-numbers. (See Section 5.8.) This
can be combined with the ghost to compose a one-form &, = Ay + w, in
an extended space. Also, the ordinary exterior derivative d = dx* d/0x"
may be combined with the BRST operator s to form an exterior derivative
@ = d + s in this space, which is nilpotent because s* = d” = sd 4 ds = 0.

The next chapter will introduce external field methods, which will be
used along with the BRST symmetry in Chapter 17 to complete the proof
of the renormalizability of non-Abelian gauge theories.

15.8 Generalizations of BRST Symmetry”

The BRST symmetry described in the previous section has a useful gener-
alization to the quantization of a wide class of theories, including general
relativity and string theories. In all these cases, we deal with an action I[¢]
and measure [d¢] =[], d¢" that are invariant under a set of infinitesimal
transformations

¢ — ¢+ 10497 (15.8.1)

* This section kies somewhat out of the book’s main line of development, and may be
omittcd in a first reading.
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This is an abbreviated *De Witt’ notation, with r and A4 including spacetime
coordinates as well as discrete labels, and sums including integrals ovet
these coordinates. For instance, for the gauge transformation (15.1.9}), the
index A consists of a group index « and a spacetime coordinate x, with
e** = ¢%*(x), while the index r consists of a vector index p as well as a
group index « and a spacetime coordinate x, with ¢#*** = 4%,(x); in the
notation of Eq. (15.8.1), the variation d4¢" in the transformation (15.1.9)
reads

gy 4% = 38 L35 y) - CFa T84~ ).
As in the special case of Yang—Mills theories discussed in the previous
section, BRST invariance can be used as a substitute for the Faddeev-
rupuv—ut: Witt formulation of these theories, one that is appucabm cven
where the Faddeev—Popov-De Witt approach fails. Nevertheless, in order
to motivate the introduction of BRST invariance, we shall begin here with
the Faddeev—Popov-De Witt formulation of theories with general local
symmetries, and then go on to consider further generalizations.

By following the same arguments used to derive Eq. (15.5.21), we obtain

the general Faddeev-Popov-De Witt theorem:

o [1461 "9 V15 = [1d9] " BIIGN DertGafuld) VIl (1582)

where V[¢] is an arbitrary functional of ¢” that is invariant under the
gauge transformations (15.8.1}; f4[¢] are a set of gauge-fixing functionals™
of the ¢', chosen so that the ‘matrix’ é4fp[¢] has a non-vanishing deter-
minant, and B[f] is a more-or-less arbitrary functional of the f4 (as for
instance [[4 8(f4)). The constant Q is the volume of the gauge group, and
the constant C is defined (as in Eq. (15.5.19)) by

C= f[df] B[f]. (158.3)

As we have seen, in gauge theories the importance of Eq. (15.8.2) is
that it tells us that the integral on the right-hand side is independent
of the choice of the gauge-fixing functionals f4, and depends on B[f]
only through the constant C. Where some meaning can be given to the
usually infinite group volume (, as in gauge theories on a finite spacetime

*We use the same letters A, B, etc. to label the f4 as the gauge variations 3,4, in
order to emphasize that there must be as many gauge-fixing functionals as there are
independent gauge transformations. However, in some cases like string theory it is
natural to use gauge-fixing functionals f¢ for which, although the index @ runs over
‘as many’ values as the index A on the gauge variations 44, the values taken by these
indices are quite different. No change is needed in the present formalism as long as
we can define f4 = c4,f%, with ¢y, field-independent and non-singular.
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lattice, Eq. (15.8.2) can also have value as a formula for the integral on
the left-hand side.

To define a nilpotent BRST transformation, we must first express the
functional B[f] as a Fourier transform

B[f] = / [dH] exp(ihf4) BIH] , (15.8.4)

where [dh] = [[4dh!. Also, the determinant can be expressed as an
integral over fermionic c-number fields™ w*4 and w?:

Det(5.4f5[4]) o / [doo'] [do] exp (i P 6af3) (158.5)

where [do*] = [[,do*? and [dw] = [ dwd, and as usual ‘o’ means
proportional with field-independent factors. Inserting these in Eq. (13.8.2)
gives a general formula for the gauge-fixed path integral

[ 1491 exp (i1 [41) BU61 Deafalo) VIg)

o / [dg] [dh] [don'] [doo] exp (ilxew[g. b ,0']) BIH] VIg], (1586)
where Ingw 18 the new total action:

Inew[d, by, 0] = I[$] + W fald] + 0 Bl frle] . (15.8.7)

As mentioned in Section 15.6, we can think of the ghost ficlds as
compensation for the fact that we are integrating over all ¢, including
those ¢" that differ only by gauge transformations (15.8.1). Because
ghosts are fermions, loops of ghost lines carry extra minus signs that
allow these loops to compensate for the integration over gauge-equivalent
¢s. But for this to work, there must be just as many ghost fields w? as
there are independent gauge transformations. That is, since the w? are
independent, the gauge transformations (15.8.1) must all be independent.
This is the case for gauge transformations in Yang-Mills theory and
coordinate transformations in general relativity, but not always. The
classic example of a theory with non-independent gauge transformations
is the theory of p-form gauge ficlds, described in Section 8.8. A p-form
A (an antisymmetric tensor of rank p) undergoes a gauge transformation
A - A+d¢p, where ¢ is a (p— 1)-form, and d¢ is its exterior derivative
(the antisymmetrized derivative). Because d is nilpotent, for p > 2 we
can shift ¢ by an amount dy without changing the gauge transformation,
so there is a sort of invariance under gauge transformations of gauge

T1t is common in string thcories and clsewhere to find the ghost fields ™ and o*
written b (or b4) and ¢, respectively.
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transformations, in which the transformation parameters are the (p — 2)-
forms . In such cases we must compensate for introducing too many
ghosts by also introducing ‘ghosts of ghosts’!®> For p > 3 we need to
compensate further by introducing ‘ghosts of ghosts of ghosts, and so on.
In what follows we shall assume that the gauge transformations (15.8.1)
are all independent, so that the ghost fields w? (and the antighosts ©*4)
are all we need.

Although the original symmetry (15.8.1) has been eliminated by the
insertion of the non-gauge-invariant functional B[f], the new total action
has an exact symmetry under the infinitesimal BRST transformations

x— x4 0sy, (15.8.8)

where y is any of the ¢, w?, w?*, or #4; @ is an infinitesimal anticom-
muting c-number; and s is the Slavnov operator

3 d
B _C 4 L A L

= — — . 8.9
éqb" 2(,0 " 7 pe S0l h Fey. (15.8.9)
In Eq. (15.8.9) the subscript L denotes left differentiation, defined so that

if 6F = dyG, then 6. F/6y = G, and f4pc is the structure constant’
appearing in the commutation relation

[68,8¢] = f*Bcda . (15.8.10)

The f4pc are field-independent in non-Abelian gauge theories and in
string theories, though not always, but the BRST formalism is not limited
to this case. A straightforward calculation gives

s=wtd40

2_ 1, [ sOL(0Bg) saL((SAd) ) e r:| or
1 5 c ol ufise] o
_Ew"w o? ‘-j Bcf pE + 0pg’ 3o J Seod (15.8.11)

Hence the condition that the BRST transformation be nilpotent is equiv-
alent to the commutation relation (15.8.10), together with a consistency
condition

fE1se S pis + e’ (51f*pe1/5¢") =0, (158.12)

where the brackets in subscripts indicate antisymmetrization with respect
to the enclosed indices B, C, and D. Eq. (15.8.12) may be derived from
the commutation relation {15.8.10) in the same way as the usual Jacobi

™ For instance, for a gauge transformation acting on a matter field {x) we have
5ﬁyw(x) = lt,gw(x)54(x — y), and so éﬁy ”tp(x) —t,tpp(x)8*(x — y)d*x — z). Hence
in this case we have f*%,, ., = C%,8%x — y)o*(x — 2).
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identity, and takes the place of the Jacobi identity for symmetries with
field-dependent structure constants.

To show that the transformation (15.8.8) is a symmetry of Ingw, we
note (recalling that  anticommutes with «*?) that Eq. (15.8.7) may be
rewritten

INEw[d, b, 00, 0") = I[¢] — (@™ ). (15.8.13)

The term I[¢] is BRST-invariant, because on the fields ¢" a BRST
transformation is just a gauge transformation (15.8.1) with 4 replaced
with fw?, which commutes with all ¢’. The term s(w*4 f4) is BRST-
invariant because BRST transformations are nilpotent.

For several reasons we may need to consider a wider class of actions
than those that can be constructed by the Faddeev—Popov-De Witt ap-
proach, by simply requiring that the action is invariant under the BRST
transformation (15.8.8). As a step toward showing that such an action
yields physically sensible results, we shall now prove the general result (al-
ready used in the previous section) that the most general BRST-invariant
functional of ghost number zero is the sum of a functional of the ¢ alone,
plus a term given by the action of the BRST operator s on an arbitrary

functional ¥ of ghost number —1:
INEW [d)s (ﬂ, U)*, h] = IO[d)] + ) lp[(bs (D, (‘O*:' h] (15'8' 14)

as for instance in the Faddeev—Popov-De Witt action (15.8.13). In brief,
the BRST cohomology consists of gauge-invariant functionals [¢] of the
fields ¢ alone.

To prove Eq. (15.8.14), we note that the BRST transformation (15.8.8)-
(15.8.9) does not change the total number of A4 and w** fields, so if we
expand [ in a series of terms Ix that contain definite total numbers N of
h4 and o' fields, then there can be no cancellations in sI between terms
with different N, so each term must be separately BRST-invariant:

siy =0. (15.8.15)
We next introduce what is called a Hodge operator:
YR

It is straightforward to check the anticommutation relation

A {SL _hA 6
(SCU*A 5hA '
Applying the operator {s,t} to Iy and using Eq. (15.8.15) then gives

stIy = —NlIy , (15.8.18)

{s,t} = —w (15.8.17)
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so each Iy except for Iy is BRST-exact, in the sense that it may be written
as the operator s acting on some other functional. The complete functional
I may therefore be written in the form Iy 4 s¥, with

v ]

ty
¥Y=-— — . 15.8.19
N; N ( )

The term Io is by definition independent of ®*? and A4, and since we
assume it has zero ghost number it must also be independent of w4, as
was to be proved.

To show the invariance of physical matrix elements under changes in
the definition of the gauge-fixing functional W, we define a fermionic
‘charge’ Q, such that the change under a BRST transformation of any
operator @ is

6@ = i[0 0, ®] = if [, D]+ (15.8.20)

with the top or bottom sign in [x,y]y = xy F yx according as & is
bosonic or fermionic. Just as in the previous section, the nilpotence of
the BRST transformation then tells us that Q2 = 0. Matrix elements of
gauge-invariant operators between physical states will be independent of
the choice of W if and only if the physical states |«) and (B] satisfy

Olay = (1@ =0, (15.8.21)

so that physically distinguishable physical states are again in one-to-one
correspondence with elements of the cohomology of 0. The general BRST-
invariant action (15.8.3) will therefore yield physically sensible results for
any gauge-fixing functional ¥ if we can find some ¥, like axial gauge in
Yang-Mills theories, in which the ghosts do not interact with other fields.

If this ghost-free choice of W is inconvenient for actual calculation, as for
instance axial gange is inconvenient because it violates Lorentz invariance,
we can adopt any gauge-fixing ¥ we like, and still be confident that there
1s a unitary S-matrix with no ghosts in initial or final states.

This approach works well in string theories, where so-called light-cone
quantization takes the place of axial gauge. But in other theories like
general relativity there is no way of choosing a coordinate system in
which the ghosts decouple. Such theories may be dealt with by the
BRST-quantization method described at the end of the previous section,
using BRST invariance to prove that the S-matrix in a physical ghost-free
Hilbert space is unitary.

The discovery!” of invariance under an ‘anti-BRST’ symmetry!® showed
that, despite appearances, there is a similarity between the roles of o4
and »*4, which remains somewhat mysterious.
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15.9 The Batalin—Vilkovisky Formalism®

This section will describe a powerful formalism, widely known as the
Batalin—Vilkovisky!® method. It is developed in the Lagrangian frame-
work, but has its roots in the earlier Batalin-Fradkin Vilkovisky
formalism,®® which had been derived in the Hamiltonian framework. (The
two schemes have been proved perturbatively equivalent.') As we shall
see in Section 17.1, the same formal machinery had been developed even
earlier by Zinn-Justin?? in order to deal with the renormalization of gauge
theories. There are at least three areas where this formalism has proved
invaluable:

(1) Up to this point, we have considered only irreducible symmetries with

eeakan Noag A o ca

an algebra that closes in the sense of Eq. (15.8.10). In some theories,
such as supergravity (without auxiliary fields)> the algebra is open: it
closes only when the field equations are satisfied, so that terms appear in
Eq. (15.8.10) proportional to 61/y". Similar terms will also then appear
in the consistency conditions (15.8.12). Eq. (15.8.11) then shows that in
such theories 5° will not vanish, but rather will equal a lincar combination
of the derivatives 61/6x". As we will see in this section, the Batalin—
Vilkovisky method allows us to deal with very general gauge theories,
including those with open or reducible gauge symmetry algebras.

(ii) As mentioned above, essential aspects of the Batalin—Vilkovisky for-
malism were originally developed by Zinn-Justin in order to prove the
renormalizability of gauge theories. The crucial point, to be explained
in Section 17.1, is that although the sum of all one-particle-irreducible
diagrams in a background field does not obey the BRST symmetries of
the original action, it does share one of the key properties of the action,
known as the master equation.

(iif) The Batalin—Vilkovisky method provides a convenient way of analyz-
ing the possible violations of symmetries of the action by quantum effects.
It is used for this purpose in Section 22.6.

The starting point of the Batalin-Vilkovisky formalism is the introduc-
tion of what are called ‘antifields,’ one for each field in the theory. We
let ¥* run over all the fields ¢’, w?, w**, and k4, and for each " we
introduce an external antifield** y}, with the same Bose or Fermi statistics

" This section lies somewhat out of the book’s main line of development, and may be
omitted in a first reading.

** The symbol f is used here in place of the more usual * in order to emphasize that
it has nothing whatever to do with complex conjugation or charge conjugation. In

particular, the antighost field "4 is not the same as the antifield w of oA,
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and opposﬂe ghost number as that of the BRST-transformed field sy”.
That is, yi has the opposite statistics to ¥", and a ghost number equal
to —gh(x") — 1, where gh(y") is the ghost number of ", In the simplest
cases, including Yang-Mills theories and quantum gravity, the original
gauge-invariant action I[¢] is supplemented with a term coupling the
antifields y} to the sy, giving an action

Sl a1 = 11¢] + (s o - (15.9.1)
This satisfies what is called the master equation
_ OrS 018 , (159.2)
Sk oz

with ‘R" and ‘L’ here denoting right- and left-differentiation. To check this,

note that the terms in Eq. (15.9.2) of zeroth order in antifields just yield
the condition of gauge invariance

ord
r A
0= (s¢ )W = 0 54I14], (15.9.3)
while the terms linear in the antifields ¢% provide the condition of nilpo-
tence:
- m 5L(an) _J2.n

0= (sx )_5xT = s2y" (15.9.4)

The xi are external fields, and must be given suitable values before we

use S[x, ¥%] to calculate the S-matrix. For this purpose, we introduce an
arbitrary fermionic functional ¥[y] with ghost number —1, and set?

W [x]
-
Xﬂ 6%" -

(15.9.5)

Then Eq. (15.9.1) becomes

S, 0¥ /oyl =1[d) + (sy")O¥[x) /0" =1[d) + s¥[x] . (15.9.6)

Comparison with Eq. (15.8.14) shows that this is the same as the gauge-
fixed action Ingw[y]. Thus, using the same arguments as in the previous
section, physical matrix elements are not affected by small changes in V.
The action (15.8.7) constructed by the Faddeev-Popov—De Witt method
corresponds to the choice ¥ = —w'4f,, for which ¢} = w*15f4/5¢",
o} =0, and o = —f4.

So far, nothmg new has been accomplished. The first new point is
that the master equation (15.9.2) can be used for more general theories

"It is not necessary to distinguish between left- and right-differentiation here, because
either y" or 8%¥/dy" must be bosonic.
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by letting S[y, ¥¥] be a non-linear functional of the antifields v+, (For
reducible theories we must also include ghosts for ghosts among the x",
as discussed in the previous section, along with their antifields.) As above,
we take the statistics of y¥ to be opposite to that of ¥", and its ghost
number equal to — gh(¥") — 1, and we require S[x, x¥] to be a bosonic
operator of ghost number zero. Because w** and hy have linear BRST
transformations they are unaffected by the complications affecting the
other y" (in this connection, see Section 16.4), so they and their antifields
enter in the action S[y, ¥¥] in the same way as in Eq. (15.9.1). That is,

s=smin[¢ o, ¢t 0t - o] (15.9.7)

where ¢}, o} %, and o), A are the antifields of ¢, w*, and »"4, with ghost
numbers —1, —2, and 0, respectively, and Smin [¢, @ (,b* wi] is some bosonic
functional of ghost number zero. The last term in (15.9.7) has no effect
on the master equation, so Smin satisfies the master equation by itself ™

Because S,,;n has ghost number zero, its expansion in powers of antiftelds
must take the form

Smin = I[¢] + 0 f3[¢) ¢F + 1ol e® fCAB [$) o
+ lode® 17 4[] ¢F dF + 0?00 P 4pc (] ﬁﬁ;twff)
+ lotoP ool fEF ypopld] whok +... . (15.9.8)

The term in the master equation (15.9.2) of zeroth order in antifields (and
hence first order in w?) yields

g
= 15.9.
0= 14191 =57 (1599)
which is just the statement that I[¢] is invariant under the transformation
& — ¢+ A [] (15.9.10)

with e# arbitrary infinitesimals, The term in the master equation propor-
tional to ¢} on the right and w?w? on the left yields

ofs of5
0=1 ;bqu]gﬂ? L rat 28 g st 10
5¢’ fisld], (159.11)

which, when the field equations 61/d¢ = 0 are satisfied, becomes the
commutation relation (with structure constant f € 18[@)) for the transfor-
mation (15.9.10). The other term in the master equation linear in antifields

tt The fields ¢, ", ¢f, ol ¥ are sometimes called minimal variables, while fields like @™
and h, which together with their antificlds enter bilinearly as in Eq. (15.9.7), are called
trivial pairs,
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is proportional to @w?w®w< on the left and w% on the right; it yields

D
0= fiald) 2 151100 £ 100 + Sl ANNIELRE)
where square brackets in the subscripts indicate antisymmetrization with
respect to the enclosed indices 4, B, and C. When the field equa-
tions are satisfied this becomes the generalized Jacobi identity (15.8.12).
Eq. (15.9.11) is necessary for the consistency of the symmetry condition
(15.9.9) (assuming that the f} furnish a complete set of gauge symmetries),
while Eq. (15.9.12) is necessary for the consistency of the commutation
relations (15.9.11). Note that the terms in Egs. (15.9.11) and (15.9.12) that
arise from the terms in Sy, guadratic in antifields are proportional to
oI[$)/dy, so they vanish when the field equations are satisfied, and in this
sense are characteristic of open symmetry algebras. Terms in the master
equation of second or higher order in antifields involve terms in Sg;, that
are of third and/or higher order in antifields. These provide consistency
conditions for Egs. (15.9.11) and (15.9.12), consistency conditions for these
consistency conditions, and so on. It is a virtue of the Batalin-Vilkovisky
formalism that all these consistency conditions are incorporated in the
one mastetr eguation.

The master equation may be reinterpreted as a statement of invariance
of § under a generalized BRST transformation. In order to see this, and
for future purposes, it is useful to introduce a formal device known as the
antibracket. Returning now to our previous notation, the antibracket of
two general functionals F[y, x¥] and G[x, #¥] is defined by

(F,G)= ORI 0LG _ Okl 0,.G : (15.9.13)

Note that right- and left-functional derivatives of a bosonic functional
like S with respect to a bosonic or fermionic field variable are equal to
each other or negatives of each other, respectively. Since just one of either
1 or 1" is always fermionic and the other bosonic, it follows that for the
antibracket (S,S) the second term on the right-hand side in Eq. (15.9.13)
changes sign if we reverse left- and right-differentiation

OgS 0.8 _0LS 3gS __O0rS 418

Sk oy Syk oy ox" Syt
(The last step is allowed because, since one of the factors here is bosonic,
their order is immaterial.) We see that the second term on the right in
Eq. (159.13) for (5,8) is the negative of the first. The master equation

(15.9.2) may therefore be written as the requirement that the antibracket
of § with itself vanishes:

(5,8)=0. (15.9.14)
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This is a non-trivial requirement, because the antibracket has the general
symmetry property

(F,G)=+(G,F), (15.9.15)

the sign being +1 where F and G are both bosonic, and —1 otherwise. In
particular, (F, F) automatically vanishes if F is fermionic, but not if F is
bosonic.

The generalized BRST transformation is defined by

Soy" = e‘SRf = —0(S, 1), (15.9.16)
O xn

Sy = 0985 = —0(5. 0. (159.17)
oy

where 0 is a fermionic infinitesimal constant. (When § is of the form
(15.9.1), the transformation of y is the same as the original BRST trans-
formation dg3" = 0sy".) To evaluate the effect of this transformation on
general functionals, we note that the antibracket acts as a derivative, in
the sense that

(F,GH)=(F,G)H + G (F, H), (15.9.18)

where the sign is —1 if G is fermionic and F is bosonic, and +1 othgrwise.
Hence if G and H are arbitrary functionals of y and yt with 064G =
—0(§, G) and 6gH = —6(S, H), then

Se(GH) = —0(S,G)H — GO(S, H) = 8[(S, G)H + G(S,H)]

where the sign is + or — if G is bosonic or fermionic. Taking F in
Eq. (15.9.18) equal to the bosonic functional S, we see then that

59(GH) = —6(S, GH) .

Together with Eqgs. (15.9.16) and (15.9.17), this shows that for any func-
tional F formed as a sum of products of fields and antiftelds

69F = —0(S,F) . (15.9.19)

The master equation (15.9.14) may be interpreted as the statement that
these generalized BRST transformations leave S invariant

0gS = —0(S,5)=0. (15.9.20)

Like the original BRST transformation, this symmetry transformation is
nilpotent. To see this, we use the Jacobi identity for the antibracket:

+ (F, (G, H})} + cyclic permutations = 0, (15.921)

where the sign in the first term is — if F and H are bosonic and +
otherwise, with corresponding signs for the other two cyclic permutations
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of F, G, and H. Taking F = G = §, Eq. (15.9.21) becomes
0= F(5.(S, H) ¥ (H.(8.8)) + (§,(H,5) = F2(S, (S, H) ¥ (H,(5,5)) ,

where the sign is — or + if H is bosonic or fermionic. The master equation
(15.9.14) then yields the nilpotency condition

(S,(S,H)=0. (159.22)

Because of this symmetry, the solution of the master equation is not
unique. For instance, Eq. (15.9.22) shows that for any given solution § we
can find another solution given by the infinitesimal transformation

S' =S+ (8F,5), (159.23)

with 0F an infinitesimal functional of y and y¥ that is arbitrary, except
that it must be fermionic and have ghost number —1 in order that §’
should be bosonic and have ghost number zero. In particular, taking 6 F
to be a fermionic functional e¥ of ¥" alone gives
5‘{'[%] 5RS _ I: t 5_‘1’}

5t ook Slnxt+e TR (15.9.24)
These infinitesimal transformations may be trivially integrated, and show
that the master equation is still satisfied if we shift the antifields to new
variables xf =i —0W/dy".

The transformation (15.9.23) is a special case of what are usually
called canonical transformations, and will here be called ‘anticanonical
transformations’ to distinguish them from the canonical transformations
of Chapter 7. An anticanonical transformation is any transformation
of fields and antifields, finite or infinitesimal, that leaves unchanged the
fundamental antibracket relations:

Sl 71 = S 7l + €

t)y=0. (15.9.25)

For instance, consider the infinitesimal anticanonical transformation gen-
erated by an infinitesimal fermion generator § F, under which any bosonic
or fermionic functional G is transformed into

G— G =G+ (3F,G). (15.9.26)

It is easy to show that this does not change the fundamental antibrackets
(159.25). For this purpose, note that the antibracket (G,H) of two
functionals G and H is transformed into (G', H'), which to first order in
infinitesimals is

(G',H') = (G,H) + ((6F),G),H) + (G, (6F, H)) .
Using the Jacobi identity (15.9.21), this is
(G,H')=(G,H) £ (6F,(G,H)), (159.27)
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with the sign + if G and H are both bosonic, and — otherwise. In
particular, if (G, H) is a c-number then it is unchanged by an anticanonical
transformation. (This is another way of seeing that the transformation
(15.9.23) leaves the master equation unchanged.) The fields and antificlds
have c-number antibrackets (15.9.25), so the same must be true for the
transformed fields and antifields.

To calculate the S-matrix we must give some definite value to the
antifields. As in the simple case of closed gauge algebras where § is of the
linear form (15.9.5), we can do this by taking the antiftelds in the form
(15.9.5); that is, we calculate the S-matrix using the ‘gauge-fixed’ action

i =5 [x 58] (159.28)
0%
where W[y] is a fermionic functional of ghost number —L According
to the remarks following Eq. (15.9.24), this is the same as taking the
canonically transformed antifields ¢ equal to zero,

The gauge-fixed action is invariant under a BRST transformation that

acts on fields ¥" alone:

t
Sax" = Osy" , where sy = (ﬁlﬁﬂﬁ_ﬂ) . (159.29)
6%” xi:ﬁ‘l’/ﬁx

To check this, note that
_ (0rS[x*1 SLSDx 1]
SI‘P[X] - 1: 5 1
0 xn X =05y

N (6RS[x,x*] 83y 8:S[x, x*])
Sy OXmOx" bk ) sy

The first term on the right-hand side vanishes as a result of the master
equation, and the second because the summand is antisymmetrict in m
and n.

For closed algebras with § of the form (159.1), the transformation
(15.9.29) is the original BRST transformation dgx" = 6sy". But for general
open algebras, the transformation (15.9.29) is not the same as the original
BRST transformation, and in general is not even nilpotent unless the field
equations are satisfied. Instead, from the terms in the master equation of

t For 3" and y™ both bosonic this is because 65/6y" and 45/6y™ anticommute. For
one of y" and y" fermionic and the other bosonic, this is because the right- and
lcft-derivatives of § with respect to whichever y is fermionic have opposite signs.
The terms with " and %™ both fermionic are antisymmetric because for these terms
S/ 5ymdy" is anlisymmetric.
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first order in the shifted antifields xn’ =yt —SW[x] /6", we find

§ﬂ=—(3%ﬁhmﬁﬂ Seld (159.30)
X =y 0%
with the sign — or + if ™ is bosonic or fermionic, respectively. Again,
we see that the dependence on the field equations characteristic of open
gauge algebras is associated with terms in S quadratic in the antifields.
Until now we have been considering only the formulation of a classical
field theory based on an open or closed gauge algebra. Now we must
consider how quantum mechanical calculations are done in such theo-
ries. Physical matrix elements may be calculated by functional integrals
weighted with exp(flq:[x]), where as explained above, Iy[y] is obtained
from S[x. ¥¥] by setting y3 = 6¥[y}/5%", or in other words A =0, we
wish to evaluate the effect of a change in W(y] on these matrix elements.
First consider the vacuum—vacuum amplitude

Zy = f [H dx] exp(ilw[y]) . (15.9.31)
Under a shift 0[] in W[y], this changes by an amount

. . IS, 1] ) 3 (0¥[x)
6Z z/mdx] eXp(IIty[x])( N ( S ) .

An
(159.32)
Integrating by parts in field space, this becomes
6z = [ [[14x] exptirvl))
¥
y {51{8[%:;:% ] 5[,;'1’”[3(] —iAS[y, x:]:]} SW[x), (159.33)
0 X ah=8¥/oyx
where
A= ‘S—ﬁ‘s—L . (15.9.34)
Syr 0"

We see that the condition for the ¥ independence of the vacuum—vacuum
amplitude is in general not the master equation (15.9.2), but rather what
is called the quantum master equation

(5,5)—2iAS =0 at »f =8¥/5y . (15.9.35)

In cgs units a factor 1/% would accompany each factor of §[y, ¥¥], so the
second term in Eq. (15.9.35) would have a coefficient —2i#% in place of
~2i. Thus whenever the quantum master equation (15.9.35) is satisfied,
the term in § of zeroth order in % satisfies the original master equation
(15.9.2). Usually it is easy to construct an action that satisfies the classical
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master equation, so that the first term in Eq. (15.9.35) vanishes, and the
question is then whether the second term also vanishes. The case where the
quantum master equation is not satisfied by a local action is considered
in Chapter 22, on anomalies.

Assuming the quantum master equation (15.9.35) to be satisfied, the
change in the vacuum expectation value of an operator ¢[y] due to a
change 6% in ¥ 1s

—1i ¥
6(0) = 7 f [TTdx| exp (irela) 5‘;(;,[1%] (‘3“8(%”‘ )) L
xr=o¥ /oy

Sk
(15.9.36)
The coefficient of the exponential in the integrand in Eq. (15.9.36) is just
sO[y]. We see that expectation values of operators that are invariant¥
under the generalized BRST transformation (15.9.16)-(15.9.17) are unaf-
fected by a change in the gauge-fixing fermion ¥. Corresponding results
hold for vacuum expectation values of two or more operators.

Appendix A A Theorem Regarding Lie Algebras

In this appendix we consider a general Lie algebra %, with generators ¢,
and structure constants C%g,, and prove the equivalence of three condi-
tions:

a: There exists a real symmetric positive-definite matrix g,p that satisfies
the invariance condition

gocﬁcﬁvé = - g‘yﬁcﬁaé . (15.A.1)

(This is the condition (15.2.4) shown in Section 15.2 to be necessary

on physical grounds.}

b: There is a basis for the Lie algebra (that is, a set of generators ty =
Faptp, With & a real non-singular matrix) for which the structure
constants C%, are antisymmetric not only in the lower indices § and
v but in all three indices a, f and y.

c: The Lie algebra % is the direct sum of commuting compact simple and
U(1) subalgebras 5.

t For open gauge theories there are generally no operators other than constants that are
invariant under the transformations {15.9.16)—(15.9.17). Instead one should consider
operators O(y, ¢*) that are invariant under the nilpotent ‘quantum BRST operator’ o,
defined by ¢0 = (0, 8) —iAQ. Where O depends only on y, this condition reduces to
Eq. (15.9.36). If ¢0 = 0 then the expeclation value of O(¥,5'¥/dy) is unaffected by a
small change in the gauge-fixing fermion ¥. 2
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We shall prove the equivalence of statements a, b, and ¢ by showing that
a implies b, b implies ¢, and ¢ implies a. As a by-product, we shall also
show that if these conditions are satisfied, then it is possible to choose
the generators % as t,,, with m labelling the simple or U(1) subalgebra
H#'m to which t,, belongs and a labelling the individual generators in this
subalgebra, and with the matrix gmanp that satisfies Eq. (15.A.1) taking
the form

Bmanb = 3;25mn5ab , (15.A.2)

where the g% are arbitrary real positive constants,

First, let us assume a, the existence of a real symmetric positive-definite
8qp satisfying the invariance condition (15.A.1). We may then define new
generators

= (8" gty , (15A3)

in which the existence of a real inverse square-root matrix g~1/2 is guar-
anteed by the positive-definiteness of gxp. These satisfy a Lie algebra

[’Em,‘fﬁ] =i 635-),%? , (15.A.4)
where

Crap = (8 (87 M) ppr(g /), C | (15.A.5)

(In this basis it is convenient to drop the distinction between upper and
lower indices «, §, etc., and write Cyyy in place of @?mﬁ.) Then Eq. (15.A.1)
tells us that QM is antisymmetric in « and y as well as in v and &, and
hence is totally antisymmetric, verifying b.

Next let us assume b, the existence of a basis for the Lie algebra for
which the structure constants are totally antisymmetric. In this basis, the
matrices {an}ﬁy = —z’(j’ﬁw of the adjoint representation are imaginary and
antisymmetric, and hence Hermitian. According to a general theorem
about Hermitian matrices,* the 4, are then either irreducible or totally
reducible.

"1f a set of matrices H, is not irreducible, then by definition there must be a set of
vectors u, that span a subspace (other than the whole space) that is left invariant by
the H,: that is, for all  and n, H,u, = Zm(Ca)mum. In this case we can adopt a basis
consisting ol the vectors u, together with a set , that span the space orthogonal to all
the u,. If the H, are Hermitian then (u,, Hyu) = Y mlCadpn{ttm, 1) = 0, 50 the space
spanned by the v, Is also invariant under the H,: Hy, = Z,(Da);kv,». In this basis the
matrices H, are simultaneously reduced to a block-diagonal form:

C: 0
(G 2.

Continuing in this way, we can completely reduce the matrices H, to a block-diagonal
form with irreducible matrices in the blocks.
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By an irreducible set of N x N matrices A, is meant a set for which
there exists no subspace of dimensionality < N that is left invariant by
all the 7, — that is, no set of less than N non-zero vectors (u;); for
which (#44)g,(4;), is for each « and r a linear combination of vectors (us)g.
Since the matrices (#,)g, are proportional to the structure constants in
this basis, this is equivalent to the statement that there is no set of linear
combinations 7, = (u,),i*, that is closed under commutation with all the
A, that is, for which [f%,, 7] is for each x and r a linear combination
of the .. Such a set of matrices 7, would furnish the generators of
an invariant subalgebra of the full Lie algebra; the absence of such a set
means that the Lie algebra is simple.

By a totally reducible set of matrices #%,, is meant one that by a svitable
choice of basis may be written as block-diagonal supermatrices

LY Uv Wilillklb

(@ mand = [ ) ab Sn (15.A.6)

where the submatrices 12", are either irreducible or vanish.** Adopting
this basis also for the Lie algebra itself, the structure constants are then

é&',ma,nb = i(EAt"c)ma,nb = i(IA(m){c)ab 5mn - (15A7)

But since this is totally antisymmetric, and proportional to d,,, it must
also be proportional to d;, and dgm:

Cfc,ma,nb = 5{:1 Om C,Ei)t) . (ISAS)

In other words, for any representation t™; = t,, of the Lie algebra in
this basis, we have

(17 4y (5] = § S Compt™. (15.A.9)

cab

with C™, real and totally antisymmetric in the indices a,b,c. The fact that
it is possible to construct a basis in which the generators fall into sets ™,
with the commutators of the generators in one set with each other given
by a linear combination of generators in that set, and with all members
of one set commuting with all members of any other set, is what we mean
when we say that the Lie algebra is a direct sum of the subalgebras £,
For each m, the set of matrices of the adjoint representation "M is either
irreducible or zero, corresponding to a subalgebra that is either simple or
consists of so-called U(1) generators, which commute with all generators
of the whole algebra.

We have thus shown that the most general Lie algebra with totaliy
antisymmetric real structure constants is a direct sum of one or more

** Here m and n label the blocks along the main diagonal, and ¢ and b label rows and
columns within these blocks. Also, m is not summed, and the range of the indices a, b,
etc. in general depends on m.
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simple and/or U(1) Lie algebras. Furthermore, the simple subalgebras

are compact, in the sense that each matrix —Cmcm is positive-definite,
()

becaus.e‘ for any r.ef.il vector u,, — gﬂ de.cuaub = > q uaC‘Eﬁg]z is a sum
of positive quantities, which cannot vanish unless u, = 0, since for u, 5 0
the C9nditi0n that 3, uacg’;j} = 0 would imply that 3, u,t™), is itself an
invariant Abelian subalgebra, in contradiction with the fact that the AL
form a simple Lie algebra. This completes the proof of ¢.

Finally, let us assume ¢, that we have a Lie algebra that is the direct sum
of a set of simple or U(1) Lie algebras; that is, in some basis tm) — Fmauts

with real non-singular .%, we have

[£, £7) = 8y CH )

a ?

—

here each subalgebra 1 is either simple or commutes with everything,
We furthermore assume that the simple subalgebras are compact, in the
sense that the matrices

g = _ctme  ,clmd, (15.A.10)

are positive-definite. To construct a real positive-definite matrix gap Satis-
fying Eq. (15.A.1), in the basis of generators t,,, = ™), we take

Zragb = 8 Sn | (15.A.11)
(m)

where g’ is taken as the matrix (15.A.10) when ™ is a simple subalgebra,
and is taken as an arbitrary real symmetric positive-definite matrix when
™ is a direct sum of one or more U(1) subalgebras. The matrix ElS.A.ll)
is obviously real, symmetric, and positive-definite because each ga';f) is. To
check the requirement (15.A.1), recall the Jacobi identity for the structure
constants:

—~Imin (A ‘-"Fi“c‘(‘ ~{nd IR PR
T ag O e + O O, + Oy CP% =0 (15.A.12)

and contract with C®) . After renaming the summation indices in the
third term so that ¢ - d — e — ¢ and using Eq. (15.A.10), the result for
the simple subalgebras may be written:

84y €™y = €™ g COMy, € — Clme py oy Clme,

The important point is that this shows that the left-hand side is antisym-
metric in a and f:

g&’}”c("‘)‘*ab - _ggz)c(m)dfb ) (15.A.13)

The same result holds trivially for the U(1) subalgebras, where the struc-
ture constants vanish. The symmetry condition (15.A.1) follows immedi-
ately from Eq. (15.A.13), thus completing the proof of a. This concludes
our proof of the equivalence of statements a, b, and c.
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Now we come back to the matrix g,s. With totally antisymmetric
structure constants, the invariance condition {15.2.4) may be expressed
as the statement that this matrix commutes with all the matrices in the
adjoint representation of the Lie algebra

(g, 4] =0. (15.A.14)

We have seen that all (tA?)aﬁ can be put in block-diagonal form, with
irreducible (or zero) submatrices along the main diagonal. A well-known
theorem? tells us that then g,4 must also be block-diagonal, with blocks
of the same size and position as in the t,, and with the submatrix in each
block proportional to the unit matrix. (Where two of the submatrices in
the tA are equivalent, in the sense that they can be related by a similarity
tran_sform__dtmn it may be necessary to make a suitable change of basis
in order to bring the submatrices of gy into a form proportional to unit
matrices.) In the notation of Eq. (15.A.11), the metric is then given by

Eq. (15.A.2).

Appendix B The Cartan Catalog

We present here without proof the complete catalog of simple Lie algebras,
worked out in its final form by E. Cartan.?® These will be presented here
in their ‘compact’ form — that is, with generators that can be faithfully
represented by finite-dimensional Hermitian matrices. The Lie algebras
will be labelled with a subscript » > 1 indicating their ‘rank’ — the
number of independent commuting linear combinations of generators.

A,,: This is the algebra of the special unitary group SU(n+ 1), the group
of ail um-.ary [U+ = {JT_ i unimodular {D‘“TT = 1; matrices in n "';‘1

dimensions. Any such matrix that is infinitesimally close to the identity
may be expressed as

U=1+iH,
with infinitesimal H satisfying the conditions
H'=H, TrH=0,

so A, is the Lie algebra of all Hermitian traceless matrices in n+ 1 dimen-
sions. Any set of commuting Hermitian matrices may be simultaneously
diagonalized, and the maximum number of independent diagonal traceless
matrices in n+ 1 dimensions is n, so this is the rank of A,. Any Hermitian
matrix in n+1 dimensions has (#+ 1)* independent real parameters (n+ 1
real numbers on the main diagonal, and n(n + 1)/2 complex numbers
above the main diagonal, equal to the complex conjugates of those below
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it), and one of these is eliminated by the tracelessness condition, so the
dimensionality of 4, is

dAn) =(n+ 1P —1=nn+2).
All of the 4, are simple.

B,: This 1s the algebra of the unitary orthogonal group O(2n + 1),
consisting of all unitary (¢ = ¢~') and orthogonal (¢7 = @) and
hence real matrices in 2n + 1 dimensions. (The restriction to unitary
matrices is sometimes indicated by calling the group UO(2n + 1).) Any
such matrix ¢ that is infinitesimally close to the identity may be expressed
as

C=1+iA,
where A is an infinitesimal matrix satisfying the conditions
A'=—A=4".

(It would make no difference here if we restricted ourselves to the subgroup
3 0(2n+ 1), for which @ is subject to the further condition Det ¢ = 1, since
any orthogonal matrix ¢ that is close to the identity would haye Det ¢ =
1 anyway.) Any set of commuting imaginary antisymmetric (2n + 1)-
dimensional matrices may (by a common orthogonal transformation) be
put in the form of a supermatrix

a0z 0
a0

o — 0 —i
PTli0
and a;,---,ay are real. The rank of B, is thus evidently n. An imaginary
antisymmetric matrix is completely specified by the imaginary numbers
above the real diagonal, so its dimensionality is
(2n 4+ 1)(2n)

d(Bn) = —j'— = n(2n+ 1)

All of the B, are simple.

There is an alternative definition of O(N) that will help in understanding
the motivation for the next large set of simple Lie algebras. Instead of
defining O(N) as the group of N-dimensional real matrices that satisfy
the orthogonality condition ¢T@ = 1, it can just as well be defined as the
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group of N-dimensional real matrices .# that satisfy the condition
MPM =P,

where # is an arbitrary positive-definite real symmetric matrix. This
is because any such 2 may always be expressed as # = #1# with %
some real non-singular matrix, so there is a similarity transformation that
takes any matrix .4 satisfying the above condition into a real orthogonal
matrix, Z.#%~'. Thus we may let 2 be various different real symmetric
positive-definite matrices without changing the group.

Cn: This is the algebra of the unitary symplectic group USp(2n), the
group of unitary matrices .# that leave an antisymmetric non-singular
matrix & invariant:

MV M = o

AT =—o |, Detd +0.

(Note that in d dimensions, Det.o/ = Detw/T = (—)¥Det.o#, so if d is
odd then Det.«# must vanish. Thus there is no USp(d) unless d is even.)
Any such antisymmetric non-singular (perhaps complex) matrix .« may
be written in the standard form

o = %Tﬂo@ ,
where 2 is unitary and o7 is the supermatrix:
0 1
o = [ ol

(Alternatively, we could take %/ as a block-diagonal Supermatrix, with
¢1s along the main diagonal.) Hence USp(2n) may be described as the
group of unitary matrices & satisfying

STt oS = oy

since by a unitary transformation any such % can be transformed into
a unitary matrix 4 = % '¥% that satisfies the previous condition
MTAM = . Any such matrix & that is infinitesimally far from
the identity may be written

F=14+i#,
where J is an infinitesimal matrix satisfying the conditions
H =, HTdo+ doH =0.

The most general 2n-dimensional matrix # satisfying these conditions
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may be written as a supermatrix

o B
*=le o]

where the n-dimensional complex submatrices o7, & satisfy
=, B =9

A maximal set of commuting generators have </ diagonal and # zero,
and so are of the form

R
H = g
o]

with a1, -+, a, real. The rank of C, is thus evidently n. The dimensionality
of C, is the number »n? of independent real parameters in the Hermitian
matrix ./, plus the number 2n(n+ 1)/2 of independent real parameters in
the complex symmetric matrix %

d(Cp)=n"+2 xn{n+1)/2 =n2n+1).
All of the C, algebras are simple.
D,: This is the algebra of the unitary orthogonal group O(2n), consisting
of all unitary orthogonal matrices in 2n dimensions. The discussion of

B, can be carried over to D,, except that here any set of commuting
generators can be put in the form

a102 0
a0

0 C a0
so the rank is still . Also, the dimensionality here is

(2n)(2n — 1)
2

All of the D, are simple except for Dy, which is the Abelian algebra with
just one generator, and D, which is the direct sum By + By.

d(Dy) = = n(2n—1).

Exceptional Lie Algebras: In addition to the above classical Lie algebras,
there are just five special cases, the algebras Go(d = 14); Fy(d = 52);
E¢(d = 78); E7(d = 133); Eg(d = 248).
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Not all of the classical Lie algebras are really different. There are just
four isomorphisms

Ay =B, =C(, C. =Bz, A3 =Ds,

These correspond to isomorphisms among Lie groups of which these
are the algebras. However, isomorphisms like By = 41, B = (2, and
D3y = A5 do not mean that SO(3) is isomorphic to SU(2), or that SO(5)
is isomorphic to USp(4), or that SO(6) is isomorphic to §U(4). Instead,
SU(2),USp(4), and SU(4) are the simply connected covering groups of
SO(3), SO(5), and SO(6). (Covering groups are discussed in Chapter
2.) Nevertheless, the isomorphisms of the Lie algebras make it especially
easy to construct the double-valued fundamental spinor representations
of SO(3), SO(5), and SO(6); they are just the defining representations
of SU(2), USp(4), and SU(4), respectively. Also SO(4) is isomorphic
to SO(3) x SO(3), so its double-valued spinor representation is just the
defining representation of SU(2) x SU(2). For d = 7 the double-valued
spinor representations of SO(d) must be constructed by other means. The
simplest technique uses Clifford algebras, discussed in Section 5.4.

Problems

1. Derive the Bianchi identity
DuFav2+Dv Foiv ‘|‘D2Fotuv =0.

2. Suppose we use generalized Coulomb gauge in a non-Abelian gauge
theory, taking the gauge-fixing function as fy = V- A,. Derive the

ghost Lagrangian. What is the ghost propagator? (Take B[f] =

exp(—i f d*x fafa/28).)

3. Suppose that in electrodynamics we use a gauge-fixing function
f = 0,A* + cA A", with ¢ an arbitrary constant. Derive the ghost
Lagrangian. (Take B[f] = exp(—i [ d*x f,fx/2£).) What is the ghost
propagator?

4, Show that there is no simple Lie algebra with just four generators.

5. Show that if a field yp/{x) belonging to a representation of a gauge
group with generator matrices f, varies along a path x* = x#(1)
according to the differential equation

dy(1)
dr

dxt(T)
dt °

= it (T) Ay (X(7))
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(with both y,(x) and A,,(x) classical c-number fields) then the change
in y around any small closed path # around a point X# is propor-
tional to

dx’ (‘E)

thJ(X)Fa;w(X)f x#(1)

Find the constant of proportionality. Use thls result to show that
if F,,»(x) vanishes everywhere then it is possible by a gauge trans-
formation to make 4,,(x) vanish throughout at least a finite region.
(Hint: Follow the analogous argument in electrodynamics, or in
general relativity, as in Ref. 6.)

. Applying path-integral methods to a general non-Abelian gauge
theory, calculate the propagator of the gauge field A,,(x) if we choose
a gauge-fixing functional f, = n,A¥% with n, arbitrary constants,
(Take B{f] = exp(—i [ d*x fof»/2&).) What is the ghost Lagrangian?
What is the ghost propagator? What is the ghost interaction vertex?

. Suppose we adopt BRST invariance instead of gauge invariance
as a fundamental physical principle. Derive the most general La-
grangian density constructed from sums of products of fields and
field derivatives of dimensionality (mass)* with d < 4, constructed
from Ay, w,, @y, hy, and/or their derivatives, that is invariant (up
to total derivatives) under Lorentz transformations, ghost number
phase transformations (w, — ¢%w,, w, — e w}), global gauge

transformations (e, constant), and BRST invariance.

. Show that the antibracket satisfies the symmetry condition (15.9.15)
and the Jacobi identity (15.9.21).

. Show that if a functional O satisfies the condition (O Sy =iAS and

1L NN} e ) 'Hu “..Au

the action § satisfies the quantum master equation then the quantum
average (0) is independent of the gauge-fixing functional P.
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16
External Field Methods

It is often useful to consider quantum field theories in the presence of a

)
classical external field. One reason is that in many physical situations,

there really is an external field present, such as a classical electromagnetic
or gravitational field, or a scalar field with a non-vanishing vacuum
expectation value. (As we shall see in Chapter 19, such scalar fields can
play an important role in the spontaneous breakdown of symmetries of
the Lagrangian.) But even where there is no actual external field present
in a problem, some calculations are greatly facilitated by considering
physical amplitudes in the presence of a fictitious external field. This
chapter will show that it is possible to take all multiloop effects into
account by summing ‘tree’ graphs whose vertices and propagators are
taken from a quantum effective action, which is nothing but the one-
particle-irreducible connected vacuum-vacuum amplitude in the presence
of an external field, It will turn out in the next chapter that this provides an
especially handy way both of completing the proof of the renormalizabilty
of non-Abelian gauge theories begun in Chapter 15, and of calculating
the charge renormalization factors that we need in order to establish the
crucial property of asymptotic freedom in quantum chromodynamics.

16.1 The Quantum Effective Action

Consider a quantum field theory with action I[¢], and suppose we ‘turn
on’ a set of classical currents J,(x) coupled to the fields ¢"(x) of the
theory. The complete vacuum vacuum amplitude in the presence of these
currents is then

Z[J] = (VAC, out|VAC, in);
—f {H dep’( yJ] exp (rI[fb] +zfd4x P (x) Jy(x) + € terms) :
(16.1.1)
63
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(The fields ¢”(x) need not be scalars. They might even be fermionic,
though until Section 16.4 we shall not bother to keep track of the signs
that would appear in that case.) The Feynman rules for calculating Z [J]
are just the same as for calculating the vacuum-vacuum amplitude Z [0] in
the absence of the external current, except that the Feynman diagrams now
contain vertices of a new kind, to which a single ¢"-line is attached. Such
a vertex labelled with a coordinate x contributes a ‘coupling’ factor iJ,(x)
to the integrand of the position-space Feynman amplitude. Equivalently,
we could say that in the expansion of Z [J] in powers of J, the coefficient
of the term proportional to iJ,(x)iJs(y):-- is just the sum of diagrams
with external lines (including propagators} corresponding to the fields
@"(x), ¢%(y), etc. In particular, the first derivative gives the vacuum
matrix element of the quantum mechanical operator ®'(x) corresponding

to ¢"(x}):

5 | P L4 .
[Mr(y) Z[J]} - / [H de (’“)] ¢"(y) exp{il [¢] + € terms}

— i (VAC, out|d’(x)|VAC, in);_ . (16.1.2)

We sometimes work with functionals Z[J] defined by (16.1.1) where the
¢"(x) are not elementary fields (that is, fields appearing in the action) but
products of such fields. Where ¢"(x) is a product of N elementary fields,
the new vertices in the Feynman rules for Z[J] have N lines attached.
Some of the results of this chapter (including Eq. (16.1.2)) apply in this
case, but where Feynman diagrams are involved, it will be tacitly assumed
that the ¢"(x) are elementary.

Now, Z[J} is given by the sum of all vacuum—vacuum amplitudes in
the presence of the current J, including disconnected as well as connected
diagrams, but not counting as different those diagrams that differ only
by a permutation of vertices in the same or different connected subdia-
grams. A general diagram that consists of N connected components will
contribute to Z[J] a term equal to the product of the contributions of
these components, divided by the number N'! of permutations of vertices
that merely permute all the vertices in one connected component with all
the vertices in another.” Hence, the sum of ali graphs is

o0}

Zn=> % WYY = exp(iW [J]) . (16.1.3)
N=0 )

" The contribution of a Feynman diagram with N connected components containing
ny, ny,- - - ny vertices will be proportional to a factor 1/(n; + -+ ny)! from the Dyson
expansion, and a factor (n 4+ - -ny)!/N! equal (o the number of permutations of these
vertices, counting as identical those permutations that merely permute all the vertices
in one component with all the vertices in another.
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where iW [J] is the sum of all connected vacuum-vacuum amplitudes, again
not counting as different those diagrams that differ only by a permutation
of vertices.

For many purposes, it will be useful to go one step further, and in place
of W(J) work with the sum of all connected one-particle-irreducible graphs.
(A one-particle-irreducible graph is one that cannot be disconnected by
cutting through any one internal line.) We can give a formal expression
for this sum as follows. First, define ¢%(x) as the vacuum expectation
value of the operator @"(x) in the presence of the current J:

(VAC, out|® (x)|VAC, in), i 4
= = — ZJ 16.1.4
5(x) (VAC, out[VAC, in); Z[J] 8J,(x) U1 )
or in terms of the sum of conn hs

P5(x) = 55,0 wlJl. (16.1.5)

This formula can be inverted. Define J;(x) as the current for which
(16.1.4) has a prescribed value ¢"(x):
$5(x) = ¢ (x) if J(x) = Jgr ().

The quantum effective action' I'[¢] is defined (as a functional of ¢, not J)
by the Legendre transformation

Llo] = — [ d ¢/ (3)Jp() + W) (16.L6)

We will soon show that I'[¢] is the sum of all connected one-particle-
irreducible graphs in the presence of the current Jo. However, let us first
take a look at another aspect of its physical significance.

Note that the variational derivative of I'[¢] is

5J¢r(X)

g’
: (bs[(‘f)]) —— [dx g0 2 o)
SWIJ] 5J 4r(x)
*f T [fm xJ]J . 36
or, using Eq. (16.1.5),
5T 0]
— (). 16.1.
56°() Tps(¥) (16.1.7)

Thus I'[¢] 1s the ‘effective action’, in the sense that the possible values for
the external ﬁP]dQ d‘s"‘fvl in fhP nhcanmﬂ of a current J are gnmr} hy tha

u_y LLIA,
stationary ‘points’ of F

oT'[¢]

—— =0 for J=0. 16.1.8
se) (16.18)
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This may be compared with the classical field equations, which just
require that the actual action I[$] be stationary. Hence Eq. (16.1.8) may
be regarded as the equation of motion for the external field ¢, taking
quantum corrections into account.

Not only does T'[¢p] provide the quantum-corrected field equations; it
is an effective action in the sense that iW[J] may be calculated as a sum
of connected tree graphs for the vacuum-vacuum amplitude, with vertices
calculated as if the action were I'[¢p] instead of I[¢p]. By a tree graph is
meant one that becomes disconnected if we cut any internal line. All the
effects of loop diagrams are taken into account by using I'[¢] in place of
I[$].

To see this,? let us consider the quantity Wr[J,g] that we would get
instead of W [J], if we used an action g~'I'[¢] in place of I[¢]:

exp (iWrlJ.gl} = [ ] dg"o) exp g™ [Flol + [ d'x 40 Ix)

+ € terms} , (16.1.9)

with arbitrary constant g. The propagator here is the inverse of the
coefficient of the term in g~!I'(¢) quadratic in ¢, and is hence proportional
to g, while all vertices make a contribution proportional to 1/g, so a graph
with ¥ vertices (including those produced by the current J) and I internal
lines (inctuding those attached to the J vertices) is proportional to g/~V .
For any connected graph, the number of loops is L =I — V + 1, so the
L-loop term in Wr[J, g] has the g dependence

(wrls, g), oo © B (16.1.10)

Equivalently, we may write (at least formally)

wrld,gl =S gL twiP, (16.1.11)
L=0

where (as can be seen by setting g = 1), the quantity Wl(_L) [J] is the L-loop
contribution to the connected vacuum amplitude W[J, 1] that we would
obtain if we used I'[¢] (without a factor g) in place of the action I [¢].

Now, we are specially interested here in the sum of tree graphs, those
without loops, calculated with vertices and propagators calculated as if
the act1on were I'[¢] instead of I[¢]. In our present notation, this is
Wr '[J]. In order to isolate the L = O term in Eq. (16.1.11), consider the
limit g — 0. In this limit, the path integral (16.1.9) is dominated by the
point of stationary phase,

exp {i WrlJ, g1} ocexp{ig-l Tl +/d4x¢3(x)1,(x)]} , (16.1.12)
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where, because of its definition as the field produced by the current J, the
field ¢, is the stationary point of the exponent, in the sense that

oI'[¢]
oPr(x)
The proportionality factor in Eq. (16.1.12) is in general a functional of J,

but it is a power series in g starting with terms of order g®. Hence taking
the logarithm of both sides and isolating the terms of order g—! gives

= —Jy(x). (16.1.13)

W =T lps] + f d*x ¢ (x) J,(x) . (16.1.14)
By setting ¢ = ¢; in Eq. (16.1.6), we see that the right-hand side of
Eq. (16.1.14} is just W [J]:

WOl = w[J]. (16.1.15)

To recapitulate, this says that W[J] may be calculated by using I'[¢] in
place of I[¢] (the subscript I'} and keeping only tree (0-loop) graphs:

iW[J] = [ [Hdc.b’ x)] exp{:rw) +i zfcff(w(x)d“ }

CONNECTED L%
TREE

(16.1.16)
Now, any connected graph for iW [J] can be regarded as a tree, whose
vertices consist of one-particle-irreducible subgraphs. Thus in order for
Eq. (16.1.16) to be correct, il'[¢p] must be the sum of all one-particle-
irreducible connected graphs with arbitrary numbers of external lines,
each external line corresponding to a factor ¢ rather than a propagator
or wave function. For this reason, the coefficients in an expansion of T'[¢]
in powers of fields and their derivatives around some fixed field ¢ may
be regarded as renormalized coupling constants, with the renormalization
‘point’ specified by ¢ rather than by some set of momenta.
Equivalently, iT'[¢o] for some fixed field ¢p(x) may be expressed as the
sum of one-particle-irreducible graphs for the vacuum—vacuum amplitude,
calculated with a shifted action I'[¢ + ¢po):

iTéo = [ [Hdrf)”(x)] exp{il[p+gol}.  (16.1.17)

nx
CONNECIED
This is because any place where ¢, appears in any of the vertices or
propagators within the one-particie-irreducible graphs in Eq. {16.1.17) is
also a place where an external ¢-line could be attached. (The restriction
to one-particle-irreducible graphs plays an essential role in Eq. (16.1,17);
without this restriction we could shift the variable of integration, yielding
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an integral that would be manifestly independent of ¢¢.}) In place of
Eq. (16.1.17), it is often convenient to write

nx

exp [iTlga]] = | lﬂdqb’(x)] exp{illp+gol}. (16.118)
1P1

in which we evaluate the path integral including all graphs, connected or
not, in which each connected component is one-particle-irreducible.

* ¥ *

This formalism provides a simple method of summing tree graphs. As
one example, consider the relation between the complete two-point func-
tion A™% and its one-particle-irreducible part Il,.s,. From Egs. (16.1.5)
and (16.1.7), we find

FWU  _ h(x)

ey = - 16.1.1
ST()040) ~ Bh0) (16.1.15)
ey 5J55(x)
ers = - — . 16120
P ST o) (16.1.20)

It follows immediately that the ‘matrices” A and IT are related by
A=-II"1. (16.1.21)

This is the counterpart of the familiar relation (10.3.15) between propaga-
tors and self-energy parts, with the extra term g% + m? in the denominator
in Eq. (10.3.15) representing the zeroth-order term in the one-particle-
irreducible two-point function.

16.2 Calculation of the Effective Potential

To see how the formalism of the previous section works in practice,
consider a simple example, the renormalizable theory of a single real
scalar field ¢(x), with action

1[¢] =—/ Ex [i+ 10,0000+ imi¢? + Lgo'] . (1621

(We are here including a ‘cosmological constant” —2 in the Lagrangian
density, for reasons that will become apparent). Suppose for simplicity
that we wish to calculate I'[¢po] for a position-independent field ¢o(x) =
¢o. Then every term in I'[¢o] will contain a factor of the volume of
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Figure 16.1. Feynman diagrams with zero, one, or two loops for the quantum
effective action of the theory of a neutral scalar field ¢ with interaction .

spacetime
V4= [ d'% =Yp—p)2n) (16.2.2)

arising from the momentum conservation delta-function. We will therefore

write, for ¢g constant

Tlgol = —¥"4V(¢o), (16.2.3)

where V(¢o) is an ordinary function, known as the effective potential. In
this section we will calculate the effective potential to one-foop order.
This was originally done by Coleman and E. Weinberg® in a study of
spontaneous symmetry breaking, the subject of Chapters 19 and 21. The
results were also used by them in one of the early applications of the
renormalization group, to be described in Section 18.2.

Shifting ¢ by ¢y, the action in Eq. (16.1.18) is:*

1+ ol = —¥ai+ 4m’od+ 4gsi] — (o + te 83) [ d'x g

=[x [10006 + oot] — [dx 12 008+ 4es].
(16.2.4)

where u° is the field-dependent mass

Kigo)=m?+ 1g¢j . (16.2.5)

Note that there now appear new interactions proportional to ¢ (which
have no effect on one-particle-irreducible graphs) and also ¢, as well as
terms with the same structure as those in the original action.

The Feynman diagrams for I'[¢po] with up to two loops are shown in
Figure 16.1. The zero-loop term in the vacuum-vacuum amplitude is just
given by the constant term in I{¢ + ¢g]

T loop)[qbo] =—iv, (1 + :,l.mqu% + 5_4 (pg) , (16.2.6)
A 2 L=t

* There are limitations on the applicability of perturbation theory for m? < 0, discussed
in the following section.
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The one-loop term is given by
exp (ir “Pigo]) = [ T] oo exp{ — i [ d*x[3,60°6 + (@0}

te terms} . (16.2.7)

We learned how to calculate such integrals in Chapter 9; the result is
given by Eq. (9.A.18):

;1 loop) [¢’ ] =In Det( K)—I/Z B _lTr In (IK) , (16.2.8)
i3 2 T
where here
8’ 2 T
Kyy = bx‘—ay, + u (¢0)—16J 64(x — y). (16.2.9)

As usual, to calculate such traces it is helpful to diagonalize the ‘matrix’
K by passing to momentum space:

d4x in d4y i
= (PZ + 1 (o) — if) s'(p—q). (16.2.10)

The logarithm of this diagonal matrix is just the diagonal matrix with
logarithms along the main diagonal:

iK i .
[111 (ﬁ)} = {E (P* + (o) - *f)} 3*(p—q) (16.2.11)
p|q
and its trace is then

T
ad 1""1°’[c.bo] _ ! fd4p In (%)]
b.p

~ 2(2 )4 /dqp h‘( +u2(cf)o)—ie)) . (162.12)

Putting together Egs. (16.2.6) and (16.2.12), we have the effective potential
to one-loop order

1
Vigo) = A+ 5ntd + ) + (i) , (16.2.13)
where
—i i ,
) = STVEE [ d*p In ( E[pz-}- ;ﬁ—w]) . (16.2.14)

It is painfully obvious that this formula for the effective potential
contains ultraviolet divergences. Fortunately, these are naturally absorbed
into a renormalization of the parameters of the theory. Although the
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integral (16.2.14) is divergent, simple power-counting shows that it is
made convergent by differentiating three times with respect to y°:

S (i) = —(2;)4 f &*p (P + p* —ie)™.

Once again, the —ie term tells us that we must rotate the p” contour
counterclockwise, so that p® = ip4, with p; running from —oo to +oo:

FR) = 1 fw 2n2k3dk _ 1
(2r)* Jo (K242 32m2pu2°
Integrating thrice, we have then
4 2
# oy
F(p?) = . At Bt +Cut.

The constants A, B, C are not determined by this method of calculation,
which is hardly a serious problem since they are obviously infinite anyway.
We eliminate these constants by defining ‘renormalized’ values for 4, m?,
and g:

AR=A+ A+ Bm® +Cm*,

my =m® + gB + 2gm’C ,

gr =g +6g°C.

Our final result for the potential to one-loop order is then

_ 1 5 5 8r .4, #H{d0)Inu*(¢o)
V(¢0)_AR+§mR¢O+ 24 ¢0+ 6472 ’
where u(do) is the field-dependent mass defined by Eq. (16.2.5), which to
this order can be calculated using mg and gg in place of m and g:
WHP) = mi + bgrd” .

Similar results hold if the theory contains a complex spin % fermion
field 1p(x) that interacts with the scalar ¢. For instance, if this interaction
Hamiltonian density has the simple form Geipyp, then the mass M(¢hg) of
the fermion in the presence of a constant scalar background field ¢y is of
the form:

(16.2.15)

M(¢g) = M(0) + Gy .

It is easy to see that in this case the potential (16.2.1) then receives an
additional term:

#H (o) In (o)
6472

1 gR
Vigo) = Ar + 5 mrds + =4 b +

_ M*(¢ho) In M?(¢ho)
32n?

(16.2.16)
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The numerical coefficient in the new term is twice that of the u* In 4® term
in Eq. (16.2.15), because of the two spin states of the fermion described by
y, while the sign is opposite because (as shown in Chapter 9) fermionic
path integrals of Gaussians give a result proportional to the determinant
of the matrix coefficient in the exponent, while bosonic path integrals of
Gaussians give a result proportional to the inverse of this determinant.

16.3 Energy Interpretation

The effective action I'[¢] and potential V' [¢] have an important interpre-

P o PR -, o

tation in terms of the energy and energy density lc.spcuuv'cly.4 To see this,
suppose that we turn on a current J"(x,t) that rises smoothly from zero
at t = —oo to a finite value #"(x), and remains at that value for a long
time T, after which it drops smoothly again to zero at t = 4-c0. The effect
of this perturbation is to convert the vacuum to a state with a definite
energy L[ #] (a functional of #"(x)), in which it remains for a time T,
after which it returns to the vacuum. However, although the ‘out’ vacuum
is the same physical state as the ‘in’ vacuum, the state vectors differ by
the phase exp(—iE[ #]T) accumulated during the time T':

(VAC, out|VAC, in); = exp(—iE[j]T) . (16.3.1)
Comparing with Eqgs. (16.1.1) and (16.1.3), this gives
WwilJ=—E[F£]T . (16.3.2)

To see the connection between this energy and the effective action,
suppose we seek the state Q4 that minimizes the energy expectation value

_(Q,HQ)
Y

subject to the condition that the quantum fields ®,(x,t) have the time-
independent expectation value ¢,(x)
(Qs (I)n(xs t)Q)
(€, Q)

(H)a

(16.3.3)

= ¢p(x) . (16.3.4)
It is convenient also to impose the condition that Q is normalized
QQ)=1. (16.3.5)

To minimize the expectation value (16.3.3) subject to the constraints
(16.3.4) and (16.3.5), we use the method of Lagrange multipliers, and
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instead minimize the quantity
(Q, HQ) — 0(Q, Q) — f x () (2, 0,(00) (163.6)
with no constraints on Q. This gives
HQ =oQ + / & x B (x)D,(X)Q2 . (16.3.7)

Both o and f"(x) are to be chosen in such a way as to satisfy the
constraints (16.3.4) and (16.3.5) and therefore depend functionally on the
prescribed expectation value ¢,(x).

Now, we have said that in the presence of a current #"(x), the Hamil-
tonian H — [ d*x _#"(x) ®x(x) has an eigenvalue E[ #]:

[H — f dx FM(X)Du(x)| ¥y = ELF]Y, (16.3.8)

with a normalized eigenvector ¥,. Furthermore, since slowly turning
on this current converts the vacuum into this energy eigenstate, we can
presume that E[ #] is the lowest energy eigenstate in the presence of
this current. Therefore Egs. (16.3.4), (16.3.5), and (16.3.7) are salisfied
by

Q=¥ , (16.3.9)
a=E[Fy], (16.3.10)
B'(x) = #1(x), (16.3.11)

where #4(x) is the current for which ®(x) has an expectation value ¢(x)
in the state ¥ 4.

Setting # = #4 in Eq. (16.3.8) and taking the scalar product with ¥ o
the minimum energy of states in which the fields ®, are constrained to
have the expectation values ¢, is seen to be

(H)a =E[£4] + f dx F5(x)$n(x) . (16.3.12)
Recalling Eq. (16.3.2) and the assumed form of J(x), this is

()= [~ WUl + [ @ rymidao] = — L Tlgl. (163,13

As noted in the previous section, if the field ¢)(x) has a constant value
¢ over a large spacetime volume 7'y = ¥'3T, then we may write the
effective action in terms of an effective potential V(¢):

Tigl =—73TV(g). (16.3.14)
In this case Eq. (16.3.13) tells us that the energy density is
(Hya/73=V(¢). (16.3.15)
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This is the main result: V(¢) is the minimum of the expectation value
of the energy density for all states constrained by the condition that the
scalar fields @, have expectation values ¢,. One consequence is that in
the absence of external currents the vacuum state will relax to a state in
which the potential V{¢) is not only stationary, which is required by the
field equations (16.1.8), but also a minimum.

This result helps to resolve a problem in the interpretation of the
quantum effective potential. The Euclidean version of the path-integral
formalism (described in Appendix A of Chapter 23) makes it manifest that
the two-point function A is positive {(in the matrix sense), so according to
Eq. (16.1.2) the same is true of —IT = A~1. Together with Eq. (16.2.3), this
implies that for a single scalar field the effective potential V(¢) must have
a positive {or zero) second derivative with respect to ¢. More generally,
the effective potential must be convex:’

V{2 +(1 - ,1)¢2) < AV() + (1= )Vips) for 0<i<1,

But inspection of Eq. (16.2.13) shows that for m*> < 0 and g > 0 the
zero-loop approximation to the effective potential for the scalar field
theory with action (16.2.1) has a negative-definite second derivative when

¢ is between the two minima of the effective potential at +./6/m?|/g.
This contradiction arises because the derivation of perturbation theory
implicitly relies on the existence of a stable vacuum, but when V"(¢) < 0,
the field ¢ is at a value of ¢ where V(¢) —J¢r}5 18 a maximum rather than
a minimum, which means that the vacuum state in the presence of the
current Jg is unstable.

So what is the true effective potential for this scalar field theory when
m? < 0 and ¢ lies between the two minima of the potential? The result
of this section is that we must find the state of minimum energy in which
the expectation value of the operator @ equals ¢. As long as ¢ is between
the two minima of the potential, we can give ® an expectation value ¢
by taking the state as a suitable linear combination of the two states

where ¢ is at the minima ¢ ~ +,/6|m?|/g. The energy in this state is
equal to the energy at the minima, so this state clearly minimizes the
energy. (Interference terms here vanish in the limit of infinite volume, for
reasons explained in Section 19.1.) Thus the effective potential between
the two minima of the potential is a constant, satisfying the requirement
that it have a nonpositive second derivative. The same argument shows
that in more general theories where the potential has two local minima of
unequal energy, the potential between these minima is linear.®
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16.4 Symmetries of the Effective Action

In some but not all cases, the symmetries of the action I[¢] are auto-
matically also symmetries of the effective action I'l[¢]. For instance, in
the example of Section 16.2, the action (16.2.1) has a symmetry under the
discrete transformation ¢ — —¢. Thus it follows from their definition that
Z[J] and W[J] are even under the corresponding reflection J — —J. Eq.
(16.1.5) then shows that ¢_; = —¢y, and hence J_, = —J, so Eq. (16.1.6)
shows that I'[¢] is even under ¢ — —¢. This is borne out by the one-loop
result (16.2.15). The fermion-loop contribution in (16.2.16) also exhibits
the symmetry under ¢¢ — —¢ in the special case where M(0) = 0, because
in this case the action is invariant under the combined transformation
= —¢. ¥ = 5y,

We encounter problems in establishing the renormalizability of a theory,
unless we can show that the symmetries that we impose on the action
also apply to the effective action. For instance, in the example above, if
I[¢] were assumed to be even in ¢ but I'[¢] turned out not to be, then
the coefficients of the terms in I proportional to [ d*x¢ and [ d*x ¢’
would be divergent, but the symmetry of the action would not allow us
to introduce counterterms to absorb these infinities.

With this motivation, let’s now turn to the important class of symmetries
generated by infinitesimal transformations

(%) = "(x) +eF[x; 1], (16.4.1)

where F" is a function of x* that depends functionally on ¥". (For instance,
F"[x;y] may be an ordinary function of the y" and their derivatives at the
point x.) We are now using the symbol " rather than ¢" to denote the
different types of fields, to emphasize that these include not only ordinary
gauge and matter fields (which in the next chapter will be denoted ¢"(x)),
but all other fields appearing in the gauge-fixed action, including ghost
fields. We repeat that these y"(x) may be of any type, not necessarily
scalars.

We assume that both the action and the measure are invariant under
the symmetry transformation (16.4.1):

Il +eFl =1k, (164.2)
[T d(x"c0 +e F'ix; 1) =[] detx) (16.4.3)

(It is actually sufficient for only the product (], dx"(x))exp(il) to be
invariant, but where this is true usually Eqs. (16.4.2) and (16.4.3) both
apply.) Replacing the integration variables in Eq. (16.1.1) with x*(x) +
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e F"[x; ], we have then
Z[J]=/[Hd( "(x) + € F"[x; x])}
xep{iTl+eFl+1 [ d (200 + ¢ Pl d) o
— / [gdx"(x)} exp{u [+ f d*x (x"(x)+eF"[x;x])Jn(x)}

7 +ie [ (de”(x) [ Priinm
+i [ dxom

[ d )

I——l

x e.{\ {l—
and hence

[ & E N0 =0, (16.44)

where ( ); denotes the quantum average in the presence of the current
J"(x)a

ZJKF"())a —f (de (x) F'y; ]

X exp{i![x] +i / d*x x"(x)J,,(x)} . (16.4.5)

normalized so that (1}; = 1. But recall that J,(y) is given in terms of the
effective action I'[y] by Eq. (16.1.7)

oIyl
) Sx™(y)
Therefore Eq. (16.4.4) may be written as
31yl
= F* i 16.4.
0= [ &y (FONs, 5,5 (16:46)
In other words, I'[y] is invariant under the infinitesimal transformation
2w = "0+ e(F' (), - (16.4.7)

Such symmetry conditions are known as Slavnov—Taylor identities.

Is this the symmetry transformation with which we started? It is for
one very important class of infinitesimal symmetry transformations: those
that are hnear For such symmetries F is

F'I =00+ [ Ol g0ty (16.48)
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(In the most common case s"(x) vanishes and t",,(x, y) is a constant matrix
times d*(x — y).) For any linear F, we have

(F()s =50)+ [ Pl (0N &y

But for any fixed y, J, is defined as the value of the current J that makes
(™(¥))s equal to x™(y), so

(F(x))s, = s"(x) + / ("l Y dy = FP[x;7] (16.49)

Hence Eq. (16.4.6) requires that I'[y] be invariant under all the functional
linear transformations y* — ¥" + eF" that leave I[y] and the measure
invariant.

We occasionally have to deal with symmetry transformations that are
not linear. One important example is provided by the BRST transfor-
mation discussed in Section 15.7. For non-linear transformations, the
symmetry transformation (16.4.7) under which the effective action is in-
variant is not generally the same as the assumed symmetry transformation
(16.4.1) that leaves the original action invariant, because the average of a
non-linear functional of fields is not generally the same as the functional
of the average fields. Indeed, the form of (F), as a functional of y de-
pends in general on the dynamics of the system, and is usually non-local.
This complication will be dealt with in the next chapter by the method of
antibrackets.

L

Up to now, we have tacitly been assuming that the fields »" and
the corresponding transformation functions A" and currents J, are all
bosonic. We will need to take note of the sign factors that appear
when some of these are fermionic, as in particular for supersymmetry or
BRST transformations, where ¢ is fermionic and x* and A" have opposite
statistics. With currents inserted to the right of fields, as in Egs. (16.1.1)
and (16.4.5), Eqgs. (16.1.5) and (16.1.7) hold in the form

5RW[J] M
o [x]

L Ja), 16.4.11
axm(y) X (y) ( )

with the subscripts R and L indicating that the derivative is to act from
the right or left. In consequence, the Slavnov-Taylor identity (16.4.6)
should be written

orl'[x]
x"(y)

0= / dy (F )y, (16.4.12)
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Problems

. Consider a theory of real pseudoscalars ¢(x) and complex Dirac fields

w(x), with masses M and m respectively, and interaction gPysyp .
Evaluate the effective potential for ¢ = constant, 1 = 0, to one-loop
order.

. Derive general formulas for O W I/ 840(x)8Jmly) 8J4(z) and

OYWJ]/8J(x) 3 m(y) 8J,(z) 8Ji(w) in terms of the variational deriv-
atives of ['[¢] with respect to ¢. Show which Feynman diagrams
correspond to each term in these formulas.

. Calculate the effective potential to one-loop order for the theory of
ac»; Y

a neutral scalar field ¢ with interaction Lagrangian density gé*/6 in
six spacetime dimensions.

. Suppose that the action I[¢] is invariant under a Jimite matrix trans-

formation ¢n(x) - ¥, Mpmpm(x). Under which transformation of
the currents is W[J] then invariant? Use this result to derive a
symmetry property of I'[¢)].
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17

Renormalization of
Gauge Theories

We now return to gauge theories, and use the external field formalism
described in the previous chapter to study the renormalizabi lity of these
theories and to carry out an important calculation.

17.1 The Zinn-Justin Equation

In this section the BRST symmetry described in Section 15.7 will be used
to demonstrate a fundamental property of the quantum effective action,
first derived by Zinn-Justin.! According to the general rules outlined in
Section 16.4, the BRST invariance of the action I[x] imposes on the
effective action I'[y] the condition

" orl'[yl
/d“x (W), S =0, (17.1.1)

where the change in y"(x) under a BRST transformation with infinitesimal
fermionic parameter 8 is

ox™(x) = BA™(x) (17.1.2)

and {---) here denotes a vacuum expectation value taken in the presence
of a current J, that makes the vacuum expectation value of the operator
fields X"(x) equal to the c-number functions y"(x). The implied sum over
n runs over all of the fields in the BRST formalism; that is, over w,, >
and h, as well as the gauge and matter fields that in Section 15.8 we have
collectively called ¢". Because A"(x) is quadratic in the fields when " is
a gauge or matter field or w,, Eq. (17.1.1) does not in general tell us that
the effective action is invariant under the same BRST transformations as
the action itself.

To handle this complication, we employ a trick that proves useful
m dealing with any sort of nilpotent symmetry transformation. First,
we introduce a set of c-number external fields K,(x), and define a new

80
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effective action by

K] = W,k K] —fd4x 20 w(X) (17.1.3)

where the connected vacuum persistence amplitude W is here calculated
with the gauge-fixed action” I + [d*x A"K,,:

s = | [Hdz"(x)} oxp (il +i [ d'x 'Ky +i [ dx ) (17,14

and J, x 1s the current required to give the fields the expectation values y
in the presence of the external fields X ;

SrWIJ, K|

"l\" R |

ST = y"(x). (17.1.5)

J=Sx

(The K,, must have the same fermionic or bosonic statistics as A", which
1s opposite to that of y".) Since the BRST transformation is nilpotent,
the quantities A"(x) are BRST-invariant, so in the same way as in Section
16.4 we can show that the new effective action I'[y, K] satisfies a BRST-
invariance condition:

/ d'x (A"(x M‘SI;SFL’(C;I)(] 0, (17.1.6)

where {--:);x denotes a vacuum expectation value calculated in the
presence of the current J and the external fields K :

f [Hn,x dx”(x)] O[] exp (iI +ifd*x A"K, +1i [ d*x x"Jn)

Ol § [Tlax dxn0)| exp (il +i [ dx A"K, + i [ d*x T,
(17.1.7)
It 1s convenient to express the expectation value of A" as a variational
derivative of the effective action. Taking the right variational derivative
of Eq. (17.1.3) with respect to K gives

S WKL [, SWUK) e
0Kn(x) OKn(x) ly—i 0Jm(y) ly=i, OKa(x)
Srd i m
- f dty x’"(y)———RM’é*':(xgy) :

Using Eq. (17.1.5) we see that the last two terms cancel, and using the

* Here I is the action ingw modified as described in Section 15.7 to depend on the ghost
and antighost fields w, and m; and on the auxiliary field h,, with the subscript ‘WEW’
dropped from now on.
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definitions (17.1.4) and (17.1.7) gives us then our desired relation
SR, K] _ 6gW[J,K]

SKu(x) ~  6Kpix) = (A" (X)) g0k - (17.1.8)

J=Jyx

The BRST symmetry condition (17.1.6) may now be written as a simple
condition, the Zinn-Justin equation, involving the effective action alone:

/d4x 5RF[X:K] 5LF[xSK] —
OKn(x)  8y"(x)
As remarked after Eq. (15.9.3), the interchange of fields and antifields (or

in this case ¥* and Ky} results simply in a change of sign of the left-hand
side of Eq. (17.1.9), so this can be written as

(17.1.9)

where the antibracket is calculated here with Ky in place of the antifield
of y":

(F,G) Efd4x OrF (7, K] 5.Gly. K] /d4x SrF[%.K] 81.Gly, K]

Ox"(x)  SK,(x) OKu(x)  Sy*(x)

(17.1.11)
This is formally the same as the Batalin-Vilkovisky ‘master equation’
discussed in Section 15.9, but appears here as a constraint on the quantum
effective action I'[y, K] rather than on the fundamenta] action S[y, ¥*]. The
Zinn-Justin equation (17.1.10) will be used in the next two sections to show
how to renormalize gauge theories, and in Section 22.6 to study anomalies
in these 1heories,

17.2  Renormalization: Direct Analysis

The simplest non-Abelian Bauge theories are renormalizable in the ‘Dyson’
sense that the operators in the Lagrangian density all have dimension-
ality (in powers of mass) four or less. As we saw in Chapter 12, this
guarantees that the infinities in the quantum effective action only appear
in terms that could be cancelled by the counterterms in interactions of
dimensionality four or less. Byt there is more to renormalizability than
this. The Lagrangjan density is constrained by gauge invariance and other
Symmetries. For a theory to be renormalizable, it is necessary that the
infinities in the quantum effective action satisfy the same constraints, up
to possible renormalizations of the fields.?

The effective action I'[y, K 1 is a complicated functional of both y and K,
aboul which the Symmetry condition (17.1.9) says complicated things, but
fortunately matters are much simpler for the infinite terms in I'. We will
write the action Sy, Kl=I[y]+ [ d*x A"K, as the sum of a term Sg [, K]
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in which masses and coupling constants are set equal to their renormalized
values, plus a correction S, [y, K], which contains the counterterms that
we intend to cancel the infinities from loop graphs. Both Sg and S, must
be taken to have the symmetries of the original action S[y,K], so the
question 1s whether the infinite parts of the higher-order contributions
to I' share the same symmetries, so that they can be cancelled by the
counterterms in Se..

We may expand I' in a series of terms [y arising from diagrams with
just N loops, plus contributions from graphs with N — M loops (where
1 < M < N) involving various counterterms in S, [y, K] that will be used
to cancel infinities in graphs with a total of M loops:

>,‘J
s

.
o

ac
Tl 1= N T Iy 1
11 bl B PR A € Rt B
=0

The symmetry condition (17.1.10) then reads,” for each N,

N
> (T Tnow)=0. (17.2.2)
N'=0
In the sum (17.2.1) the leading term is just I'g[y, K] = Srly, K], which
of course is finite. Suppose that, for all M < N — 1, all infinities arising
from M-loop graphs have been cancelled by counterterms in S, . Then
infinities can appear in Eq. (17.2.2) only in the N =0 and N’ = N terms,
which are equal, and the infinite part of this condition tells us that the
infinite part I'y . of 'y is subject to the condition that

(Sr. Tn) =0. (17.2.3)

This is a symmetry principle generated by Sg, just like that described by
Egs. (15.9.16) and (15.9.17). Note in particular that the transformation
X — (8g, X} acts on the external fields K, as well as the fields y".

Up to this point, we have used none of the special properties of a
renormalizable Yang-Mills theory. Now note that, according to the gen-
eral power-counting rules of renormalization theory, with all infinities
cancelied in subgraphs of I'y, the infinite part I'y . [x, K] of I'y[x, K] can
only be a sum of products of fields (including K} and their derivatives of

* Such order-by-order relations may be derived formally by repeating the reasoning
of Section 16.1: When the action Sg is replaced with g~'S, the contribution of a
connected L-loop graph with [ internal lines and ¥ vertices is multiplicd by a factor
g"! = gt 1. If the counterterms in §,, associatcd with N-loop diagrams are also
provided with factors g, then Ty is the value for g = 1 of the term in T of order
gk ' Eq. (17.2.2) then follows by requiring Eq. (17.1.10) to hold in each order in g. In
¢gs units the action has the same dimensions as F, and so appears in the path integral
multiplied with a factor 1/h, so we can also use % as a loop-counting parameter in
place of g.
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dimensionality (in powers of mass) four or less. Finally, the arguments
of Section 16.4 show that T'[y, K] and hence also I'n o [x, K] are invariant
under all of the linearly realized symmetry transformations under which
the action is invariant. (As described below, these are: Lorentz trans-
formations, global gauge transformations, antighost translations, and the
ghost phase transformations associated with ghost number conservation.
Of course, the auxiliary fields K, must be assigned suitable transforma-
tion properties under these symmetry transformations.) These conditions
together with Eq. (17.2.3) will suffice to tell us all we need to know about
the structure of I'y o [x. K].

To implement these conditions, we need to know the dimensjonalities
of the external fields K,. If a field " has dimensionality d, (that is, d,

powers of mass), then A" correspondingly has dimensionality d, + 1 (as

can be seen by inspection of the BRST transformation rules (15.7.7)-
(15.7.11})), so in order for [d*xK,A" to be dimensionless, K, must have
dimensionality 3—d,,. The fields A*, &% and »* all have dimensionalities
dn = +1, so the corresponding K, all have dimensionalities +2. (We do
not introduce any external field corresponding to h*, because this field is
BRST-invariant.} Any spin 1/2 matter fields y, have dimensionalities 3,2,
and the corresponding K,, thus also have dimensionalities 3 /2. Thus a
dimension four quantity like ['y [y, K] is at most quadratic in any of the
K. Furthermore terms that are of second order in the K, cannot involve
any other fields, except that a term of second order in the K, for spin 1/2
matter fields may involve at most one additional field of dimensjonality
unity.

We can now use ghost number conservation to show that in fact
I'noc[x. K] does not contain any terms of second order in the K,,. For this
purpose, we also need the ghost quantum numbers of the K,. If ¥" has
ghost quantum number y,, then A” has ghost quantum number vn + 1, 5O
K, must be assigned ghost quantum number —y»— 1. The ghost quantum
numbers of the fields A™*, v/, @® and w*" are respectively 0, 0, +1, and
—1, so the corresponding external ﬁelds K, have ghost quantum numbers
—1,—1,-2, and 0, reSpecuvely This rules out any terms in [y [y, K]
that are of second order in the K, with the one possible exception of a
term of second order in the external fields K associated with ®** (and
involving no other fields). However, these last terms are also forbidden,
for a different reason. The BRST transformation of ®* is linear in the
fields, with

AY = —p* (17.2.4)

s0 here
oLl w oo [, K1

5K, - ATk =h
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is independent of K. It follows that I'y [y, K] is linear in K**, and
depends on K** only through a term — [ d*x K h* . (Both K, and h* are
bosonic, so their order is immaterial.) In particular, for N > 0, I'n o[, K]
is independent of K**,

We have seen that I'y [y, K] is at most linear in all of the K,. We will
write it as

Tnelt, K] = Tnelr, O] + f d*x D% [1; x] Kn(x) . (17.2.5)
We also recall that Sz has the K dependence:
Skl K] = Seld + [ d*x A" 1K)
The terms in (17.2.2) of zeroth and first order in K therefore give®”

| 5LrNoo[X,0] n . OLSRIAT _
f Px [A g T Pl 5;("(3:}} 0 (17.26)

n L.@N(x,y) OLA™(X: Y} | _
/ R R x(X)] (1727

respectively. These relations may be made more perspicuous by introduc-
ing the quantities

I'Y 1] = Srlx] + el volr. 01, (17.28)

and
A"(x) 2= AY(x) + eD(x), (17.2.9)

with e infinitesimal. Then (17.2.6) (together with the BRST invariance of
Sg) just says that F‘f’ [x] is invariant under the transformation

(x) = £"(x) + A (x) (17.2.10)

while Eq. (17.2.7) (together with the nilpotence of the original BRST
transformation) tells us that this transformation is nilpotent.

We must now consider what form this nilpotent transformation may
take. As already mentioned, I'y .. consists only of terms of dimensionality

four or less, so 2% and hence A"(x) have at most the dimensionalit
N N y

** The second terms in Eqs. (17.2.6) and (17.2.7) have been put into the form shown
here by recalling that, because y" and K, have oppositc statistics, for any bosonic
functionals A and B,

O0rA OB _ 0 AdgB _  JrB oA
Syt 3K, Oy 8K, = 8K, oy
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of the original BRST transformation function A"(x). Also, 9% and hence

also Af{r’”(x) must have the same Lorentz transformation properties and
ghost quantum numbers as A"(x). Hence the most general form of the
transformation (17.2.10) is

Y-y +ibo" Ty,
Any = Auy + 0 [BapOuog + Dagy Aguvy]
Wy — Wy — %OEaﬁj,wﬁwP ,

where T, is some matrix acting on the spinor fields, and Bug, Dag,,
and E,g, are constants, with E,g, antisymmetric in ff and y. Also, the
transformations of w] and A, are linear, and are therefore unchanged:

Ct);—'-i'(l);—eha, hd_‘hﬁt'

Next we impose the condition of nilpotence. The most important
requirement is that E,p,wgew, should be invariant. This yields the require-
ment that E.g, Egscws0.0, should vamsh, so that the part of E,g. Egs.
that is totally antisymmetric in 8, ¢, v vanishes:

EocﬁyEﬁée + EocﬁsEﬁyé + EzﬁéEﬁsy =0.

But this just tells us that E,g, is the structure constant of some Lie algebra
&. Because E,g, goes to the structure constant Cyp, of the original gauge
Lie algebra .« for ¢ — 0, & must be the same as o7, and the structure
constazrlts E,g., can differ from the original Cyp, only by a multiplicative
factor:

Eygy = 2 Cop, .

(This is for simple gauge groups; in the general case we would have a
separate factor 2 for each simple subgroup.)

Next we turn to the condition that the transformation (17.2.10) be
nilpotent when acting on the gauge fields. The requirement that Bypyop+
Dyp,Apu, be invariant tells us that

DagyDpse — DugeDpsy = Epe,Dasg = ¥ CpeyDusg
and

BugEpys = DygsBg,

" The requirement of global gauge invariance rules out any non-trivial similarity trans-
formation in the relation between E.g, and C,y,.
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The first condition has the unique solution’?
Doy = FCopy ,

The second condition tells us that the matrix B,s commutes with the
adjoint representation of the gauge group, and hence (since we have chosen
the structure constants totally antisymmetric) must be proportional to a
Kronecker deita, with a coefficient we shall call .4

Byg = F Ny

Finally, the condition that the transformation (17.2.10) be nilpotent
when acting on the fermion fields (if any) requires that w* T,y is invariant,
This tells us that

[Tﬁs T,’] = iEaﬂy T,

so T, differs from the generator ¢, in the original Lagrangian only by a
factor &:

We have thus seen that, apart from the appearance of the new constants
% and A7, the transformation (17.2.10) is just the BRST transformation
with which we started:

p — p+i¥0w ty (17.2.11)
Agy — Ay + Z0 [V 804 + Cup, Agu,] (17.2.12)
y = Wy — (Z0Cug.pw, , (17.2.13)
w, — w, — Ohy , (17.2.14)
hy — hy . (17.2.15)

Now we must use this symmetry to constrain the structure of the corrected
action (17.2.8). Since this contains only the original renormalized action
plus the infinite part of the N-loop contribution, it must be the integral
of a Lagrangian density

re = f dhx A (172.16)

with 4 a local function of fields and field derivatives of dimension-
ality (in powers of mass) no greater than 4. Furthermore, as we found
in Section 16.4, 4" must be invariant under all the symmetries of the

t* The matrix (Dy)yp = Do/ % satislies the commutation relations of the gauge Lie
algebra, [D,,D.] = Cy., Dy But the only representation of a simple Lie algebra with
the same dimensionality and « transformation propertics as the adjoint representation
of & is the adjoinl represcntation itself.
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original Lagrangian that act linearly on the fields. To identify these sym-
metries, recall that in generalized £-gauge, the ‘new’ Lagrangian density
in Eq. (15.7.6) takes a form given by replacing the term —(9,4%)(¢,4")/2¢
in Eq. (15.6.16) with the terms h,f, + 1&hyh, in Eq. (15.7.6):

PNEw = LM — JF Fypy — 000 ey
+Cupy(0,0;) AX g + hyOy AR + 1ERGhy . (17.2.17)

Inspection of this formula reveals the following linear symmetries:
(1) Lorentz invariance,
(2) Global gauge invariance — that is, invariance under the transformations

Se(X) = 1€(ta)Mpm(x) (17.2.18)
SAP (x) = Cgyue™ A7 u(x}, (17.2.19)
Swg(x) = Cpue”m,(x), (17.2.20)
Swg(x) = Cprae®wr(x) (17.2.21)
Shg(x) = Cpyaehy(x), (17.2.22)

with constant parameters *.
(3) Antighost translation invariance — that is, invariance under the trans-
formation

W, (X) = wy(x) + ¢y , (17.2.23)

with arbitrary constant parameters c,.
(4) Ghost number conservation — that is, the conservation of a ghost
number equal to +1 for w,, —1 for w}, and O for all other fields.

We shall now proceed to work out the structure of the most general
Lagrangian density that is renormalizable, in the sense that it consists only
of terms of dimensionality +4 or less, that has these linearly acting sym-
metries, and that is invariant under the modified BRST transformations
(17.2.11)- (17.2.15).

From Eq. (17.2.17) we may conclude that the fields 4%, w,, ®;, and
hy have the dimensionalities +1, +1, +1, and +2, respectively (in powers
of mass). Note also that ghost number conservation requires that w and
" come in pairs, while antighost translation invariance dictates that o*
always appears as a derivative, Each pair of ¢ and d,0° fields adds +3
to the dimensionality, so renormalizability rules out any term with more
than one such pair. With one such pair we can have at most one more
derivative or one additional gauge field, and Lorentz invariance dictates
that we must have one or the other. The only renormalizable allowed
Interactions involving ghost fields are then linear combinations of terms
of the form d,w; #wg or d,w; A wg.

Next, let us consider the terms that involve the field #, and possibly
other fields but not w or w*. This field has dimensionality +2, so
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renormalizability and Lorentz invariance allows this field to appear only?
multiplied with another hg or 8,4} or AzAy,

Finally, the Lagrangian will contain renormalizable terms involving
only the matter and gauge fields. We will call the sum of these terms
¥ va. Putting this all together and using global gauge invariance, the most
general renormalizable interaction allowed by the assumed symmetries
(aside from BRST invariance) takes the form:

ffg;l = Lod + %g’haha + chy 0, Al — emﬁyhaAgAw
—Z (8 ) (0,005} — dup (0,03 Jog A% (17.2.24)

where &', Z,,, ¢, dyg,, and e,p, are unknown constants, with no constraints
except obvious symmetry properties such as global gauge invariance and
€xgy = €uyp. (As mentioned earlier, we are assuming for simplicity that
the gauge group is simple, but the extension to a direct sum of simple
and U(1) gauge groups would be trivial; for instance, instead of one term
proportional to hyh, we would have a sum of such terms, one for each
simple subgroup of the gauge group.)

Now we impose BRST invariance. The cancellation of terms in 53(6)
proportional to 8¢,h,0*w, tells us that

=2y FN . (17.2.25)

The cancellation of terms in 53’55) proportional to 6J,h, wpAy (or
00,0, wp0*w,) Tequires that

dugy = —(Zer/ N') Cugy . (17.2.26)

The terms 1n 5,.5’(” proportional to 67,w; wg ®, A5 automatically then
cancel by virtue of the Jacobl identity for the structure constants. The
cancellation of terms in 5.,57 proportional to 8h,0,wp A (o1 Oh, A Ay @5)
yields

eugy =0 . (17.227)

Finally, the effect of the infinitesimal transformation (17.2.10) on matter
and gauge fields is the same as a local gauge transformation with gauge
parameters €, = Z A 0w, and gauge couplings renormalized by a factor
1/A" (that is, with t, and C,p, replaced with T, = t,/ 4" and Cup, =
Cypy /A7), so the cancellation of terms in (53’5? with only one factor of
w, and no factors h, or w, simply tells us that the Lagrangian %, 4 for
these fields is gauge-invariant, with a renormalized gauge coupling. We

£In a theory with scalar fields, we could also have renormalizable terms with h,
multiplied with one or two scalar fields. Such terms cause no trouble, but for brevity
they will not be considered here.
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conclude then that the most general renormalizable Lagrangian density
allowed by our assumed symmetry principles is

P = —Z gy — Z Py [0, — W As ] + 55’11&51&
HZw/ N F V0 AY — Z0,(0,0, 00 ,004) + Z(I,Caﬁy(aﬂco;)wﬁﬁl;f \
(17.2.28)

where the tilde on F#' indicates that the field strength is to be calculated
using the renormahzed structure constant Caﬁy = (Cug,/./". But apart
from the appearance of a number of new constant coefficients, this is
the same Lagrangian with which we started. The new constants in this
Lagrangian (including the gauge coupling constant) may be freely shifted
by adjusting the Nth-order terms in the corresponding constants in the
original unrenormalized Lagrangian. In particular, we can adjust these
terms to make l"( & = Sk, in which case 'y, =0, completing the proof.

xR K

In the above proof we made important use of the accidental invariance
of the gauge-fixed Lagrangian (17.2.17) under the antighost translation
transformation (17.2.23). This symmetry would not be present for gange-
fixing functionals other than f, = 8,44, which are not spacetime deriva-
tives. One frequently cited example which preserves Lorentz invariance
and global gauge invariance is f, = OpAf + aaﬁ}.A‘;Aw, where ayp, is a
constant matrix, symmetric in £ and y, which transforms as a tensor under
global gauge transformations. (Such constant tensors exist for all SU(N)
groups with N = 3.} Another more important example is the background
gauge-fixing functional to be introduced in Section 17.4.

The absence of antighost translation invariance does not affect our
argument that E(Nf) is a Lorentz- and global gauge-invariant local function
of fields and field derivatives of dimensionality no greater than 4, that is
invariant under the renormalized BRST transformation {17.2.11)—(17.2.15),
But without antighost translation invariance there are new terms in Ef{,}
that satisfy these conditions. Since the transformation (17.2.11)-(17.2.15)
is nilpotent, we can construct such terms as s'F, where the transformation
(17.211)(17.2.15) 1s written as " — " + 0s'y", and F is an arbitrary
Lotrentz- and global gauge-invariant function of ghost number —1, One
such term is

xS (03 AguAl) = —augy huA g, AL+ 2Z YN By + CpocAsu5)AL] .

This causes no trouble: it 1s Just a renormalized version of the usual ghost
and gauge-fixing terms ar;smg from terms ayp, J,A A -x in the gauge-fixing
functional f,. But there is also another possible term of the form

bugys’ (wawﬁw],) = —bug, [2]1“(0;(0}, + %ffcyaew;w;wgwe} ,
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where byg, is a constant, antisymmetric in o and B, which transforms
as a tensor under global gauge transformations. (Such tensors exist for
any Lie group; for instance, we could take b,s, to be proportional to
Cagy.) But the Faddeev—Popov-De Witt method cannot yield four-ghost
interactions in the Lagrangian, so there are no counterterms available to
absorb ultraviolet divergences in this term. This is not just a technical
obstacle to proving renormalizability; for gauge-fixing functionals like
fo = 04" + aa,g?AgA?u, one-loop graphs actually do yield divergences in
four-ghost amplitudes that cannot be cancelied by counterterms in the
Faddeev-Popov-De Witt Lagrangian.

Aside from avoiding gauge-fixing functionals other than f, = 0, A%, the
only solution to this problem se¢ems to be the one mentioned in Section
15.7. We must give up the Faddeev—Popov-De Witt approach, and instead
take the action from the beginning as the most general renormalizable
function of the gauge, matter, ghost, and auxiliary fields that is invariant
under BRST and the other symmetrics of the theory. According to the
arguments of Section 15.8, the action can be written in the form Iy + sW
with Iy ghost-free, and the S-matrix is independent of ¥, so we can justify
this procedure by quantizing the gauge theory in axial gauge, where ghosts
decouple, and then taking ¥ to be anything we like. In particular, we can
include s(w*w*w) terms in the action that can serve as counterterms to
the divergences in four-ghost vertices.

17.3 Renormalization: General Gauge Theories*

The proof of the renormalizability of non-Abelian gauge theories in the
previous section relied on a ‘brute force’ analysis of the possible terms
in the action of dimensionality four or less. But as we saw in Chapter
12, this limitation on the dimensionality of terms in the action can be at
best a good approximation. The successful renormalizable quantum field
theorics that are used to describe the strong, weak, and electromagnetic
interactions are almost certainly effective field theories, accompanied with
terms of dimensionality d > 4; these terms are normally not observed
because they are suppressed by 4 — d powers of some very large mass,
perhaps of order 10— 108 GeV. Gravitation too can be described by an
effective field theory, in which the Lagrangian density contains not only
the Einstein—Hilbert term — \/ER/ 16%G, but also all scalars constructed
from four or more derivatives of the gravitational field. We need to

" This section lies somewhat out of the book’s main linc of development, and may be
omitted in a first reading.
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show that gauge theories of this sort, which are not renormalizable in the
power-counting sense, are nonetheless renormalizable in the modern sense
that the ultraviolet divergences are governed by the gauge symmetries in
such a way that there is a counterterm available to cancel every infinity.?

For this purpose, let us return to the action S[y, x¥] introduced in
Section 15.9, taken as a function of independent fields ¥* (including gauge
and matter fields ¢ and ghost ficlds w4 as well as the non-minimal ficlds
w?* and k*), together with their antifields yf. In theories like quantum
gravity or Yang—Mills theories, that are based on a closed gauge algebra
with structure constants fC 4p, this action is constrained to be of the form

S =Il¢] + o fild) ¢ + to*o® fCaplplof —H o,  (173.1)

where I[¢] is invariant under the infinitesimal gauge transformations
¢ — ¢ + e f[p). (As in Section 15.9, the indices r, 4, etc. include a
spacetime coordinate, over which we integrate in sums over these indices.)

We shall not limit oursclves here to actions of this form, but we
shall suppose that the local symmetries of the theory are imposed by
requiring that the action must obey some ‘structural constraints’ on its
antifield dependence, of which Eq. (17.3.1) provides just one example. The
structural constraints ar¢ assumed to be linear, in the sense that if they
are satisfied for S + %, and for § + &, then for any constants ay, o2 they
are satisfied for § + o1 %1 + 2% >. We also impose the quantum master
equation (15.9.35)

(S,8) —2iHAS =0, (17.3.2)

with AS defined by Eq. (15.9.34), and the factor # now made explicit as
a ‘loop-counting’ parameter, in the sense described in the footnote of the
previous section.

The action is taken as a power serics in fi

S=Sp+hS + RS+, (17.3.3)

where Sg is an action of the same general form as S, but with all coupling
parameters replaced with finite renormalized values, and the Sy are a set
of infinite counterterms. The action § is supposed to satisfy the quantum
master equation (17.3.2) for all h, so Sg satisfies the classical master
equation

(Sr,Sr) =0, (17.3.9)

while the counterterms satisfy

-1

(SR, SN) > (SM, SN_M) +iASN_; - (17.3.5)
M=1
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The counterterms Sy are not by themselves sufficient to cancel the ultra-
violet divergences in loop graphs. As a generalization of the conventional
renormalization of fields, we also have to introduce a set of renormalized
fields and antifields, defined in terms of the original fields and antifields by
an arbitrary anticanonical transformation. An infinitesimal anticanonical
transformation may be defined in terms of an infinitesimal generating
functional 6 F by Eq. (15.9.26), so a sequence of anticanonical transforma-
tions G(t) — G(t + 6t) = G(t) + (F()dt, G(1)) (where G(t) is any functional
of ficlds and antifields, and F(t) is the generating functional) leads to a
finite canonical transformation G — G = G(1), with

%G(t) = (F(t), G(1)), G0)=G. (17.3.6)
If F(t) is given by a power scrics
F(t) = gtFy + B2 Fy+ -+, (17.3.7)
then Egs. (17.3.3), (17.3.6), and (17.3.7) yield a transformed action

-~

3 = Spt-h[S1+(F1.S0)| + 5 [S2+ (Fy, 81)+ (Fo, Se)+ 1(Fi, (F1, Sr)| 4+ .

(17.3.8)
The question is whether we can use what freedom we have to choose the
Fy and Sy so as to cancel all infinities arising from loop graphs.

As already noted, the first term Sg in Eq. (17.3.3) is automatically
finite. Suppose that by cancellation of infinities with Sy and Fps for
M < N it has been possible to eliminate all infinities in the terms 'y,
of order A™ in the quantum effective action with M < N. As we saw
in the previous section, the Zinn-Justin equation (derived here by setting
1k = Ky + 0W/5x") tells us in this case that the infinite part I'no of the
term in the quantum effective action of order %" satisfies the condition

(Sr.Tne) =0. (17.3.9)

The field and antifield variables y" and i are related to the variables y” and
K, by an anticanonical transformation, which preserves all antibrackets,
so the antibracket in Eq. (17.3.9) may be calculated in terms of y* and y}
instead of ¥" and K,,.

The condition (17.3.5) satisfied by the counterterm Sy is not the same
as the condition (17.3.9) satisfied by I'nq. However, given any SJ that
satisfies Eq. (17.3.5), we can find a class of other solutions

S =S¥+ Sk, (17.3.10)

where Sy is arbitrary, except for the condition that Sg + S§ like Sp + SRI
satisfies the same symmetry conditions as Sg, and that

(Sr.Sy) =0 (17.3.11)
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so as not to invalidate Eq. (17.3.5). The infinite part of the Nth-order
term in the quantum effective action may therefore be written

TN = Sne + (FNa, SR) + XN (17.3.12)

where Xy consists of terms from loop graphs, as well as from the term S%
and various terms in I that involve Sy and Fyy for M < N. For instance,
for N =2 Eq. (17.3.8) gives

X5 = 8 + 2(Fy, 81) + (F1, (F1, Sr)) + two-loop terms involving only Sg
+ one-loop terms involving Sg, S| and Fj .

For our purposes the only thing we need to know about X is that it does
not involve Sy or Fy, and that it is invariant under any lincarly realized
global symmetries of Sg.

Now, because (Sr,Sr) = 0, the operation F +— (Sg, F) 1s nilpotent; for
all F,

(SR, (SR, F)) =0. (17.3.13)
Hence it follows from Egs. (17.3.9) and (17.3.11)—(17.3.13) that
(SR,XN,QC) =0. (17.3.14)

Any term in Xy o, of the form (Sr, Y ) may be cancelled in Eq. (17.3.12) by
choosing Fy 5 ¢qual to Y. Thus the space of possible remaining infinite
terms in Xy, that need to be cancelled by the counterterm Sy, consist
of those functionals X that satisty (Sg, X} = 0, counting as equivalent
functionals that differ only by terms of the form (Sg, Y). In other words,
the infinitics in ['y that need to be cancelled by the counterterms Sy
belong to the cohomology of the mapping X — (Sg, X).

The possible form of the counterterm Sy is limited by the requirement
that Sg + Sy must satisfy whatever structural constraints ar¢ imposed on
the action S. Thus we can complete the proof of renormalizability if we
can show that the cohomology of the mapping X +— (Sg, X) consists only
of functionals that satisfy this structural constraint.

In the case of quantum gravity coupled to the Yang-Miils fields of a
semisimple gauge symmetry, the symmetries of the theory are implemented
by the structural constraint (17.3.1). In this case there is a theorem* that
states that the cohomology of the mapping X +— (Sg,X) (on the space
of local functionals, rather than spacetime-dependent functions, of ghost
number zero) consists™ of functionals A[¢] that are invariant under the

** Strictly speaking, this is valid if one requires that the constant coefficients in § do
not take special values for which § would be invanant under a larger group of local
symmetries. For instance, this excludces the case § = 0.
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gauge transformation ¢” — ¢ + ¢! 7, [¢] with structure constants f€ 4.
Any Nth-order infinity of this sort may be cancelled with a counterterm
Sy of the same form, so although these theories are not renormalizable
in the conventional power-counting sense, they are renormalizable in the
sense that all infinities can be eliminated by a choice of parameters in the
original bare action I[¢] and by a suitable renormalization of fields and
antifields.

In other theories the cohomology of the map X — (Sg,X) contains
additional terms. This does not necessarily require a weakening of the
structural constraints, because the additional terms in the cohomology may
not correspond to actual ultraviolet divergences. For instance, in gauge
theories with U(1) factors the cohomology contains terms?* corresponding
to a redefinition of the action of the U(1) gauge symmetry on the various
fields of the theory, which if infinitc would require us to weaken the
structural constraints by leaving the normalization of the transformation
functions f}[¢] in Eq. (17.3.1) arbitrary. But this infinity is forbidden by
the same soft-photon theorems that tell us that ratios of U(1) couplings
to various fields (like the ratios of the various lepton charges in quantum
electrodynamics) are unaffected by radiative corrections. (See Section
104.) Where the extra terms in the cohomology do contain ultraviolet
divergences, it is necessary to weaken the structural constraint imposed on
S in order that there should be a counterterm for every possible ultraviolet
divergence. It is not known whether this will always be possible; if not,
some theories may have to be rejected because of their unremovable
ultraviolet divergences.

17.4 Background Field Gauge

We next turn to a method of calculation that explicitly prescrves a
sort of gauge invariance, and that therefore proves ¢xtremely conve-
nient, especially in one-loop calculations. We consider the effective action
I'[4,p,w,0"] as a functional® of classical external gauge, matter, ghost
and antighost fields: A, (x), p/(x), wy(x), w}(x). Even though ghosts and
antighosts never appear in initial or final states, we are considering back-
ground ghost and antighost ficlds as well as gauge and matter fields in
order to deal with parts of diagrams that have external ghost or antighost
lines.

" We are now returning to the specific choice of the gauge-fixing functional B[f] as
the Gaussian (15.7.4), and we arc integrating out the auxiliary field #,, so that the
gauge-fixing term in the modified Lagrangian is just —f.f./2¢.
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As described in Section 16.1, T[4, , w, "] is the sum of connected one-
part1cle-1rredu01ble graphs for the vacuum—vacuum amphtude, calculated
in a theory in which the quantum fields 4, ', &' " over which we
integrate are replaced in the action with shifted ﬁelds A+ A p+y, o+
o', »" + ", the path integral being taken over primed ficlds with the
unprimed fields held fixed. We are free to choose the gauge-fixing function
fa(x) pretty much any way we like; instead of our previous choice f, =
0,4 (or 8,[A} 4+ A#]) we shall now take’

fa= 0,48 + CogyAg AL . (17.4.1)

The reason for this choice is that it makes the gauge-fixing term f,f,
invariant under a formal transformation, in which the background field

Al der e oo fald il tha Fald AL trarmafarem

A{Z LLAll™IUI LIS Cl.b a EHUEC llGlU, WlJJ.lC I.llG Lil.ld.].l.Lu].].l JERWILV ﬂﬂ! uauouuum
homogeneously, like an ordinary matter ficld that happens to belong to
the adjoint representation of the gauge group

8 Al = dFey — Copyep A* (17.4.2)
SAL = —Cupyeg AN (17.4.3)

The transformation propertics of f, can be seen most easily by writing it
as a new sort of covariant derivative

fa= DAY, (17.4.4)

where for any field ¢, in the adjoint representation
Du(ba = a#(pa + CaﬁyAﬁ,u(p-y N (17.4.5]

We see that under the transformation (17.4.2), (17.4.3), the function (17.4.1)
transforms just like A,

0fy = —Cugyesfy (17.4.6)
so the term f,f, in the modified Lagrangian is invariant
O(fufu) = —Cougy fueg f =0. (17.4.7)

Also, the original Lagrangian density .# depends on 4 and A’ only through
the sum A+ A’, which under the combined transformation (17.4.2), (17.4.3)
undergoes an ordinary gauge transformation

S(AL + AFY = dtey — Copy ep(Al + A) . (17.4.8)

If we transform the background and quantum matter ficlds by
dp = itgep (17.4.9)
o = ityelp (17.4.10)

then also

S(p + ') = ityealtp + 10') . (17.4.11)
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The original Lagrangian % is invariant under the original gauge trans-
formations (17.4.8), (17.4.11), and only depends on A + A’ and y + ', so
it is also invariant under the new formal transformations (17.4.2), (17.4.3),
(17.4.9), (17.4.10).

It will be useful to make this invariance property more explicit, by
writing & in terms of the background-covariant derivative D,,. In general,
we have

2
L =— 41(5,11 [Arxv + A:xv] = av [AOC;L + A;m] + C@,B? [Aﬁﬂ + Afﬁ,u] [AT”" + A;’V])
+ &M (h‘) + ', Guy + ) — it Ay + Ay, )0 + w’))
_ _ 2
= }I(F“HV + D,UA;,'V - D"Ar + COEB}’ fu :;v)
+ Py (w + ', Dy + ) —itediy(p + )) ; (17.4.12)
where, as in Eq. (17.4.5),

D Am, = 0pdy, + CoppApgud,, (17.4.13)
Dy =0pp —ityAsutp (17.4.14)

and Fy,, is the background field strength
Fopy = 0pAay — Oy Agy + CugyAgudyy . (17.4.15)

(The square in the first term of % is intended to imply obvious index
contractions.) Clearly % is invariant under the new transformations
(17.4.2), (17.4.3), (17.4.9), (17.4.10), because it involves Ay, only in the field
strength Fy,y and in background covariant derivatives D, of ‘matter’ fields
Ay ' and g

This new transformation should be carefully distinguished from a truc
gauge transformation. Such a transformation can have no effect on 4 or
, which are just prescribed classical background fields, and induces an
ordinary gauge transformation on 4 + 4’ and u + ¢/, s0

dTRUEAL, =0, (17.4.16)
STRUBAY = 8¢y — Capyeg(AX + A
= D6y — Cygpepd (17.4.17)
and
dtrRUE p =0, (17.4.18)
dtrur Y’ = = itye,(p + ). (17.4.19)

Of course, this is the same as the formal transformations (17.4.2), (17.4.3),
(17.4.9), (17.4.10) in its cffect on A + A’ and y + v, and therefore also
leaves the original Lagrangian % invariant. However, for our new choice



98 17 Renormalization of Gauge Theories
(17.4.1) of f,, the term f,f, does not depend only on 4 + A’, and is not
invaniant under (17.4.16) and (17.4.17). Instead,

STRUE fa = Dy(D "ey — Cogres A1) (17.4.20)

with D, given by (17.4.5).

Finally, let us consider the ghost Lagrangian in this new gauge. The
quantity (15.7.3) in the ghost action is given in general by just replacing
e, With the ghost field w, + w;, in dTRUES»:

Ay=D, [D‘“(a)a + @) — Capy (g + w;g)A;ﬂ] _ (17.4.21)
The ghost Lagrangian in Eq. (15.6.2) is therefore

o N N A |—F\_u/.,‘ P Y o R Y A!,.',t-l
<2 GH = W, + @, J1L, LU Dy + D,y ) Cagy\tig + (_Uﬁ).(':ly J

=~

—
[N
Ia
2
(%]

e

ot, integrating by parts,
Zon = —(Dulo; + @) (DHwu + w)) = Copylp + wp)Al) . (174.23)

This is manifestly invariant under the joint transformations (17.4.2),
(17.4.3), supplemented now with transformations on @ and «’:

80y = —Capyeper, (17.4.24)

dwly = —Ca,g},e,gwj; . (17.4.25)
and likewise

Sy = —Cypregory (17.4.26)

do, = —Capyepm, . (17.4.27)

We see that the formal combined transformation (17.4.2), (17.4.3),
(17.4.9), (17.4.10), and (174.24)-(174.27) leave invariant the complete
Lagrangian in the modified action (15.6.4):

|
F'vop =& — E Jafa + LcH - (17.4.28)

We are integrating over A, y', ', and @' with a measurce that is pre-
sumed to be invariant under the simple matrix transformations (17.4.3),
(17.4.10), (17.4.25), and (17.4.27), so the effective action I'[A4,p,w,®"] is
invariant under the remaining transformations (17.4.2), (17.4.9), (17.4.24),
and (17.4.26). In other words, it is gauge-invariant in the same sense as
the original action I[A,y, w,»"].

This formal gauge invariance sets powerful constraints on the infinities
that can occur in the effective action. The ultraviolet divergences in I
appear in the coefficients of terms whose dimensionalities are [mass]¢ with
d < 4, but here these terms are invariant under the background gauge
transformations (17.4.2}, (17.4.9), (17.4.24), and (17.4.26). For instance, in
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a gauge theory based on a simple gauge group, with spin 1/2 fermions
belonging to an irreducible representation of this group, the only such
terms are of the form

r, — f dPx L (17.4.29)
Loy =— 1Ly Fouo F¥ — L, py” D#w
—i Ly, ipy — w(D,uwoc)(D'uwrx) 5 (17.4.30)

where here F,, l_)uw, Dﬂwa, and D#a); are constructed entirely from
background fields:**

Fow = 0oy — O0vAgp + Cop, Agudyy (17.4.31)
Dup =0y —itaAuutp , (17.4.32)
D, wy = 0,04 + Copy Aguur, (17.4.33)
Dywy = 8,0} + CypyAg, ) . (17.4.34)

Dimensional analysis leads us to expect that the constants L, Ly, Lp,
and L,, are logarithmically divergent.

To deal with these infinities, we note that the Lagrangian (17.4.12)
contains a purely classical piece

LoLass = — L Fyo FYY — p(3*D, + myyp — (Dyo))(DPwy)  (174.35)

obtained by dropping all terms in #yop that involve the quantum fields
Ay, o, We define renormahzed ficlds

=1+ L; Ay, , (17.4.36)

au
wf=/14+L,p,, (17.4.37)
(o =14+ L,wy, (17.4.38)

=1+ L,w,, (17.4.39)
so that the sum of the terms (17.4.30) and (17.4.35) takes the form
Leorass + Foo=—1 Fiv FRv _ Ry”DRwR
—m"p Ry — (DR Ry DHRuR) (17.4.40)

where m® is the renormalized mass
R=m(l + L) /(1 + Ly), (17.4.41)

** The condition of 4 simple gauge group insures that there is Jl.lSt a smglc kinetic term for
A and for w, proportional to rmr ¥ and D, D" wa, respectively, whiie ihe condition
that t transforms irreducibly insures that there is just a single kinetic term and a
single mass term for 1p. 1t would be easy to treat more general possibilities, at the cost
of a slight complication in notation. We are also implicitly using the conservation of
ghost number.
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and
FRy = 0,45 — 0, AR + Cig, Af, AR, (17.4.42)
DRy = o, — it} A", (17.4.43)
DR 5 =0,0) + cR AR of (17.4.44)
DR *R = 0,0" + Cpp, A, 0% . (17.4.45)
The renormalized structure constants and group generators here are just
otﬁy =(1+ LA)_lﬂC[xﬁy ; (17.4.46)
=(1+La) "ty (17.4.47)

Because we assumed that the Lie algebra here is simple, the structure
constant Cug, and group generator t, are fixed by the group structure
except for a single common factor, the unrenormalized gauge coupling
constant g. Egs. (17.4.46) and (17.4.47) thus simply te¢ll us that the gauge
coupling constant gR factor in CR and tR is renormalized by

gh=g(l+ Ly 2. (17.4.48)

This result exhibits the particular virtue of the background ficld gauge.
In a general gauge we would encounter independent renormalization
factors for the gauge field and the gauge coupling constant, and we would
have to calculate two separate amplitudes (say, the vacuum polarization
and three-gauge-ficld vertex function} in order to be able to sort these
out. In background ficld gauge, background ficld gauge invariance ties
these two renormalizations together by requiring that the infinite terms
in the effective Lagrangian involve the field strength in its original form
(17.4.31), and so we can calculate the charge renormalization factor by
studying just one gauge field amplitude.

17.5 A One-Loop Calculation in Background Field Gauge

As an exercise, we are now going to calculate the one-loop renormalization
factor for the gauge coupling constant in a general non-Abelian gauge
theory. As we will see in the next chapter, this provides an essential input
in so-called ‘renormalization group’ calculations of physical processes at
high energy; the results we obtain here will be used there to demonstrate
the asymptotic freedom of non-Abelian gauge theories.

The method to be employed here is somewhat novel. Usually, one
considers the effective action in a spacetime-dependent background gauge
field, and calculates the terms quadratic in this ficld, extracting a factor
(9uAay — dvAa,)? (Where ¢ is the gauge field four-momentum), and only
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then isolating the logarithmic divergence by setting g = 0 in the coefficient
of this factor. Instead we shall follow the much simpler course of taking
the gauge field to be spacetime-independent from the beginning. In this
case the terms in the effective action that are quadratic or cubic in the
gauge field of course vanish, but there is a non-vanishing quartic term that
is ultraviolet divergent, and which can be used to calculate the coupling
constant renormalization factor (1 + L,)~/2, In this way our one-loop
calculation becomes a matter of simple matrix algebra. Note that this
procedure can only work in background field gauge; otherwise there would
be independent logarithmic divergences in the parts of the effective action
that are quartic and quadratic in the background gauge field.

With this motivation, we turn to the calculation of the one-loop effective
action in a background field for which A, is constant and p = w = w* =
0. For such a background field, the full modified Lagrangian is"

FIvop =L +F5+ Pen , (17.5.1)
& == §(Fuw + Dy}, — DAy, + Copypdf A, )
— PB—itudy + myy (17.5.2)
1 1
—aeldfu=— g(Dufl*”) (17.5.3)
Fan = —(Dyw; ) DFol ~ Copyapdl) . (17.5.4)

One-loop graphs for vacuum-vacuum amplitudes are calculated from the
part of the action that is quadratic in the quantum fields A’ ¢/, @', "
over which one integrates. Keeping ouly such quadratic terms, we have

1 _ = 1
Fouap = —Z(DuAév —~ DA, — 3 5 F Copy 4 A5,
B+ myy — L(D AM? — (D) (D L) . (17.5.5)

2¢

The corresponding action may be put in the general quadratic form:
Iquap = _/ d*x Zouap
= — f d*x d*y A“(x)Aﬁ .@mﬂyﬁv / d*xdy LX) jfkyf

/d“xd“ya) (X)05(¥) Do yp (17.5.6)

“See Eqgs. (17.4.12), (174.4), and (17423) We arc here specializing to the case of
matter ficlds forming a multiplet of spin 1 fermions. The squares in . and ¢, include

obvious index contractions.
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with
0 i 0
'@xst,uyﬁv = "uv( ‘5 aa + C’VﬁﬂtAé(x)) ( - 5}JB W + C}’EﬁAEi(y))54(x —)
o ¢
_( - 5})&% + CyéocAév(x)) ( - 5?35)}; + CytﬂAc;t(y))54(x —y)
—+—Fw\,(x)Cm354(x - )
1 % d
+ z;'( = O+ Craadou()) (= 15 5t CrepAen(1))3*(x — )
(17.5.7)
d
D0 = (5 — i)t m) S, (1758)
yH k¢
. 0 %
s = (g + G (<05 +Cpoptl)) 8% —3).
(17.5.9)

(The minus signs in front of /0x and d/dy drop out when we integrate
by parts.)

The one-loop contribution to the effective action is given (as in Section
16.2) by

exp (zFl loop[ 4] ) / HdA’)(H dy')( Hdlp Hdw Hd(o )
X eXp(rIQUAD[A’,w,@,w,w ;A])
oc (Det2)~V(Deta?)t (Detz®)t! (17.5.10)

(The exponents —1/2 and +1 appear because A’ is a real boson field,
while v/, @, ', and w™ are distinct fermionic fields.) The calculation
of such determinants is generally not an easy task. However, it becomes
much simpler in the case of constant external fields, where the @s can be
diagonalized by passing to momentum space.

Let’s therefore now consider the case of constant background field Ay
For non-Abelian gauge theories such a constant field cannor be removed
by a gauge transformation, as shown by the non-zero values of various
gauge-covariant fields

Foc;w = CqﬁyAﬁpAyv s (17511]

DiFém- = C&FxcaﬁyAciAﬁpAyv . (175]_2)

and so on. Lorentz and gauge invariance tell us how to express the part
of I'[4] of a given dimensionality as the integral of a finite number of

local functions of F,,,, D;Fy,, etc.; the coefficients of the terms in this
expression can be inferred by comparing the contribution that these terms
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make to I'[4] for constant background field 4,, with the results of a
perturbative expansion.

We transform each of the ‘matrices’ %4, @Y, and 9° to a momentum
basis by the usual normalized Fourier transform

dx o dy
T = (2m)? e (2n)? e Dy (17.5.13)
With A constant, this gives
Dy =0 p—q) M ....(q), (17.5.14)
where --- denotes discrete indices, and the .# are finite g-dependent
matrices

M oy (D) = o —iqida + A51Cyo0)(iq By + A Cep)
_(‘fq'uéyoe + Aéjvc},ga) (iqﬂé“,’ﬂ + Af,ucyfﬁj

+Fyuy Crap
+(_iQ,u5~,m + Aépc}'éx) (fq\féyﬂ + Angyeﬁ)/i
~+€ terms , (17.5.15)
M ip(q) = (i § — itydy + M)y + € terms, (17.5.16)
(@) = (—igz0y + As5:Cy52) (iq*3,5 + A7C,ep)
+e terms , (17.5.17)

with F,,, given by Eq. (17.5.11). From Eq. (17.5.10) we have then

it 1eoP)[ 4] = — 1 In Det@” + In Det@" + In Det2
=— 1Trln " +Trln 9% + Trln 9*

=50 p) [da[~ 1 in )+ i av(g)
+trln ﬁw(q)] . (17.5.18)

We denote traces by ‘tr’ instead of ‘T’ in the last line of Eq. (17.5.18) (and
from now on in this section) to indicate that these are the usual traces of
finite matrices rather than of integral operators.

Since we are aiming here at a calculation of the infinite factor Ly
multiplying FF terms in the effective action, let’s isolate the term in
(17.5.18) that is of fourth order in the background field 4. For this
purpose, it is convenient to divide each .# into terms .#, containing

n=01 or 2 factors of 4:

M= o+ |+ My (17.5.19)

It is then elementary algebra to show that the term in (17.5.18) of fourth
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Figure 17.1. One-loop Feynman diagrams for the term in the quantum effective
action that is guartic in a constant background gauge field A% Here solid lines
represent internal gauge, ghost, or matter lines; dashed lines indicate factors of
A" These three diagrams correspond to the three terms in Eq. (17.5.20).

order in Ay, is
[trIn g = tr{ ~ L[40G o)
L PG ey — LG ] ) L (17.5.20)

(To see this, insert factors ¢ and €? multiplying .#, and .#2 in Eq.
(17.5.19), differentiate tr In .# four times with respect to ¢, divide by 4!
and set ¢ = 0.) The .#! factors here are just the usual propagators; for
& =1, these are

[ (@ sy = Supti(@® —i0)7", (17.521)
DI =i d +mlit (17.5.22)
(G (@)]5h = dapla® — ie)7L . (17.5.23)

Indeed, the three terms in Eq. (17.5.20) just correspond to the three Feyn-
man diagrams shown in Figure 17.1; the present method of calculation
saves us from having to think about signs and combinatoric factors.

For the A loop, Eq. (17.5.15) gives for £ = 1:

[ﬁf(q)]a,u,ﬁv = _Zﬂuvql [.sf;]mﬁ )
(A3 @ags =+ [N S 28* = byl y = Lyl ]| 4 Fopn Cap

whete &7, is the matrix
[wi]aﬂ = —i CotﬁyAy.l
for which

['-Qf)’,a LQﬁfp]oc,!? = _Cozéycéﬁe (A]J;{Aep - AypAei)
= _(Cccéycé,ﬁe + Cocéecéﬁy)AylAep
= +Ca5ﬁCJEyA}'1Aep = acéﬁFépi .
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The integrals have the structure
f d*qq'q’ f(g®) = " f d*q 4°f(¢%),
f Eqq'q" "9 1(@) = L™ w*" + 0’ 4 npon e f d*q (°)f(d°)-
We then find, for & = 1;
f d*q tr { [ﬁg(q)‘lﬂ‘;(q): 2} = 4.9 tr[&ﬁ”lﬁicszﬂdq]

+47 CyapConp Fyyn F
12
[ @au{ [adar atia) asar b)) = as tr[.sfwmwnl ,

4
/ d*q tr{[ﬂg(q)—lﬂf(q)] }: gftr[zwwmw,, +Mwm.gf,,] ,
where .# is the divergent integral

= f P lq®—ie] 2, (17.5.24)

whose significance is discussed below. Putting this together in Eq. (17.5.20),
we have

/ dq[un .ai(g) = 9 [t sl ol Ay — A Al

=29 Cyop Cﬁaﬁ Fouy Fé
Both terms are actually of the same form, and when combined yield
/ d'q [tr In '/%A(Q)]Aa = =3I CupCsapFy F§" . (17.5.25)
Now jumping ahead to the ghost loop, we see from Eq. (17.5.17) that
[ (@)as = =20t Mup g, (17.5.26)
[ (@)ap = [ 1]ug . (17.5.27)

We then find
2
/ d%tr{{ﬂf‘,’(q)_l,ﬂg’(q)] b= s ulaiat )

2 - b R
/ aqtri AT AT A )} = S el 51 a0,),

f d‘ﬂ;tr{[ﬁ' , (q)r}: L IRt A AN Ay + A ANk ]
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Thus for the ghost loop the integral of the quantity (17.5.20) is

/ Bq [Tr n #°(@l g = 15 T A 1Mk y — st 14,

= & FC,upCoapFyu FY . (17.5.28)
Finally, the vertices in the matter loop are
LAY (Dlke = —i (tadu)rr [ ()lke =0,
so here there is only one term in Eq. (17.5.20):
fd4q[TrlnﬁW( fd4qTr{(14+m tA]}

We are interested in the ultraviolet-divergent part of this integral, so we
may drop the mass (which is negligible for large g¥) and write

/ d*q [Tr In Y (q)] g6 = — VTr{tatgt,ts} AuudgrAypAse
Tr EogyY gdvP gy°
o /d4q 1 v 24? _du; ¢r°}

(q* — ie)

F

x Te{ 2y y"y gy 9"y + 7y v}
(17.5.29)

where .# is the same divergent integral as in Eq. (17.5.24). To calculate the
traces of Dirac matrices, we use the anticommutation relations of these
matrices to write

Te{ 20y oy Y™ + 7y iy YOy }

= 8Tr{y"y yPy°} — 4Tr {p yHyPy7} — 4Tr{pHyPy"57}
— _64,7##”“0' .+_ 32’]#"”{30’ _|_ 32',’,#0'"1);) )

Eq. (17.5.29) then gives
[ da[Temar @) = 45 Te{ [t 1)l 1) g, 424
= — LIF,, F¥ Trit,ts} . (17.5.30)
Using Eqs. (17.5.25), (17.5.28), and (17.5.30) in Eq. (17.5.18) gives at last

ol /5 1 1
F{l loop) (27.[ / d4 Fg,uv u {(6 + TZ—) Cmﬁctgaﬁ — § Tr{fyt(s}] ’

(17.5.31)
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where we have expressed the momentum-space delta-function in (17.5.14)
as

3p—p) = (2n) f dxl (17.5.32)

It is important that the result turns out to depend on A,, only through
the field strength (17.5.11), as required by background gauge invariance.

Let us now (for the first time in this section) use the assumed simplicity
of the gauge group and irreducibility of the matter field multiplet, In this
case

Cyccﬁcﬁaﬁ = gzcl 5)’6 s (17533)
Tr{t,ty} = g°Cabys , (17.5.34)

where g is the common gauge coupling constant appearing as a factor in
Cyep and ¢, and C; and C, ar¢ numerical constants that characterize the
gauge group and the represenlation of this group provided by the matter
multiplet. For instance, in the original Yang-Mills theory the gauge group
1s SU(2) (or equivalently SO(3)) and the structure constants are

Coup = €upy

with o, f, and y running over the values 1, 2, 3. Comparing with
Eq. (17.5.33), we see that here

C =2,

Also 1n this theory the matter field forms a doublet with ¢, given by g/2
times the usual Pauli matrix g, so

C=1/2.

Somewhat more generally, for the group SU(N) with ny fermions in the
defining representation, with a conventional normalization of generators
we have™

Ci=N, Cr=ns/2. (17.5.35)
Returning now to the general case, Eqs. (17.5.33) and (17.5.34) give
) .
(1 loopy _ —i8°F 4 w [11 1
FA“ = W ] d JCFWWP;{; [ﬁ Cl - §C2 . (17.536)

That is, the infinite constant L, in Eq. (17.4.30) is

;2
_ digns Ecl—%cﬂ

b= ony \ T2

(17.5.37)

** For SU(3) the 1, arc taken as g/2 times the Gell-Mann matrices 4, used in Section 19.7,
so that Cyp. = (2/2)f.5,.
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It remains to say a word about the interpretation of the divergent
integral .#. First, before we try to integrate over the three-momentum
q, we can rotate the contour of integration of ¢° in Eq. (17.5.24) to the
imaginary axis; as usual, the —ie is the denominator forces us to rotate
counterclockwise, so that ¢° = ig4, with ¢* running from —oo to 4+o0. The
integral is then

Q9. 2 Sd

F=i / mde (17.5.38)
0 q

where ¢ is now the magnitude of the Euclidean four-vector (¢!, 42, ¢°, ¢*).

To go further, we evidently need some method of regulating the integral.

The simplest way of dealing with the ultraviolet divergence is just to cut

ntantal fAar 1 ahava - da A Heae alan nasd

off the 111Lc51a1 IO g ao0ove a sCalld A, nOwever, we disO neéca a lower
cut-off to deal with the infrared divergence. This is provided by the
physics of the situation. If the momenta of the four vector particles is not
zero, then a momentum flows through the internal lines of the diagrams,
providing an infrared cut-off at the scale y of these momenta. Similarly,
if we evaluate the fourth variational derivative of I'[4] with respect to A4
not at A = 0 but at a finite 4, then the propagators of the internal lines
do not blow up at zero momenta, and we have an infrared cut-off at a
scale u ~ gA4. Either way, .# takes the form

A
5= 2n2i/ U4 _ iy (é) (17.5.39)
g 4 M
and hence
2
__g /.1 ) (é) 4
La=—75 (12 Ci—3C ) () +06". (17.5.40)
Eq. (17.4.48) then gives the renormalized coupling as
=g |l+ 21 (A (“c-—c)+0 4 17.5.41)
gR=2¢ 122 )121 ;62 g1 - (17.5.

We note that while in quantum electrodynamics the radiative corrections
discussed in Section 11.2 decrease the physical coupling gg relative to the
bare coupling g, in non-Abelian gauge theories they increase the physical
coupling over the bare coupling, provided that the fermion multiplet is
small enough so that C; < 11C, /4. The importance of this point will be
explored in Chapter 18.

Alternatively, we can deal with the ultraviolet divergence by the methods
of dimensional regularization, discussed in Section 11.2. Here, in place of
Eq. (17.5.39), we write

oozzd-ld
j=.f n°q""ldg
0

@+ P (17.542)
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where d is a complex dimensionality, allowed to approach 4 at the end of
the calculation, and g is an infrared cut-off, again taken of the order of
the external momenta (or of the background fields times g). As long as d
is complex with Re d < 0 and p? > 0, this has the finite value

F = —in’ (g — 1) u~*n [ sin [(g — 2) n] .

Analytically continuing to d — 4, this is

di—4

where - -+ denotes finite y-independent terms. Here we have

F - ~2in? [L +ln gt ] : (17.5.43)

g /11 1 )( 1 )
Li=2 (¢ -G (— -\ t+o0
A 27[2(12& 3C2 d_4+ln#+ )+ (&)

and so

2
g2 (11 1 1 s
= _— —_ _ = — 1 L .
8R g{l 4n2(12C| 3C2)(d_4+nu+ )+O(g)
(17.5.44)

Note that the ultraviolet divergence here takes a different form, but the
dependence on the infrared cut-off u is the same. Eq. (17.5.44) will provide
an important input to our discussion of asymptotic freedom in Section
18.7.

Problems

. Carry out the proof of renormalizability given in Section 17.2, in-
cluding elementary scalar fields in the Lagrangian.

2. Carry out the quantization of a non-Abelian gauge theory in back-
ground field gauge, using the BRST method of quantization discussed
at the end of Section 17.2.

3. Derive the relation (17.5.44) between the renormalized and unrenor-
malized gauge couplings by calculating the terms in I'119°P) that are
quadratic in a spacetime-dependent gauge field.

4. Calculate the one-loop relation between the renormalized and un-
renormalized gauge couplings in a gauge theory containing elemen-
tary scalar fields.
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Renormalization Group Methods

The method of the renormalization group was originally introduced by
Gell-Mann and Low! as a means of dealing with the failure of perturbation
theory at very high energies in quantum electrodynamics. An n-loop
contribution to an amplitude involving momenta of order g, such as
the vacuum polarization I, (q), is found to contain up to n factors of
In(g%/m2) as well as a factor o”, so perturbation theory will break down
when o| In(q%/m2)| is large, even though the fine structure constant o is
small. Even in a massless theory like a non-Abelian gauge theory we
must introduce some scale u to specify a renormalization point at which
the renormalized coupling constants are to be defined, and in this case
we encounter logarithms In(E/u), so that perturbation theory may break
down if E > p or E < p, even if the coupling constant is small.

Fortunately, there is a modified version of perturbation theory that can
often be used in such cases. The key idea of this approach consists in the
introduction of coupling constants g, defined at a sliding renormalization
scale u — that is, a scale that is not related to particle masses in any
fixed way. By then choosing u to be of the same order of magnitude as
the energy E that is typical of the process in question, the factors In(E /i)
are rendered harmless. We can then do perturbation theory as long as
g, remains small. In particular, given the coupling constants defined at
scale yu, we can use perturbation theory to calculate physical amplitudes
at an energy u + du, and use these to calculate the coupling constants
defined at a renormalization scale u + dp. By integrating the resulting
differential equation we can then relate the coupling constants at the scale
of interest to the coupling constants as conventionally defined. (The name
‘renormalization group’ arose originally because one is concerned here
with equations that describe how the appearance of a theory changes
under a redefinition of the renormalized coupling constants, but it really
has nothing to do with group theory.) The method of the renormalization
group can also provide qualitative guidance regarding asymptotic behavior
at very high or (in massless theories) at very low energy, even where the

111
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coupling constants at the scale of interest are too large to allow the use
of perturbation theory.

Although the method of the renormalization group arose originally in
connection with changes in the prescription used to define renormalized
coupling constants, it has come to have a wider meaning. When we replace
bare couplings and fields with renormalized couplings and fields defined
in terms of matrix elements evaluated at a characteristic energy scale u,
the integrals over virtual momenta will be effectively cut off at energy
and momentum scales of order u. Thus as we change u, we are in effect
changing the scope of the degrees of freedom taken into account in our
calculations. The lesson of the renormalization group, that in order to
avoid large logarithms we should take 4 to be of the order of the energy

P Pty 1 Af tha mrscaco hate o P Pt | grmarial maoa ~f Looada..
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principle, that in order to do calculations at a given energy we should first
get rid of the degrees of freedom of much higher energy.

There are various other ways to accomplish this. As we saw in Section
12.4, in the approach to the renormalization group pioneered by Wilson®
one introduces a finite explicit cut-off accompanied by a change in the
parameters of the theory designed to keep physical quantities cut-off-
independent. This approach requires introduction of an infinite number
of interaction types, all those allowed by the symmetries of the theory,
and is therefore not particularly convenient in dealing with theories that
are actually renormalizable, like quantum electrodynamics (although, as
discussed in Section 12.3, quantum electrodynamics is today regarded as
only a very good approximation to a non-renormalizable theory in which
the higher-dimensional interactions are suppressed by negative powers of
some very large mass.) Where the cut-off is imposed by quantizing a
gauge theory on a finite spacetime lattice, the Wilson approach has the
advantage that calculations can be done while maintaining manifest gauge
invariance (the volume of the gauge group equaling the volume of the
global symmetry group times the number of lattice sites), but it has the
disadvantage of not maintaining manifest Lorentz or rotational invariance.
In any case much of the formalism of the renormalization group remains
the same whatever approach is used to eliminate the high-energy degrees
of freedom.

18.1 Where do the Large Logarithms Come From?

Let us first consider how large logarithms can arise at very high energies.
Consider a physical amplitude or cross section or other rate parameter
I'(E, x, g, m), that depends on an over-all energy scale E, on various angles
and energy ratios collectively called x, on various dimensionless coupling
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constants collectively called g, and on various masses collectively called
m. If T has dimensionality [mass)? (as, for instance, a cross section would

have D = —2) then simple dimensional analysis tells us that
I(E.x,¢,m) = EPT (1, X, 2, %) . (18.1.1)

We might expect that in the limit E — oo such an amplitude would behave
as a simple power

I'(E,x,g,m) — E’I(1,x,2,0).

But this is not what is found. Instead, in perturbation theory calculations
the factor EP is found to be accompanied by powers of In(E /m), which

imualidata giemitnla aveziaee 1ae P,

invahlidate this simple power-law behavior.

Clearly, powers of In(E/m) can enter as E — oo with fixed m only if
the.amplitude T at fixed energy E becomes singular as m — 0. There are
two classes of such mass singularities, one which is simply eliminated by
calculating the right sort of amplitude or rate constant, the other of which
requires a change in our renormalization procedure.

Zero-mass singularities of the first sort arise from a confluence of poles
of propagators on the mass shells of the corresponding particles. For
instance, suppose that a Feynman diagram has an incoming line with
total four-momentum p*, attached at a vertex to internal lines of mass
my,my,... My According to the arguments of Chapter 10, the correspond-
ing Feynman diagram will have a cut running along the negative real p>

axis, from p> = —(my +...4+-m,)? to ~co. This does not lead to singularities
if the external line is for a stable particle, with a mass M < m; + ... + my,
because then p? = —M? is off the cut. However, when M, my,... m, all

g0 to zero, the value of —p? on the mass shell and the branch point at the
tip of this cut move together to join at p? = 0, producing a singularity.

This suggests that we can avoid the infrared divergences at m = 0 by
simply staying off the mass shell, as, for instance, by letting p? for all
external lines go to +oo along with all energy variables. We would then
have to employ dispersion relations or some other technique of analytic
continuation to use the results for the behavior of Feynman amplitudes
in this limit to tell us anything about S-matrix elements. Often this
continuation is unnecessary because we are interested not in on-shell
S-matrix elements but rather in the matrix elements of currents carrying
momenta g unrelated to any masses. For instance, the vacuum polarization
function n(g?) defined in Section 10.5 is free of zero-mass singularities of
the first sort except for ¢ < 0.

Another approach to the elimination of mass singularities of the first
type is suggested by the observation that zero-mass singularities typically
occur 1f we try to calculate a cross section that becomes unmeasurable
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in the limit m — 0. For instance, in quantum electrodynamics the cross
section for any process involving definite numbers of electrons and photons
becomes infrared-divergent in the limit m, — 0, even if we sum over
unlimited numbers of soft photons, because for m, — 0 it is impossible
to distinguish an electron from a jet of electrons, positrons, and photons
with total charge —e, all moving in the same direction at the same
speed. As shown in Chapter 13, such infrared divergences can be cured
by considering only suitably integrated cross sections, which would be
measurable for m, — 0. For instance, instead of trying to calculate
the cross section for a specific Compton scattering process, we would
calculate the cross section for the scattering of a jet with total charge
—e with another of total charge zero into two other such jets, plus soft
photons. Such inclusive rates or cross sections, which remain finite when
all masses vanish, are known as ‘infrared safe’

Our troubles are not over. Even where we avoid infrared divergences by
integrating over cross sections or staying off the mass shell, the resulting
integrated cross sections or off-shell amplitudes for energies E contain
mass singularities of a second type, leading to factors In(E/m) that in-
validate the naive power-law behavior suggested by dimensional analysis.
The reason can be traced to the fact that renormalized coupling constants
are conventionally defined in terms of amplitudes that become infrared-
divergent when all masses vanish. For instance, consider the theory of a
real scalar field with Lagrangian density

____1: . 7 _1 2 2_i 4
=5 0:09"¢— s m ¢ — 259" (18.12)

To one-loop order, the invariant elastic scattering amplitude for a scatter-
ing process with initial four-momenta p;, p2, and final four-momenta pj,
D5, is given by Eq. (12.2.24) as

2 1 2
g A
= _ 1
A=¢ 32n? _[0 dx{ n(mz—sx(l—x))

Az A2 s
e (m2 —wx(l —x)) i (m2 — ux(1 —x)) - 3} +0(g"), (18.13)

where s, t, and u are the Mandelstam variables

s=-~(p+p2)?, t=—(p1—p)V, u=—(p1—ps)’

and A is an ultraviolet cut-off. This has no zero-mass singularities as long
as we keep s, 1, and 4 away from the positive real axis, and in particular if
they all go to —oo (which violates the mass shell condition s+t+u = 4m?.)
Of course, the amplitude depends on the cut-off A as well as on m, so even
though there are no zero-mass singularities, we do not find the result A —
constant that would be found on the basis of naive scaling arguments
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in the limit as s, ¢, and u go to —cc. The dependence on the cut-off
can be buried by renormalization; we replace the bare coupling g with a
renormalized coupling gg, defined as the value of A at some convenient
renormalization point. For instance, we might take

gr=A(s=1t=u=0)

_ 357 A? 3
=g 25 {111 - 1} +0(g%). (18.1.4)

Then (18.1.3} becomes

2 1 .
_ gr _osx(d —x))
A=gp+ oK fo dx{ In (1 =

F

tx(1 — x)\ (o ux(l—x)\ ) 3
Fin (1= =5 )+ (177 =) f+0Ger). (18.15)

(We can freely replace g2 with g3 in the second term, because the difference
is only of order g3.) This is free of ultraviolet divergences, but it now has
a singularity at m = 0, even where s, t, and u are all kept negative. In
consequence, where s, t, and u all go to —occ, we again find an asymptotic
behavior in disagreement with expectations based on naive scaling

3222{111( )-F—ln( )+1n(m)—6} (18.1.6)

(Much the same happens with any other ‘natural’ definition of the renor-
malized coupling; for instance, we might define gg as the value of A4 at
the on-shell symmetrical point s = t = u = 4m?/3, and would recover
the same asymptotic behavior as in Eq. (18.1.6), except that —6 would be
replaced some other numerical constant.) It is clear that the zero-mass
singularity that is encountered when A is expressed in terms of gg arises
entirely from the Inm? term in the formula (18.1.4) for the renormalized
coupling gg in terms of the bare coupling g.

There are in addition other zero-mass singularitics that are encountered
when we calculate matrix elements of operators (such as off-shell Feynman
amplitudes) rather than integrals of cross sections, These are due to the
necessity of renormalizing these operators as well as coupling constants.
For instance, suppose that in the scalar field theory with Lagrangian
(18.1.2), we wish to calculate some matrix element (8|0(p)le) of the
operator

o) = [ dxe 7 g (x). (18.1.7)

In Feynman diagram terms, this corresponds to inserting a vertex in
which two internal ¢-lines come together, and through which flows a total
four-momentum p in diagrams for the transition « — f. (See Figure 18.1.)
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Figure 18.1. Momentum-space Feynman diagrams for the matrix element of the
operator [ d*x exp(—ip - x) ¢*(x) in the theory of an elementary scalar field
¢(x). The cross-hatched disk represents the sum of diagrams with the indicated
external lines. Apart from the pair of external lines that meet in a ¢* vertex, the
other external lines attached to the disk represent the particles in the initial and

final states between which the matrix element is evaluated.

Figure 18.2. A class of Feynman diagrams for the matrix element of the operator
J d*x exp(—ip - x) ¢*(x) that exhibit an ultraviolet divergence. The notation is
the same as in Figure 18.1.

Ultraviolet divergences arise from a class of diagrams in which this new
vertex is part of a subdiagram that is connected to the rest of the graph
by just two ¢-lines. (See Figure 18.2.) Dimensional analysis shows that the
subgraph would be convergent if connected to the rest of the diagram by
and hence a subdiagram in which this vertex is connected to the rest of
the graph by n > 2 lines has dimensionality 4 — 2 — n < 0. The divergent
part of this subdiagram is just a logarithmically divergent constant, so
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Figure 18.3. The divergent part of the diagram in Figure 18.2, to onc-loop order.

the matrix elements of ¢? can be made finite* by multiplying ¢ with a
suitable divergent constant Z,.. To order g?, the relevant subdiagram is
given by the diagrams of Figure 18.3, and hence contributes to matrix
elements of @(p) a divergent factor

2 d*k
f [k* +m? —ie] {(p— k)2 + m? —ie]
(18.1.8)
Combining denominators, rotating the k¥ integration contour, and impos-
ing an ultraviolet cut-off A gives a result, for A — «©

—i

(2m)t

F(p)=1+ % —i(2n)'g]

Fio)=1— 5 [ axll A’ 1| +0(g?. (1819
(p)_ _m 0 X |1n m2+p2x(1—x) - + (g) ( )

This has no zero-mass singularity (as long as we keep p’ positive), but
of course it does depend on the cut-off. This logarithmic divergence is
eliminated by defining a renormalized ¢* operator

(¢P)r = N2 (18.1.10)

with N©") chosen so that N®"F(p) has some definite finite value at
some definite renormalization point. For instance, we could define the
renormalized ¢? operator so that

NYIFO) =1, (18.1.11)

in which case

N —14 B (Y +0(g? 18.1.12
= 2 (s g£7). (18.1.12)

The matrix elements of the renormalized operator (¢?)z then contain a

* In making this argument it was assumed that any divergences arising from subsub-
diagrams containing the ¢ vertex which are attached to the rest of the subdiagram
by just two ¢-lines are eliminated in the same way.
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factor

Frip) = N9F(p) = 1+ £ 2[ dx In (1+”—-’%)+0(g2).
(18.1.13)

This is finite for all p> > 0 and m? > 0, but it now contains an infrared
singularity for m — 0, corresponding to large logarithms in the asymptotic
behavior when p? — 4cc. Of course in order to eliminate the cut-off in
higher-order calculations we would have to introduce a renormalized
coupling constant as well as a renormalized ¢? operator, and we would
encounter logarithms arising from both sources.

Similar renormalization factors are needed for any sort of operator,
not just ¢*(x). In particular, taking a matrix element of one of the
clementary fields y of a theory introduces ultraviolet divergences that
arise from radiative corrections to the corresponding propagator. As we
saw in Chapter 12, these infinities can be cancelled by working with a
renormalized field ypg:

g =NWy (18.1.14)

with N chosen to make the matrix element of g between a one-particle
state and the vacuum the same as for a conventionally normalized field
in the absence of interactions. This is related to the usual Z-factor of
renormalization theory by

V)= N2, (18.1.15)

For instance, let’s recall our earlier results for the renormalization of
the photon field in spinor quantum electrodynamics.”™ In this case, the
renormalized electromagnetic field 4% is conventionally written in terms
of the ‘bare’ field A as

Ab =714
with Z3 given by Eq. (11.2.21) as

Zi=1- < n(X +0(e 18.1.16
7 1272 m? ¢)- (13.1.16)

This has a zero-mass singularity, which will affect the asymptotic behav-
ior of matrix elements of the renormalized photon field. 1n particular,

**In the scalar field theory with ¢* intcraction used as an example above, the lowest-
order terms in N® arise from a two-loop graph, so it will not be convenient to use
thig theory to illustrate the calculation of the N-factors.
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Eq. (11.2.22) gives the self-energy function of the renormalized clectro-
magnetic field as

n(qz) = [ dx x(1 —x)In [1 +_x(m_x)] + 0(eh). (18.1.17)

This has a smgularlty at m = 0, and so has large logarithms in its

asymptotic behavior: for g> — 40

2 2

2 e 1 q 5 4

— |=In &5 - = . 18.1.18

RR(Q)—bznz [6 Ilm2 18:l+0(e] ( 1 )
Electrodynamics has the special feature that the constant Z3 that ap-

pears in the renormalization of the electromagnetic field also appears in

the renormalization of the electric charge:

er = Z3y'" enan , (18.1.19)

but this is not generally the case. Renormalization group techniques
were first applied in quantum electrodynamics, but the scalar field theory
discussed here gives a more typical illustration of these methods, with
separate renormalizations for fields and couplings.

18.2 The Sliding Scale

We have seen in the previous section that the large logarithms that appear
at high energy in suitably integrated cross scctions or off-shell Feynman
amplitudes can be traced to the prescription used to define renormalized
coupling constants and operators. The central idea of the renormalization
group method is to change this prescription.

Suppose we find some way of defining a new kind of renormalized
coupling constant g(u), that depends on a sliding energy scale p, but that
(at least for g > m) has no dependence on the scale m of the masses of
the theory. Then suitably integrated cross sections or other infrared-safe
rate parameters may be expressed as functions of g, and u instead of gp.
By dimensional analysis such functions may be written as

T(E,x,gump) = EPT (l,x,g“, % %) . (18.2.1)

(Our notation here is the same as in Section 18.1; in particular, x stands
for all dlmensmnless angles cnergy ratios, etc. on which I may depend)

armali A eeale
Since H is a c uuuxl.m.w;y ar buuuy renormalization §Caic, wg <an choose

p = E, in which case Eq. (18.2.1) reads

I'(E.x,g.,mu) =EPT (I,x,gE, % ) . (18.2.2)
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This now has no zero-mass singularities because gz does not depend on m
for m < E, so there are no large logarithms, and we can use perturbation
theory to calculate I' in terms of gg as long as gg itself remains sufficiently
small. In particular, in any finite order of perturbation theory I" has the
asymptotic behavior, for E > m,

I'(E,x,g,,mu) — EPT(1, x, gg, 0,1) .. (18.2.3)

(Non-perturbative corrections are considered in Section 18.4.)

It remains to calculate gg. For instance, in the scalar field theory
with Lagrangian (18.1.2), we may define g, in terms of the value of the
scattering amplitude at a renormalization point s =t = u = —p2:

G=A=t=u=—y)

N /Idx In A* 14 yowd 1824
—é 3272 Joy m? + p2x(1 — x) g -

or, in terms of the conventional renormalized coupling (18.1.4),

392 [l 2%(1 — x
2, = gr + % /0 dx In (1 + —"-‘—(mj—)) +0@d). (1825

But this formula is reliable only if the correction term is smaller than gg;
that is, only if |gr In(u/m)] < 1. If this were the case for 4 ~ E, then
we would not need the methods of the renormalization group; ordinary
perturbation theory would be good enough.

Instead of using formulas like (18.2.5) directly for large u, we must
instead proceed in stages: g, may be calculated in terms of gr as long
as u/m is not much larger than unity; then g, may be calculated in
terms of g, as long as u'/u is not much larger than unity; and so on,
up to gg. Instead of discrete stages, this may also be done continuously.
Dimensional analysis tells us that the relation between g, and g, takes
the form

8w = Glgy, /1, m/p). (18.2.6)

Differentiating with respect to u' and then selting g/ = u yields the
differential equation

d m
U—g, = ﬁ( , —) , 18.2.7
P g, £, p ( )
where

B(en %) =[5 6wz mim)] (1328)

=1

There are no zero-mass singularities hete, so for g > m the differential
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cquation becomes simply

d
8= Blgu, 0) = Bigy), (18.2.9)

which is often known as the Callan-Symanzik equation.! We are to cal-
culate gg by integrating the differential equation (18.2.9), with an initial
value g at some scale u = M, chosen in practice large enough so that for
i > M we can neglect the masses m compared with u, but small enough so
that large logarithms In(M /m) do not prevent us from using perturbation
theory to calculate gps in terms of the conventional renormalized coupling
constant gg. The solution may be formally written

Tan £ 7 RAY I‘KE ¥
lIlL/iVI)—j ug/
M

—
et
=la]
N2
[i—
=

e

F2 X g
pig)

as long as f{g) does not vanish between gy and gg.

The results of the previous paragraph do not rely on perturbation
theory, but we usually need to use perturbation theory to calculate the
functions G and #. As an example, suppose we calculate g, in the scalar
field theory with interaction g¢*/24, renormalizing by expressing g in
terms of g, rather than gr. Following the same procedure that led to
Eq. (18.2.5), this gives

38‘“ m2 + Juzx(l - x) 3
8 =8 — 353 / dx In (mz T+ 12x(1 — %) + 0(g,) -

Then Eq. (18.2.8) gives

m 3g3 ! 2x(1 — x) 3
— | =+ . 18.2.11
g (‘g“’u) T 16n? [J dxm2+u2JC(1—x) +0lg) (18:2.11)

For u > m, this is

3g2
Blg,) = T —5 +0(gﬂ) (18.2.12)

In next order, the beta-function for u > m is®

B(gu) = g, [3 (%) 137 (122 )2+,..] _

If we are content with the one-loop approximation the calculation of
f(g) can be done even more easily. In order to avoid large radiative

.
f‘nl"l"'Pf‘f1f\1"\C‘ 1 matr V ﬂ1 mante at Qﬂﬂ‘l“mﬂﬁ ('\F l’\‘l“f‘ﬂl“ Iy ‘llﬂ mnat ‘lf‘l"ifﬂ "‘I“
WL LW LLV LD 1L 111(.1.!.1 1, \.«1\4111\411\.0 <L MllULE.l O L1 LAl }.&, ¥ LIIVIOL YYLELNW Lll"’

bare coupling g in terms of a finite renormalized coupling g, as

A
g = gy + B(g,) In ; +- (18.2.13)
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For instance, from Eq. (18.1.3) we could have immediately read off that
the In A terms in g have coefficient

3 —i 1 3g?
=2 | j(2n)s2 2; _ 2
Bie) = =5 [~ne?] | ] wti= 2 (18.2.14)
The unrenormalized coupling is of course independent of 4, so to lowest
order

d
M@gu‘B(gu)=0

and so to lowest order
f(g) = B(g). (18.2.15)

With B(g) given by Eq, (18.2.14), this agrees with our previous result
(18.2.12) for B(g) in the ¢* scalar field theory,

Instead of using a simple ultraviolet cut-off, which can interfere with
gauge invariance, it is often more convenient to deal with ultraviolet
divergences by use of dimensional regularization. For a spacetime dimen-
sionality d < 4, we find in place of In(A/u) the convergent integral

./m kd—4fd_5 _ #4_4
p

1
kK~ 4-d 154 [4%d_ln“J '

Thus instead of eliminating the cut-off dependence by writing the un-
renormalized coupling constant as in (18.2.13), we instead write

# =8+ Bs) [ ;= —ny (182.16)
with the same function B(g,) as before. Thus in order to calculate B(g,).
all we need to do is to pick out the coefficient of the singular factor
1/(4 —d) in the renormalized coupling, This argument is extended to all
orders of perturbation theory in Section 18.6,

As long as g, is sufficiently small in the scalar field theory with La-
grangian (18.1.2), the solution of Eqs. (18.2.9) and (18.2.12) can be well
approximated by

1672

gy = 3T0(a/ M) ° (18.2.17)
where M is an integration constant. This ¢xpression illustrates a common
aspect of renormalization group calculations, that dimensionless couphings
like gg become replaced with parameters like M that have the dimension-
ality of mass. The value of M may be related to gg by comparing the
solution (18.2.17) with the behavior of the coupling for values of u that
are large enough to allow us to use approxXimations based on u > m, but
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small enough so that |gg In(u/m)| < 1, where (18.2.5) gives

38k | (K
r~ —& =~. 18.2.18
e+ o in () (18.2.18)
In this way, we find
167?
M ~mex , 18.2.19
P ( 32R ) ( )
so that Eq. (18.2.17) may be put in a more conventional form
3 —1
g, = gr (1 — R 1 %] . (18.2.20)

To repeat, this is valid provided g, is small, even if |gg In(u/m)| is of order
unity, so it represents a significant improvement over the perturbative
result (18.2.18). Of course, the condition that g; should be small will
become violated when gg In(u/m) is sufficiently close to the critical value
162%/3. But at least Eq. (18.2.20) makes the unequivocal prediction that
ge becomes large enough to invalidate perturbation theory at some energy
E below the critical value (18.2.19).

In calculating off-shell matrix elements of operators instead of integrated
cross sections, we also need to take into account the N-factors that appear
in the definition of the renormalized operators whose matrix elements are
finite. We saw in the previous section that if these N-factors are defined
in a conventional way (say, so that the correction factors produced by the
divergent subgraphs are cancelled when the operator carries zero four-
momentum, or is a field on its mass shell) then the formula for the N-
factor involves zero-mass singularities as in Eq. (18.1.12) or Eq. (18.1.16),
resulting in large logarithms at energies E 3> m. The cure is to define
renormalization constants NL‘T’) at a sliding scale p, so that in matrix
elements of the renormalized operator

0, =N9¢ (18.2.21)

the correction factor produced by divergent subgraphs containing operator
(¢ are cancelled at a renormalization point characterized by four-momenta
of order y. If Mg is a matrix element of operators that are conventionally
renormalized, and M is one in which the operators are renormalized as in
Eq. (18.2.21), then for any u

Mg = {I@] (N(@) / NL‘I’})} M(E,x, g, m, i) . (18.2.22)

We can again use dimensional analysis (assuming M has dimensionality
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D) and set 4 = E, to write this as

I1 (N(@‘) /Ngco))] M (1, X, gg,%,l) . (18.2.23)

i

Mg =EP

Thus to find the high energy behavior of an off-shell amplitude Mg, we
need to know how N, varies with the renormalization scale .

For any two renormalization scales u and /, the renormalized operators
N0 and NL?)(Q both have finite matrix elements, so the ratio fo?) /N
must be cut-off independent. On dimensional grounds, this ratio must
take the form

N NG — 6o 1y m/u). (18.2.24)
.u, / p h=] I AN 7

[N R

Differentiating with respect to i’ and then setting p' = u gives

g NI =7/ N, (18.225)
where
Y Ngum/u) = [a% G(@}(gu,z,m/u)L=l : (18.2.26)
The solution is
N o exp [ /B ,©) (g,m %) d_;] , (18.2.27)

This is a useful result because the introduction of the sliding scale prevents

the appearance of zero-mass singularities in N%) and fo), and hence also

in G\ and y(®). Hence as long as g, is small, there are no large logarithms
that prevent the application of perturbation theory to calculate y(®}. Also,
for i3> m, y©(g,, m/u) has a smooth limit

7 gw) =78, 0) . (18.2.28)

As an example, consider the operator ¢ = ¢? in the scalar field theory
with interaction g¢p?/24. Instead of renormalizing it so that the correction
factor (18.1.9) is cancelled at p> = 0, we cancel it at a sliding scale p? = p?,
by introducing a new renormalized ¢* operator NL¢2>¢2, with

i AZ
N = oyt =11 -8 [ ax |1 —1
2 ) T3 fy & =%

+0(g%.
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Then the function (18.2.24) for this operator is
(@)
G (g ¥ E) _N f I 1 | (L= X)
TR NL¢2 327:2 m? + u2x(1 — x)
+0(g2).

(We can use g, here mstead of g or g, because the difference only affects
the terms of order gﬂ or higher.) From Eq. (18.2.26), we have then

1
(9% m) & / wx(l—x) 2
! (g‘“ Py 602 Jo w2+ exi—nx) X T O®)

or for u>»>m,
P Ngy) = —255 + 0(g)) (18.2.29)

Another good example is provided by the N-factor associated with the
renormalization of the electromagnetic field in quantum electrodynamics.
Recall that the photon propagator can be made finite for all momenta by
evaluating it for renormalized electromagnetic fields, or equivalently by
multiplying the propagator of the unrenormalized field by Z;!

3;)0(‘1) = ZS_IApa(Q) . (18-2-30)
Eq. (10.5.17) shows that this renormalized propagator may be written
. Npo
A (g) = o=t . 18.2.31
P (q) [ 2 _ Ie][l _ ( 2)] +qu CIrms ( 82 )
Suppose we instead define a renormalized field N{#)4#, whose propagator

has a term proportional to 7,/ [q* — i€] w1th a coefﬁment that is equal
to unity at a sliding renormalization scale g*> = u®. For this purpose, we
must clearly take

N =272 — n(i2y) 2 (18.2.32)
Using Eq. (11.2.22), the function (18.2.24) is then

- n(u’z)] v

G Ngu il [ 1om/ p) = [ T

m2 4 2
% B + 1=x(1— x)
=1 4“:2 f dx x(1 —x) [mz—i-,uzx(l—x)
+ O(e#) (18.2.33)
and so Eq. (18.2.26) gives

€2 1 x2(1 _ x)Z 2
(A} _ ___H H 4 1
Y ewm/i) = =52 fo B axl o T 0@ (18234
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As promised, this has a smooth limit for y >» m

2

(&4
y(e,) = yW(e,,0) = ”Tiﬂ +0(e). (18.2.35)

As already mentioned, electrodynamics is a special case, because the

renormalization constant Z; "2 in the definition of the renormalized elec-
tromagnetic field is just the reciprocal of the constant used to define the
renormalized electric charge of the clectron: ez = Z31/ ?¢. The natural

definition of the renormalized clectric charge at a sliding scale y is then
e, = NUle = 27 /AN 1gp (18.2.36)

so that e, times the field N{A? renormalized at scale u is independent
of u. From Eq. (18.2.25) we see that the function f(e) which gives the u
dependence of e, according to Eq. (18.2.9) for u >» m has the value
3
N\ PR 5

Ble) = —ey'(e) = 372 + 0(e’) . (18.2.37)
Using an earlicr calculation’® of the fourth-order term in the vacuum
polarization function 7n(g?), Gell-Mann and Low were able also to give
the term in f(e) of next order in e:

e eS

— 7
ﬁ(e) = W + '64? + O(e ) . (18238)

In other words, the electric charge at a sliding scale u satisfies the renor-
malization group equation

4, G o 18.2.39
Han = Tan? + Ganz T O (18.2.39)

This shows, for small ¢,, that ¢, increases with increasing p.
We also neced an initial condition. This is provided by the known

value of the conventionally renormalized charge ep = Z;/ 2e, for which
o= ei/4n = 1/137.036.... Eqs. (18.2.32) and (18.2.36) yicld

1/2
er/ey =Z;' N = /1= n(?)
2
px(l—x)

2 1
_1_ R - bk 4
=1 i [] dx x(1 —x)ln [1 + > ] + O(eg).-

e

(18.2.40)

We need to match this with the solution of Eq. (18.2.39) at a value of u
which is large enough to justify the approximation u >3 m, in (18.2.39) but
small enough so that the logarithm in Eq. (18.2.40) is still small enough
compared with 47?/e% to justify the use of perturbation theory. (For
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instance, we might take u to be of order 100 MeV.) For such values of g,
Eq. (18.2.40) gives

e3 JTi 5
ey ™~ eg + T [ln m 6} . (18.2.41)

On the other hand, the solution of Eq. (18.2.39) for e, small (keeping only
the leading term on the right-hand side) is

n 12
ey = [constant — W} . (18.2.42)
Comparing Eqs. (18.2.41) and (18.2.42) gives the solution
“R 7 3\ 1 —1/2
e, = [1 ~ s ( (m) E)J . (18.2.43)

Unlike Eq. (18.2.41), Eq. (18.2.43) is valid as long as e2/6n 1s small,
whether or not (e¢%/6n2)In(y/m,) is small.

For instance, we have already seen in Section 11.3 that the leading
fourth-order radiative correction to the magnetic moment of the muon can
be obtained by multiplying the second-order (Schwinger) term (11.3.16)
by the vacuum polarization function 7.(k?) at k* ~ m’, which according
to Eq. (18.2.40) is the same (to this order) as using €2, / 477; in place of ¢ in
the Schwinger term.

Another example: Experiments at high energy electron—positron collid-
ers such as LEP at CERN or SLC at SLAC now study physical processes
at energies of the order of the mass of the Z% particle, or 91 GeV,
Eq. (18.243) shows that at these energies, radiative corrections in pure
quantum electrodynamics should be calculated using a value for the fine
structure constant which is not « = 1/137.036 but rather

¢?(91 GeV) B o 1
4n 1 =2(1125)a/3n 1346
This is for a theory in which electrons are the only charged particles with

masses below mz. In the real world there are many such particle types,
and the effective fine structure constant* at myz is (128.87 + 0.12)~!

(18.2.44)

% %k %k

The sliding scale at which the coupling parameters of a theory are cal-
culated may be the value of an external field rather than the momentum
of an external line. In one of the early applications of the renormaliza-
tion group method, Coleman and E. Weinberg®® considered the effective
potential V{(¢) for a spacetime-independent external scalar field ¢. In the
simple case where the field interacts with itself alone, their one-loop result
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is given by Eq. (16.2.15). It is particularly interesting to consider this
potential in the case where the renormalized mass mg vanishes, where to
one-loop order we may set u*(¢) in the last term equal to ggp?/2, so that
Eq. (16.2.15) here reads (with g a slightly redefined coupling):

8'2(}54 In ¢2

T (18.2.45)

V(9) = In+ 220 +

This looks like at first sight as if for g > 0 the potential becomes less than
Ar for very small ¢, so that the point ¢ = 0 is a local maximum instead
of a minimum, but for such small values of ¢ the third term is larger than
the second, and the perturbation theory is obviously untrustworthy. Also,
we would like to be able to argue that g must be positive in order for the
potential to be bounded below at large fields, but Eq. (18.2.45) shows that
however small g is, there is some sufficiently large ¢ where perturbation
theory breaks down, and hence Eq. (18.2.45) cannot be trusted to tell us
whether the potential is bounded below at large fields.

We can do much better by using a coupling constant defined at a sliding
scale u of field strength. Suppose we define a coupling g, by the condition
that

V(i) = Ag + %“4 : (18.2.46)

If we had used g, as the coupling parameter from the beginning, then in
place of Eq. (18.2.45) we would have obtained

214 2
_ 8k 4 Buf ¢
V(¢,)_,13+24¢ +256n‘2 ln(uz) , (18.2.47)

which obviously satisfies Eq. (18.2.46)." The renormalization group equa-
tion for g, can be obtained from the condition that this effective potential

*Eq. (182.47) differs from what we would get from Eq. (18.2.45) by simply using
Eq. (18.2.46) to express g in terms of g,, in that the last term is proportional to g
rather than g*, The difference is of higher order in g, but can become significant if
V(¢) is evaluated at ¢ very different from u, where large logarithms can compensate
for powers of coupling. If we use g, as the coupling parameter from the beginning and
take u to be of order ¢ then no such large logarithms occur, and the approximation
Eq. (18.2.47) is valid as long as g, remains small.
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is independent of x4,

dgy _ 3,
# dy  16m2°

(Terms involving the derivative of g2 are dropped here, because they
are of higher order in g,, and are hence negligible as long as g, is
sufficiently small.) It is not a coincidence that this takes the same form
as the renormalization group equation (18.2.9), (18.2.12), where u was a
renormalization momentum, because as we shall see in the next section
the first two terms in the renormalization group equation are always
independent of the way that we define the sliding scale. The solution
of this equation is given by Eq. (18.2.17), in general with a different

i ;

(18.2.48)

integration constant M. Hence by taking it = ¢ in Eq. (18.2.17), we now
have
32n% ¢
= AR — oy as - 18.2.49
32%2
=— 18.2.50
8 = 3in(g?/a7) (1820

This result should be used with some care, because it is only valid
where the coupling constant gy is small. The problem is not just that
Eq. (18.2.49) loses its validity for ¢ near M ; we also cannot integrate the
renormalization group equation through the singularity at ¢ = M, so a
knowiedge of g4 on one side of this singularity tells us nothing about its
behavior on the other side.

If g4 is found to have a small positive value for some ¢y then from
Eq. (18.2.50) we know that M > |}, so g4 remains small and Eq. (18.2.49)
is valid for |¢| < |¢g|. This shows that the point ¢ = 0 is a local minimum
of V(¢), contrary to what Eq. (18.2.45) might have led us to suppose.
This means that the vacuum which is invariant under the symmetry
transformation ¢ — —¢ is stable in this model, aside from the possibility
of quantum mechanical barrier penetration. On the other hand, we do not
know that Eq. (18.2.49) becomes valid for |¢| sufficiently large compared
with M. The coupling might remain too large to use perturbation theory
for all |¢| > M, and cven if it becomes small for some |¢| > M, the
potential might be given for such ¢ by Eq. (18.2.49) with a renormalization

™ To eliminate all cut-off dependence, ¢ should be written in terms of a renormalized
field ¢, = N?¢, which gives V(¢,) a ¢ dependence arising from the 1 dependence of

the renormalization constant N ﬁ‘ This point is ignored here, because in the scalar field

theory with interaction oc ¢* the lowest-order graphs contributing to the 1 dependence
of N? have two loops, so that to the order of the calculations presented here we can

P —
take N,u = 1.
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scale M’ > ¢, producing a second singularity. Thus in this case we cannot
conciude that V(¢) - —x for |¢| — .

Similarly, if g4 is found to have a small negative value for some ¢ then
we know that M < [¢o|, so g4 remains small and Eq. (18.2.49) is valid for
|¢| > |¢o|. In this case we cannot conclude anything about the behavior
of the potential for [¢| < M, but here we can use Eq. (18.2.49) to see that
V(¢) — —co for |¢} — oo, ruling out the possibility of any stable vacuum.
Because we are here considering the limit |¢| — oo, this conclusion holds
also for scalar ficlds of mass m > 0, provided m < |¢¢|. This is why it is
necessary to assume that the ¢* coupling (renormalized at any scale much
larger than the scalar mass) is positive.

18.3 Varieties of Asymptotic Behavior

The renormalization group method provides useful insight into the types
of possible asymptotic behavior that are encountered in quantum field
theories, even in cases where the running coupling g, does not remain
small enough to allow the use of perturbation theory. We will distinguish
four different ways that g, may behave for u — oo, that correspond to
four different shapes of the function f(g) in theories with a single coupling
constant. In the next section we will take up the case of theories with
several independent couplings.

Let’s first recall the results for f(g) obtained for the two examples
considered in the previous section. One of these is the scalar ficld theory
with interaction g¢?/24, for which the beta-function for small g is

32 18 g 4

The other is quantum electrodynamics. Instead of writing the beta-
function here in the form (18.2.38), we will emphasize the similarities
between this theory and the scalar field theory by writing

g=é’, (18.3.2)

with f(g,) now understood to be udg,/du, so that for small g

3 eS

(4
Bg) =2e 1272 + 64n? +0('37)

o2 3

_ & g 4
=3 + 3353 + 0(g"). (18.3.3)

Note that in both cases the physically allowed coupling constants fall in the
range g = 0, where #(g) = 0 for small g. In electrodynamics this is simply
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(a)

Figure 18.4. Schematic representation of four possible forms of the function
B(g). For such forms of f{g), the running coupling g, would: (a) approach
infinity at a finite value of p; (b) continue to grow as u increases; (c) approach a
finite limit g. for u — oc; (d) approach zero for y — co.

because the reality of the Lagrangian requires e to be real. In the scalar
field theory, as we saw at the end of the previous section, it is necessary to
have g > 0 in order to have any stable vacuum state. However, there are
other examples that have f(g) < 0 for g > 0. For instance, we can consider
a scalar field theory with interaction Hamiltonian —g¢*/24, with g taken
positive. This may be unphysical, but stability problems will not bother
us as long as we stick to perturbation theory. Eq. (18.2.9) shows that if we
redefine g — —g the beta-function undergoes the change f(g) — —f(—g).
s0 our previous result that g(g) = 3g%/16n% + O(g?) for an interaction
gd*/24 now gives

B(g) = —3g%/16n" + O(g") (18.3.4)

for an interaction Hamiltonian density —g¢?/24. Of greater relevance (o
physics, we shall see in Section 18.7 that non-Abelian gauge theories with
not too many spinor fields have f < 0 for small positive gauge coupling
constants. In what follows we will always define the coupling g so that
g = 0, but we shall consider the cases of p(g) either positive or negative
for small g.

Now let us turn to our list of possibilities. (See Figure 18.4.)
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(a) Singularity at Finite Energy
Suppose that f{g) > 0 for small positive g (as is the case for Eqs. (18.3.1)
and (18.3.3)), and that f(g) remains positive and continues to rise suffi-
ciently rapidly with increasing g, so that the integral [* dg/B(g) converges:
t (18.3.5)
B(g) ' -
Then g, will move steadily away from g, = 0, and Eq. (18.2.10) shows
that gg must become infinite at a finite value of E:

_ © dg
Em—uexp(éﬁ ﬁ(g)), (18.3.6)

where p is any renormalization scale with u >»> m. We saw an example
of this phenomenon in the previous section; if the lowest-order formula
B(g) = 3g%/16n for the beta-function in the scalar field theory were
taken as exact for all values of g, then the running coupling (18.2.17)
would become infinite at the energy (18.2.19). Similarly, if the lowest
order formula f(g) = g2/6n” (with g = e?) for the beta-function in spinor
quantum electrodynamics were taken as exact for all g, then the energy
(18.3.6) at which gz and eg become infinite would be

E, = p exp(6n®/g,). (18.3.7)

Using Eq. (18.2.43), we may express this in terms of the conventional
renormalized charge:

A 2 646.6
Ey >~ m, exp g + 3 + Ofeg) | =" m,. (18.3.8)
Of course, the approximation that (g} = g?/6m” will break down before
this energy is reached, so all we can say with confidence is that ep will
become large enough to invalidate perturbation theory at some energy E
below E.

(b) Continued Growth

Now suppose that in some theory B(g) remains positive definite for
g — oo, but rises slowly enough (or decreases) so that [*dg/B(g) is
divergent. The coupling constant gr then continues to increase as E — oo,
but becomes infinite only for E = oo. Furthermore, the leading term in the
asymptotic behavior of gg for E — oo is independent of the conventionally

with b > 0 and k < 1, then the solution of Eq. (18.2.9) is

. EYR
ge = |1+ (1—k)bg,~ ln; g (18.3.9)
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If g, is small for some u (say, of order m) then the growth of gg is
seen only at energies which are exponentially large compared with this p.
However, in the extreme high energy limit the coupling grows according
to

ge — [(1 —k)b InE]V07H (18.3.10)

a limiting behavior independent of g,,!

(¢) Fixed Point at Finite Coupling

Suppose next that f(g) remains positive-definite for 0 < g < g, but
drops to zero al g = g. and is negative thereafter. Then Eq. (18.2.9)
dictates that as p increases g, will increase for g, < g. and decrease for

gu > g+, In either case appreachmg the fixed point g. for ¢ — oo, If the

zero of B(g) at g. is simple, then in the neighborhood of this point we
have

plg) — a(g«—g) for g — g« (18.3.11)
with a > 0. The solution of Eq. (18.2.9) is then
g — g o p. (18.3.12)

(The behavior of type (b) described above may be regarded as the special
case where the fixed point g. is at infinity.) Also, y(g) for a general
operator ¢’ may be expected to behave smoothly near g.:

y(g) =7(g) + (g —g) +0 (g — 8)°) - (18.3.13)

(We are here dropping the label @ on y and c.) Hence in matrix elements of
this (and perhaps other) operators, we encounter a factor (see Eq. (18.2.27))

E
Ng' o exp [—f v(gp)df] oc E7@)[1 + O(E™Y)] . (18.3.14)

The product of the factors E~78) can be lumped together with the factor
E? in Eq. (18.2.23), with the result that the whole matrix element goes as

Mg oc EP | (18.3.15)

where the dimensionality D. is calculated adding an ‘anomalous dimen-
sion” —y(g*) to the actual dimensionality of each operator appearing in
the matrix element.

In the examples that have been discussed so far, f(g) was positive for
small positive g, so that g, is driven away from g = 0 as p increases.
Suppose that for some other theory £(g) 1s negative for small positive g.
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Then
B(g) —» —bg", (18.3.16)

where b > 0. Here n is the order of the lowest-order diagrams that
contribute to B(g), and hence is always an integer greater than unity. (In
the theories used as examples here, n = 2.) The solution of Eq. (18.2.9)
here is

E1-1/n-1)

gE =gy [L+b(n—1)gi " In " . (18.3.17)

For E — oo, this has a limit independent of g,

gx — [b(n—1)In E]7 V=1 (18.3.18)

vt

Since this gives a vanishing g¢ for E — oo, we can trust perturbation
theory in this limit, provided only that gg for some finite E is within
the region around g = 0 where g and f(g) have opposite signs. The
anomalous dimensions y'®) of various operators @ are expected to have
the weak-coupling behavior (dropping the label ¢)

y(g) —cg”, (18.3.19)

where m is the order of the lowest-order diagrams that contribute to
the renormalization of the operator, and ¢ is a real constant that can
be positive or negative. The asymptotic behavior at high energies of the
factor introduced into matrix elements by renormalization of this operator

i1s then
_ E du
N;' o exp [—f ?(gﬂ)?]

E
— exp {—c/ [b(n — 1)In g~/ *— D) i—”]

elb(n — 1))~/
(i—m/n—1)

o exp {— (In E)l_m/(“_”} (18.3.20)

except that form=n—1
Nt oo (In Ey~/b=1) (18.3.21)

We see that in the case of asymptotic freedom there are no corrections
to those effective dimensionalities that determine the powers of energy
appearing in the asymptotic behavior of the matrix element, bui this
asymptotic behavior is instead modified by powers of In E.

For a toy model that exhibits asymptotic freedom, we can use the scalar
field theory with interaction Hamiltonian density —g¢*/24, with g taken
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positive. Eq. (18.3.4) here gives the parameters of Eq. (18.3.16) as:
h=13/16n", n=2, (18.3.22)
so Eq. (18.3.17) gives, for E — oo,

-1
3lnE} . (18.3.23)

8E = [ 1672

Also, the operator ¢? in this theory has an anomalous dimension given
by Eq. (18.2.29) as

g 2
=——— + 0(g°). 18.3.24
1(8) = —75 + 0(g”) (18.3.24)
Hence Eq. (18.3.19) applies here, with

c=—1/1677, m=1. (18.3.25)

Each ¢? operator in a matrix element therefore contributes a factor given
by Eq. (18.3.21) as

Nz!' o (In E)'/3. (18.3.26)

The scalar field ¢ itself in this theory has y(g) oc g% and hence m = 2, so
each ¢ operator in a matrix element therefore contributes a factor given
by Eq. (18.3.20) as
1
Netocl+0{ ). 18.3.2
We will see another, more physical, example of asymptotic freedom when
we take up quantum chromodynamics in Section 18.7.

In all cases where gg can be extended to infinite energy, its behavior
in this limit turns out to be independent of the renormalized coupling
gr. However, this does not necessarily mean that the theory involves no
arbitrary dimensionless parameters. In all cases, in order to describe how
gg approaches its limit for E — oo, we need to specify a free parameter A
with the dimensions of energy. For case (b), Eq. (18.3.10) may be written

gr — [(1 — k)b In(E/2)]/079
For case (¢), Eq. (18.3.12) may be written
y) b
8y — & [1— (?) 1 :
L el

Finally, for case (d), Eq. (18.3.18) may be written
gr — [b(n — 1)In(E/2)) /0
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Such theories in general do have a free dimensionless parameter: the ratio
of A to the mass m. Coupling constants like eg that are renormalized at
scales tied to m may be expressed as functions of m/A. It is only when
all masses in a theory vanish that we can say that the theory has no free
dimensionless parameters.

Of the four types of asymptotic behavior described here, types (a) and
(b) lead to the apparently unphysical behavior that the running coupling
gr becomes infinite, either at a finite energy (case (a)) or for E -
(case (b)). This does not in itself mean disaster: we have to look at how
the coupling is defined. For instance, if g, drops smoothly from a finite
value g, at uy = m to zero for p — oo, and we define a new coupling
8. = g./[1 — g4/22»], then g, becomes infinite at u = 2m, but this is
just an artifact of this particular choice of coupling parameter. However,
the conventional renormalized couplings g, in both the ¢* scalar field
theory and quantum electrodynamics have been defined here in terms of
the values of matrix elements at energies of order u. Specifically, g, in
¢? scalar field theory is defined as the invariant Feynman amplitude 4
for scalar—scalar scattering at s =t = u = u?, where 4 is supposed to be

analytic. Also, g, = ei in spinor electrodynamics is given by

-1
ebfek = Zy /NM = [1— ()] . (18.3.28)

An infinity in ei al a point pu,, would therefore produce a pole or other
singularity in the renormalized photon propagator at a positive value of
p?, that is, at p* = p2, where the propagator is supposed to be analytic.
Thus, with g, as defined here, the type of asymptotic behavior described
in case (a) is ruled out physically.

How then do our various quantum field theories behave? Years ago,
Landau®® argued that in quantum electrodynamics the increasing powers
of In(E /M) encountered at each order of perturbation theory would add
up to give singularities (so-called ‘Landau ghosts’) at finite values of E.
In modern terms, Landau could be said to have discovered possibility (a)
above, but he did not give any argument against cases (b) or (c).

Nevertheless, there is today a widespread view that interacting quantum
field theories that are not asymptotically free, like quantum electrodynam-
ics or the scalar field theory with ¢* interaction, are not mathematically
consistent. In quantum electrodynamics there is some evidence against
case (c), the existence of a finite fixed point e.. Such a fixed point
would only be possible® if non-perturbative effects changed the qualitative
nature of the operator product expansion, the subject of Chapter 20, or
if there were a non-perturbative renormalization of the triangle anomaly
discussed in Chapter 22, But even if case (c) is indeed ruled out in quan-
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tum electrodynamics, there is still the possibility of case (b), a fixed point
at infinite coupling.

Most of the evidence against the consistency of interacting non-
asymptotically free quantum field theories comes from the study of the
scalar field theory in four spacetime dimensions with ¢* interaction, quan-
tized on a finite spacetime lattice. There are rigorous theorems* to the
effect that this theory (with arbitrary dependence of the parameters of
the theory on lattice spacing) does not have an interacting continuum
theory as its limit for zero lattice spacing unless the theory is asymptot-
ically free, which of course is contrary to what is found for this theory
1n perturbation theory. This argument also seems inconclusive. It is true

that if there were a consistent continuum scalar field theory that is not
asvmptoticallv free. then it would be pnossible to ¢construct a lattice thpnr}f

S ¥ aad pARSARELAL Y AR, RAARIL A Woirile AW prRSOSA LAY RS RARVALOIL vt 4 Al aawy RIS

by integrating out the values of the scalar field at all points except on a
spacetime lattice. But this would not be the lattice theory that is considered
in these theorems. It would be a lattice theory with every possible coupling
allowed by symmetry principles — not just a term proportional to ¢?,
but also terms proportional to ¢°, ¢3O¢, etc, with coeflicients having a
dependence on the cut-off (the inverse lattice spacing) governed by the
Wilson renormalization group equations discussed in Section 12.4. No one
has proved anything about the continuum limit of such a theory.

If it is really true that there is no interacting continuum scalar field
theory in the limit of zero lattice spacing, then we must encounter some
obstruction when we try to solve the Wilson renormalization group equa-
tions, which for weak renormalized couplings would have to be at very
small lattice spacings. Such a theory would appear like an interacting
continuum field theory unless examined at very short distances. The
renormalized coupling constant in this approximate continuum theory
presumably has a singularity at finite energy, as in case (a) above, so that
1t too breaks down at short distances. (But for strong couplings there is no
direct connection between the forms of the Wilson and Gell-Mann-Low
renormalization group equations, so the existence of a singularity in the
bare couplings at finite lattice spacing does not necessarily imply a singu-
larity in the renormalized coupling constants at a finite renormalization
scale.)

Theories of this sort are sometimes called trivial, either because, under
various assumptions about the bare couplings of the theory quantized on
a lattice, the continuum limit turns out to be a free field theory, or because
the only way to make a continuum theory of type (a) physically satisfactory
at all energies is to adopt the solution g, = 0 of the renormalization group
equation (18.2.9). Even if a field theory is trivial in either sense, there is
no reason not to include it as part of a realistic theory of physical
phenomena. The existence of an obstruction to the solution of the Wilson
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renormalization group equations for a field theory at very small lattice
spacings 1s not important if in the real world there are other fields that
must also be taken into account at such short distances. Similarly, the
fact that a given quantum field theory has unphysical singularities at some
large energy E, is not a physical problem if the theory in question is only a
low-energy approximation to a larger theory, an approximation valid only
at energles far below Ey. In particular, long before we reach the energies
near (18.3.8) where quantum electrodynamics could be expected to become
singular, it becomes necessary to take even gravitation into account, and
no one knows how to calculate the effects of strong gravitational forces
at such energies. ’

Despite these reassuring remarks, it is possible that in order to avoid

: - o s o

unphysical singularities, all our separate quantum field theories like spinor
quantum electrodynamics will eventually have to be integrated into an
asymptotically free theory. Fortunately, the question of whether a theory
is asymptotically free for some finite range of coupling constants can be
settled by perturbative calculations: if f(g) is negative as g — 0+, then
the theory is asymptotically free for all renormalized couplings g, lying
between zero and the first zero of B(g).

* kK

In this connection, it is worth noting that although the detailed form of
fB(g) depends on the gauge and on precisely how the running coupling is
defined, the first two terms in the power series for f(g) do not. Suppose
we have two definitions g, and g, of the running coupling, perhaps
employing different definitions of the renormalization scale u or different
gauges. Since both g, and g, are dimensionless and cut-off independent,
there is no way that g, for > m can depend on anything but g

gu = 8(gu).
We then have
Big = w8 = B pee
and so
By — B8 pig). (18.3.29)

dg

As long as we are sticking to the same definition of the unrenormalized
coupling, all renormalized couplings are equal in lowest order, so the
power series for g in terms of g may be written

gg)=g+ag’+0(gh
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oI, equivalently,
g=g—af’ +0(&).

The derivative is
i3
di —1+2ag +0(g%) =1+2a8 + 0(F?).

Also, for the couplings we have been considering here (including g = e?)

the power series for f(g) takes the form

ple)=bg’ +b'g +0(g%
or in terms of g

31
Py

From (18.3.29), we have then
B(a) = 1 +2az> + 0@ [b2* + (V' — 2ab)g’ + O(z")
=h3* + 13 + 0(3%. (18.3.30)

We see that the first two terms in the power series for § in terms of & have
the same coefficients as in the power series for § in terms of g. However,
this 1s definitely not the case for the higher-order terms. In fact, it is
always possible to choose the function g(g) so that all terms in B(&) of
higher than third order in § vanish, so we can describe the asymptotic
behavior of g for E — oo by inspection of the first two terms in the
perturbation series for f(g). But this is of little value, since we would
need to carry our calculations to all orders to determine how g depends
on g, and without this we cannot use our knowledge of the asymptotic
behavior of § to say anything about the asymptotic behavior of g, or of
physical quantities.

The same argument that led to Eq. (18.3.30) shows that, at small
coupling, the Wilson renormalization group equation for the bare coupling
constant as a function of lattice spacing for inverse lattice spacings greater
than particle masses is the same as the Gell-Mann-Low renormalization
group equation for the renormalized coupling constant as a function of
renormalization scale for scales greater than particle masses. Hence if a
continuum theory is asymptotically free, then there will be no obstruction
in passing to the continuum limit of the theory quantized on a lattice.

wd '
} = b3 + (b’ —2ab)

[o,=1]

5 o "

18.4 Multiple Couplings and Mass Effect

Up to now, we have considered theories with only one dimensionless
coupling g. It is easy to extend the formalism to incorporate several such
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couplings g”: for each g/, we have a renormalization group equation that
for it > m takes the form

d
M g'(w) = B (g(w), (18.4.1)

with each B’ depending in general on all the gs. There are now many
more possibilities for the asymptotic behavior of the g/(u) as u — co; in
a given theory we may have some trajectories in g-space that go off to
infinity, at finite or infinite values of u, other trajectories that approach
fixed points, and yet other trajectories that approach closed curves known
as ‘limit cycles’. To get a taste of some of the various possibilities, let’s
consider the behavior of g’(u) near a fixed point.
Eq. (18.4.1) has a fixed-point solution chu\ = gf if

B(g*)=0. (18.4.2)

In the neighborhood of this point, Eq. (18.4.1) becomes

d s Tk
ng EW g =X M [P —g] . asay
where M is the matrix
Fsi 4
My = [ i (kg)] . (18.4.4)
o8 g=g-

The solution can be expanded in eigenvectors of this matrix

¢ H) - gf + Z Cm Vm{’ “Am , (1845)
m

where V), is a eigenvector of M with eigenvalue 4,, (normalized in any
convenient way):

N MOV = Vil (18.4.6)
k

and the c,, are a set of expansion coefficients.” (The summation convention
1s suspended in this section.)

Eq. (18.4.5) shows that the coupling constants approach the fixed point
as y — oo 1f and only if ¢,, = 0 for all eigenvectors with 4, > 0. (For
simplicity we are assuming here that none of the eigenvalues vanish.) Thus

* We are assuming here that the eigenvectors V,, form a complete set. This is not always

iy ato
50, l-\uf it ln ﬂ'\n gpﬂpﬁr- case; flm:n Plgpﬂ‘uﬁf‘-fnfc nF a fni ite matﬂx }v{ wlll form a uuxu].uu.u

Sct if all of the roots of the secular equation Det (M — Al) = 0 are different. A matrix
whose eigenvectors do not form a complete set can be regarded as a limiting case of
a matrix with a complete set of eigenvectors when some of its eigenvalues become
degenerate.
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in general the trajectories that are attracted to the fixed point lie on an
N_-dimensional surface, where N_ is the number of negative eigenvalues
of M the tangents to this surface at g. are the eigenvectors with negative
eigenvalues. Trajeclories that are not on this surface may approach
close to the fixed point, but are eventually repelled, predominantly in the
direction of eigenvectors with the largest positive eigenvalues. Of course,
if all eigenvalues are negative then there is a finite region around the fixed
point within which all trajectories converge on this point.

Since the eigenvalues A,, are evidently important in learning the asymp-
totic behavior of trajectories that approach a fixed point, it is useful
to note that these eigenvalues are independent of the definition of the
couplings. Suppose we introduce a new set of couplings g7, defined as

e ,.I‘ o 1. Py PRGN T,

functions of the gs. These satisfy renormalization group equations

d 08’ -
b g =3 E N e = P,

H w og" g=g(u)
S0
- g’
Fa= S8 . (18.47)

(That is, B transforms as a contravariant vector in coupling-constant
space.) Differentialing, we have

op‘(g) ogm i g’ op™(g)
; ag~m 5gk Z@g’“@ kﬁ() Z gm agk :

At a fixed point g. the first term on the right vanishes, so this gives the
matrix equation

MS=SM, (18.4.8)
where

. [ o]t

MY = atjk] , (18.4.9)
| °8 E=E(z")
[ A~ f

5, = %} . (18.4.10)
A P

As long as the transformation g — § is non-singular, Eq. (18.4.8) is a
similarity transformation, and hence M and M have the same eigenvalues
Am-

The renormalization group formalism may be extended to non-
renormalizable as well as renormalizable theories. As explained in Sec-
tion 12.3, the infinities in non-renormalizable theories are eliminated by
a suitable renormalization of coupling constants and masses, just as in
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renormalizable theories; the only difference is that in non-renormalizable
theories the Lagrangian must be supposed to contain all possible interac-
tions allowed by the symmetries of the theory. If g4 is the unrenormalized
coupling constant multiplying an operator of dimensionality D, in the
Lagrangian (that is, a product of fields and spacetime derivatives of fields
whose dimensionality in powers of mass or energy is Dy}, then gf.; will
have a dimensionality A, = 4 — D,. We may then re-express the bare
couplings in terms of a set of dimensionless renormalized couplings g/ ()
and a cut-off A, through relations of the general form

gh =1 | g0 + 3 Fimg (g™ (1) In (i) +0(g(u)3)w . (18411
L km i

with the dimensionless numerical coefficients by, and similar coefficients
in higher-order terms chosen to cancel the cut-off dependence of physical
quantities. (In some theories the leading term might be trilinear or even
higher order in couplings; the modifications that would be needed here
are obvious.) From the requirement that gz be cut-off-independent, we
obtain the renormalization group equation (18.4.1), with

B(g) = —Ag’ = bl.ge" +0(g) . (18.4.12)
K.

Non-renormalizable interactions are those with D, > 4, or A, < 0, so
as long as the g’(x) all remain sufficiently small we expect the non-
renormalizable renormalized couplings to have positive 8/ and hence to
grow with g, but no one knows what happens when the couplings become
large enough to invalidate perturbation theory.

However, as explained in the next scction, even theories with infinite
number of independent parameters commonly have fixed points g. at
which the number N_ of negative cigenvalues of the matrix (18.4.6) 1s finire,
just as it is at zero coupling. (In particular, often N_ = 1.) Where N_ # 0,
the fixed point lies on an N_-dimensional critical surface, consisting of
trajectories that are atiracted into the hixed point as g — «. A non-
renormalizable theory with coupling parameters on such a critical surface,
although not of course asymptotically free, 1s said to be asymptotically
safe,’ because the renormalized couplings remain finite for large values
of u. The condition of asymptotic safety in such a theory would play the
role that used to be associated with the principle of renormalizability, of
eliminating all but a finite number of free parameters, the coordinates of
the critical surface.

In a renormalizable theory, all physical quantities are made cut-off-
independent by adjusting the cut-off dependence of a finite number of
bare couplings. These bare couplings may be expressed in terms of an
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equal number of u-dependent renormalized couplings, and the condition
that the bare couplings are u-independent yields renormalization group
equations relating only these renormalized couplings. From the broader
point of view which allows non-renormalizable as well as renormalizable
couplings, a renormalizable theory just corresponds to a finite-dimensional
invariant surface in the infinite-dimensional space of all renormalizable and
non-renormalizable theories; that is, it is a surface for which §¢(g) at any
point g on the surface is tangent to the surface at that point.

So far in this section we have tacitly assumed that u >> m, so that we
could neglect the dependence of 87 on m/u. However, this is not necessary;
we can if we like treat a mass as just another coupling parameter.’
That is, all renormalized couplings can be defined as before in terms of

_1miacc_chall nmanta ~AF ~ed | TT7
‘.’9.1'}0118 ﬂl’een“ Functleﬂs at Gﬁ mass- oJ.u.u,J, momenta Of oraer H, Out oW

evaluated with all bare masses zero. The dimensionless renormalized mass
parameters for Dirac fields y or scalar fields ¢ may be defined as

my(p) = NP(A/ @)™ my pare(A)/ p, (184.13)

mi(u) = NA/ )™ i pars(AY/i2 (18.4.14)

where N{¥(A/yu) are the dimensionless constants which, when multiplied
into corresponding operators ¢, cancel the infinities in the matrix elements
of these operators, also evaluated with all bare masses zero. (See Section
18.1.) These new renormalized masses and couplings have no direct
physical significance, but the true physical masses and all physical matrix
clements can be expressed in terms of them. These matrix elements take
the form of sums of matrix elements for zero bare mass, with any number
of insertions of the renormalized mass operators N¥)¢2 and Ny,
times the corresponding renormalized mass parameters.

In this renormalization scheme the beta-functions for the various cou-
plings are obviously mass-independent, and the beta-functions for the
mass parameters are proportional to these parameters, with coefficients
that depend on all the various couplings; using Eq. (18.2.25), we have

d

“d_#’"w(“) = [=1 = ypp(gu)] my(u}, (18.4.15)
d 2 2

Ham(p(#) =[-2- ?’(pl(g;t)] mg () - (18.4.16)

For instance, we noted in Section 18.2 that in the scalar field theory
with L agrangian (18.1.2), the mass operator #? hae anomalous dimension

operator ¢~ has anomalous dimension
(18.2. 29} form= 0, SO here

d
r —mi(p) = | -2+ 2k 16 2+ 0(g2)| mi(u) . (18.4.17)
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Also, Eq. (11.4.3) shows that the effect of higher-order corrections to the
electron propagator is to replace the electron mass by m, — Z*(p, m,), so
the effect of these corrections on matrix elements of the operator ..
between one-electron states of four-momentum p# is to multiply them by
a factor

Fip)= 1 — (52";};;;713))%_0 '

The renormallzatlon constant N¥¥ for the operator {1, is therefore equal
to F~1(p), evaluated with p? equal to some renormalization scale, say +u°.
According to Eq. (11.4.8), to one-loop order this is

ATy (621 loop p" me)\

Iy
om,

_0 pl_‘u

A2
2n]4/dx ln{l—i—( )(l—x)}

In (ﬁ;) - 1] , (18.4.18)

where A is an ultraviolet cut-off," and we take the limit A > u. The
anomalous dimension of the operator .y, is therefore given by (18.2.25)
as

e

sl

2

d
py) — ;= (Py) —
y ;Ld InN 211: O( ”) (18.4.19)
so Eq. (18.4.15) here reads
d e
Ju@m?(,u) = [—] — 2— + O(e#) me(p) . (18.4.20)

The same formula holds in general gauge theories, with e> replaced with
the value of 37,(t,)? for the particular species of fermion in question.
The important difference between the m(u) and the other renormalized
parameters of the theory is of course that bare masses have positive
dimensionality, so as long as the couplings remain small the m(u) all
decrease in magnitude. Qur previous assumption that masses may be
neglected as p — o0 is justified if in fact m(u) does vanish for u — o,
However this is only known to be the case in asymptotically free theories,
where the couplings all do remain small for it — ao; in all other cases this

Mt ian 1c
L

e
assumplion 1s jual. an educated gucss.

** This notation is different from that of Eq. (11.4.8), where the ultraviolet cut-off was
called u.
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18.5 Critical Phenomena*

For some purposes we may be interested in the limit of very low rather
than high energies or wave numbers. The arguments of Section 18.2 can
be repeated to study this limit, except that here we must examine the case
p — 0 rather than g — co. This limit is of course simplest if there are no
masses in the theory, as, for instance, in quantum electrodynamics with
a symmetry under the chiral transformation v — ysy which forbids an
electron mass. In this particular case the only renormalizable coupling
eA*Py,p as well as all non-renormalizable couplings have ¢ > 0 for
sufficiently small couplings, so all trajectories in at least a finite region
around the origin are attracted into the point g* =0 as u — 0.

The same considerations may be applied even to theories with very
small but non-zero masses if we include these masses among the coupling
parameters of the theory, as described in the previous section. The
coefficient A in Eq. (18.4.12) is positive for a mass parameter, so in this
case the trajectories can never reach the point g = 0, but they may come
close if the masses are small.

Of course, even if we can regard some degree of freedom like the
electron field as having zero or very small mass, in the real world there
are many other degrees of freedom whose masses are not small. The
renormalization group should properly be applied not to the true theory
that encompasses all these heavy degrees of freedom, but to an ‘effective’
field theory, in which only massless or nearly massless degrees of freedom
appear explicitly, with interactions that include the effects of internal
heavy particle lines. (We shall have more to say about effective field
theories in Chapter 19.)

The low wave number limit is of particular interest in the study of
critical phenomena, such as long-range correlations at or near a second-
order phase transition (a smooth phase transition, with no latent heat)
in condensed matter. Because we are interested in the limit g — 0, the
important eigenvectors of the matrix (18.4.4) are those with eigenvalues
A < 0, which are called relevant. The eigenvectors with A =0 and 1 > 0
are called marginal and irrelevant, respectively.

Suppose that there is a non-trivial fixed point g. with just one negative
eigenvalue Ao, perhaps corresponding approximately to a mass operatot.
The set of trajectories of g7(u) that are attracted into this fixed point for

i — O therefore forms a critical surface of codlmensmn one; that is, a
surface defined by a single condition on the couplings, the con du on that
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" This section lies somewhat out of the book's main line of development, and may be
omitted in a first reading.
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for ¢ — g., the tangents g’ — g/ have no components in the direction of
the eigenvector with negative eigenvalue. There is a phase transition as the
physical value of the couplings at any fixed characteristic scale approaches
this surface. Because the critical surface has codimension one, the phase
transition can be reached by adjusting any one parameter on which the
couplings depend, such as the pressure or temperature. The fact that a
wide variety of substances do exhibit phase transitions of this sort shows
that it is common to encounter fixed points for which the matrix (18.4.4}
has a single negative eigenvalue, as already mentioned in the previous
section,

To be specific, as the temperature T approaches its critical value T,
we expect the coefficient ¢g of the growing term in Eq. (18.4.5) to become
proportional to T — T,, because there is no reason why it should be
singular or why it should vanish faster than this. Hence for g4 — 0 and
then T — T, the couplings go as

g7 (w) = (T — T Vol i, (18.5.1)

where A is the only negative eigenvalue at g., and Vy? is the correspond-
ing eigenvector.™ Applying our renormalization group arguments to wave
numbers instead of energies, the N-point function (the Nth partial deriva-
tive of the effective action with respect to a field ¢ of dimensionality [wave
number]?#} at a small characteristic wave number scale x has the form"

Ca(k) — x4 NOotEIFy (T — T i) (18.5.2)

where y,(g) 18 the anomalous dimension associated with the field ¢, and
d 1s the spacetime dimensionality, or in classical statistical mechanics the
spatial dimensionality. It is convenient to rewrite this in the equivalent
form

Tn(k) = (T — T,) W= NOstrple by (4e(T — Ty)' ™) . (18.5.3)

This shows for one thing that the correlation length ¢ (the characteristic
length that determines the scale over which the Fourier transform of I'y
varies) increases as T approaches T, like

£oc(T— Ty (18.5.4)

where v is a conventionally defined positive ‘critical exponent’, given by
Eq. (18.5.3) as

y=—1/ig. (18.5.5)

** Other contributions to the couplings will go as (7" — T}’ with 4, > 0. Thus
Eq. (18.5.1) is valid here provided T — T; does not go to zero as fast as y1 0.

' The function Fy also depends on dimensionless angles and ratios of wave num-
bers. Note that [y has ‘naive’ dimensionality d — VD, because 6¢(3 " x)[" must be
dimensionless.
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Also, the zero-field effective action I'g (or in statistical physics, the free
energy) must be x-independent because it corresponds to graphs with no
external lines. It follows that Eq. (18.5.3) here becomes for T — T,:

To— Fo o (T — T, (18.5.6)

where the constant Fy is the effective action or free energy due to the heavy
degrees of freedom which have been integrated out. Thus the exponent
v also governs the behavior of the part of the free energy which is not
analytic in temperature for T near T..

In 1972 Wilson and Fisher’ used an expansion in powers of d — 4 both
to show that the theory of a scalar field actually fits the above description,
and also to carry oul an approximate calculation of critical exponents such
as v. Consider a theory with a single ‘light’ degree of freedom, a scalar
field ¢, such as the magnetization in a ferromagnet, with a symmetry
under ¢ — —¢ that rules oul interactions odd in ¢. In addition to the
‘mass’ term —g,¢?/2, the Lagrangian density of the effective field theory
will contain interactions —gq¢? /41, —ge® /6!, etc. The dimensionality of
the field ¢ in powers of wave number is (d — 2)/2 (so that [d‘x(V¢)?
should be dimensionless) so the dimensionalities of the couplings g», g4,
ge, etc. in d dimensions are +2, 4 —d, 6 — 2d, etc. For the fixed point
at zero coupling in three dimensions, there are two relevant couplings, g2
and g4, but this conclusion is changed by interactions at non-trivial fixed
points. Let’s examine the surface in coupling constant space in which only
g, and g4 are non-zero, and take g4 to be small.™ Eq. (18.2.12) gives
Plgs) = 3gﬁ/16n2 + O(gg) for d = 4, and Eq. (18.4.12) tells us that for
d = 4 — e dimensions we must add to this a term —egy, so

d
sl = —e i) + 16(”) + Ol - (18.5.7)
Also, Eq. (18.4.17) gives
o = [<24 B L o] g2 (1858)
el 16z T 0| g2(u) 5.

Therefore for small e there is a non-trivial fixed point at

16n%e
B4« = 3 N £ = 0. (185.9)

" These are the only renormalizable couplings for 3 < d < 4, so for such d this is an
invariant surface. Note thal we do not include the coefficient of (V¢)* among the
couplings here, because this is a redundant coupling, in the sense described in Section
7.1.
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The matrix (18.4.4) at this fixed point is diagonal, with eigenvalues
3g4n

=ﬁﬁ4=—€+§——+0@M) +e+0(?), (18.5.10)
thM%=—2+§%+0@@=—Q+§+MEL (18.5.11)

From Eq. (18.5.10) we see that the coupling g4 is actually irrelevant,
so that there is just one relevant coupling here, signalling the presence
of a second-order phase transition. From Eq. (18.5.11) we see that the
anomalous exponent (18.5.5} is

11
v——5_5+ﬁ+0() (18.5.12)

For the physical value € = 1 the first two terms give v =~ 0.58. Three-loop
calculations®® give this critical exponent to order € as
1 € 7e?

which for € =1 gives v = 0.61.

In the calculation presented here nothing was assumed about the system
under study except that there is a second-order phase transition, near
which the only long-wavelength degree of freedom is a single scalar field.
There are a number of different physical systems that fit this description,
such as the spontaneous appearance of magnetization (represented here
by ¢) in ferromagnetic and antiferromagnetic materials, and also second-
order phase transitions between liquids and gases and in binary fluids. All
of these systems are therefore expected to have the same value of v. This
is confirmed by experiment, which gives a value® v = 0.63 +0.04, in good
agreement with the three-loop result (18.5.13), and in fair agreement even
with the one-loop result (18.5.12). It is fortunate though still somewhat
mysterious that an expansion in powers of 1 should work so well.

More generally, all the systems that are described by the same set
of long-wavelength degrees of freedom near their second-order phase
transitions are said to belong to the same universality class. All the critical
exponents are the same for all systems in a given universality class.

18.6 Minimal Subtraction

thhat A4 1 1 v 3 vam g~ |
We saw in Section 11.2 that dimensional reguiarizaiion provia
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ularly convenient method for calculating radiative corrections in quantum
electrodynamics, because it preserves the conservation laws associated
with gauge invariance. For the same reason, dimensional regularization
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also turns out to provide a very convenient alternative definition for the
sliding scale of the renormalization group in general gauge theories.”

In calculations using dimensional regularization, ultraviolet divergences
arise as poles in physical amplitudes when the spacetime dimensionality d
approaches the physical value d = 4. (For an example, see Eq. (11.2.13).)
To cancel these poles, the bare coupling constants g4(d) (including masses)
must themselves have such poles, with residues fixed by the condition
that physical amplitudes be regular as d — 4. These bare couplings in
general have non-zero dimensionalities A/(d) that depend on the spacetime
dimensionality d, so it is convenient to consider the dimensionless quantity
gﬁ(d),u*A’(d), where y is a sliding scale with the dimensions of energy or
mass. This rescaled bare coupling may be expressed as a sum of terms
proportional to positive-definite powers v of 1/{d — 4), with coefficients
b, fixed by the requirement of cancellation of singularities as d — 4 in
physical amplitudes, plus a remainder that is analytic in d at d = 4.
This remainder is identified as the dimensionless renormalized coupling
constant g‘(y, d), so

2 4
gh(du Y =g/ (ud)+ ) (d—4) " b(g(nd)). (186.1)
v=I
We are free to give the bare couplings any d dependence we like, as long
as the singularities at d = 4 in physical amplitudes are cancelled; we shall
remove this ambiguity by requiring that g/(u, d) be analytic in d not only
at d = 4, but for all d.
To calculate the renormalization group equation satisfied by g/(u,d),
first differentiate Eq. (18.6.1) with respect to u:

_N@ g+ 5 — ) e)| = e D+ S () (g, d)d—4)""

v=1 v=1 m
(18.6.2)
where
bonlg) = ~bl(g) (18.63)
og™
and as before
d

#dug’(,u, d) = B(g(u,d),d) . (18.6.4)

Note that g7 is a function of all of the g™(u, d) and also of d, but it cannot
depend separately on u because, with rescaled masses included among
the dimensionless coupling parameters, there are no other dimensionful
parameters besides .

As we have seen, the dimensionalities As(d)} are always linear functions
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of d, which we shall now write as
Add) = As + prid — 4). (18.6.5)
We rewrite the left-hand side of Eq. (18.6.2) as

—prg'(d—4) — [Arg’ + ¥ (g)o"] - Z(d O™ peblyife) +A{(2)] -
The highest power of d in the analyt1c part here is of first order, so the

same must be true on the right-hand side of Eq. (18.6.2), and therefore
B(g,d) must be linear in d:

(g, d) = p'(g) +(d — 4 (g) . (13.6.6)
Equating terms of first and zeroth order in (18.6.2) gives then
o/ (g)=—ps g’ (18.6.7)

and, more importantly,

B(g) = —Asg’ — b(g)os + ZZ bim(g) pmg” (18.6.8)
v=1

It is noteworthy that the beta-function depends only on the coefficients
of the simple pole in the bare couplings. In fact, these coeflicients also
determine the coefficients of all the higher poles; equating the pole terms
on the right and left of Eq. (18.6.2) vields the recursion relation

prby 1(8) =Y pmg B 1m(g) = —Acbl(g) — Z bwig)B"(g). (18.6.9)

For instance, in order for [ d?x F,,F* to be dimensionless, any gauge
field A* must have dimensions (in powers of mass) (d — 2)/2, and since
gpA* must have the same dimensions as 8/dx*, gg must have dimensions
(4 —d)/2, so that for gauge couplings A =0 and p = —1/2. Eq. (18.6.8)
gives then for a gauge theory with a single coupling constant:

B(g)= 1[bi(g) —gbi(g)] . (18.6.10)

In particular, Eq. (11.2.20) shows that in quantum electrodynamics in
one-loop order the bare electric charge has a pole at d — 4 with

es =Z;1/2e—¥e—%;ﬁ. (18.6.11)
Setting bi(e) = —e*/127% in Eq. (18.6.10) gives then
63
Ble) = 37 (18.6.12)

in agreement with the previous result (18.2.37).
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The coupling constants g’(u) introduced in this section are said to be
defined by minimal subtraction. There is a slightly different scheme that
is somewhat more convenient. The simple poles {d — 4)’1 typically arise
from functions (47)¥/?=2I'(2 — d/2) (as in Eq. (11.2.13)) which for d — 4
have the limit

(4m)>92T (2 — g) -5 _14/2 —y +In4n, (18.6.13)

where y is the Euler constant, y = 0.5772157. It 1s therefore convenient to
make the replacement everywhere in Eq. (18.6.1):

U nar (18.6.14)

1 !
S+l
2 A

w N _’ -

d—4 d—4
With this prescription, the coupling constants are said to be defined by
modified minimal subtraction.

One of the distinguishing characteristics of the definition of couplings
by minimal subtraction (or modified minimal subtraction) is that, since
no factors of an ultraviolet cut-off ever appear in any calculation, loop
diagrams have poles at d = 4 that correspond only to logarithmic ultra-
violet divergences, not divergences that are linear, quadratic, etc. Hence
a residue function b’f(g) can contain a term of order g%g?g®--- only if
at d = 4 the dimensionality of g§ equals the total dimensionality of the

couplings g3, g’f;, g5, etc.:
A=A+ A+ A +..., (18.6.15)

and it follows then from (18.6.8) that the same is true of p/(g). In particu-
lar, in a theory with no superrenormalizable couplings (like a gauge theory
with massless spinors and no scalars, such as quantum electrodynamics
with vanishing electron mass) all couplings have A, < 0, so the renormal-
ization group equations for the renormalizable couplings (with A, =0) are
unaffected by the presence of any non-renormalizable interactions. Also, in
such a theory the beta-functions for the non-renormalizable couplings
are polynomials of finite order in the non-renormalizable couplings, with
each coefficient in each polynomial given by an infinite series of powers
of the renormalizable couplings. For instance, in the theory of photons
and massless electrons (assuming invariance under ¢ — ysty and P), there
are no nonrenormalizable interactions of dimensionality +5, and several
interactions of dimensionality +6 (four-fermion interactions as well as the
purely photonic interaction F,,00F*") with couplings f; of dimensionality
—2. The beta-function for f; is of the form 3, b;;(e)f;, with the coeflicients
bij(e) given by a power series in e,
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18.7 Quantum Chromodynamics

Quantum chromodynamics is the modern theory of strong interactions.
It is a non-Abelian gauge theory, based on the gauge group SU(3). In
addition to the gauge fields, quantum chromodynamics involves fields of
spin 1 particles known as quarks. There are quarks of six types, or
‘flavors’, the u, ¢, and t quarks having charge 2¢/3, and the d, s, and b
quarks having charge —e/3. Quarks of each flavor come in three ‘colors’
which furnish the defining representation 3 of the SU(3) gauge group.”
Baryons like the protons and neutron may be approximately regarded
as color-neutral bound states of three quarks, totally antisymmetric in
quark colors, while mesons like the rho meson behave approximately like
color-neutral bound states of gquarks and nnhmmrlm_“

(LU LU Wil LRLAUAENE LN Y ) 44 g Ao Ml D 222k ALl il

In the approximation where the quark masses may be regarded as negli-
gible compared with the energies of interest, the inversion of Eq. (17.5.44)
shows that the bare coupling constant in a general gauge theory has a
pole at spacetime dimensionality d — 4 with residue given by

3
g’ (11 1 1
85 = !471:2 (12C1 3C2> +0e )} i—4’
where C; and C; are defined by Egs. (17.5.33) and (17.5.34). That is, in
the notation of the previous section,

3 11 1
Using this in Eq. (18.6.10) gives
3
__g (.1 s
hgl=—, 3 (12C1 3C2) +0(g”) . (18.7.2)

For an SU(3) theory with n; massless quarks in the defining representation
3 of SU(3), Eq. (17.5.35) gives

C, =3, Cy=nys/2. (18.7.3)

Because we are taking the quarks as massless here, this formula may be
applied only in the effective field theory obtained by integrating out all
quarks heavier than the typical energy E under consideration, so that ns
1s the number of quark flavors with masses much less than E. With this

* Before the final formulation of quantum chromodynamics several authors had spec-
ulated that there might be three varieties of quarks of each flavor,”” both in order
to account for the rate of decays like 7” — y + v (sec Sections 22.1 and 22.2) and
to introduce an additional degree of freedom thal would explain how the wave func-
tion of fermionic quarks in a baryon could be symmetric in spin, space, and flavor
coordinates,!!
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understanding, Eqgs. (18.7.2) and (18.7.3) yield

o111
B(g) = —Igj-r-f (4 — Enf) +0(g) . (18.7.4)

We see that the theory 1s asymptotically free as long as there are no more
than 16 quark flavors with masses below the energy scale of interest. Since
in fact there seem to be only six quark flavors of any mass, the theory of
strong interactions based on the gauge group §U(3) is asymptotically free,

It was the 1973 discovery of asymptotic freedom in non-Abelian gauge
theories of this sort by Gross and Wilczek!? and Politzer'? that convinced
theoretical physicists that this is the correct theory of strong interactions.
Their calculation immediately explained the puzzling result of a famous
1968 experiment'4 at SLAC on deep-inelastic electron-nucleon scattering,
that strong interactions seem to get weaker at high energies."™ (This
experiment will be discussed further in Section 20.6.) But the historical
importance of the discovery of asymptotic freedom in Yang-Mills theories
1s not just that it explained an old experimental result; it for the first time
opened up the prospect of deing reliable perturbative calculations of
strong interaction processes, at least al high energy.

Asymptotic freedom was soon found to have another important impli-
cation. At first after the discovery of asymptotic freedom it was widely
assumed that the gauge bosons in a realistic Yang—Mills theory of strong
interactions would have to be quite heavy, to explain why these strongly-
interacting bosons had not been discovered long before. Following the
precedent of the theory of weak and electromagnetic interactions (dis-
cussed in Chapter 21), it was supposed that the masses of the gauge
bosons arose from a spontaneous breakdown of the color SU(3) gauge
group, triggered by the vacuum expectation values of scalar fields in a non-
trivial representation of this group. But these strongly interacting scalars
would contribute positive terms to f(g), which could destroy asymptotic
freedom. Even worse, in a theory with strongly interacting scalar fields,
radiative corrections involving weak interactions would introduce large
violations of various symmetries like charge conjugation invariance and
flavor conservation which, as we shall see, would not be violated with-
out the scalars.'” Then it was suggested to drop the strongly-interacting

** Zee" and perhaps other theotists had already understood that this experimental result
could be understood in a theory with a beta-function that becomes negative for small
positive coupling, but calculations of 8(g) in all renormalizable field theories except
non-Abelian gauge theories gave S(g) > 0. On the other hand, by 1972 °t Hooft had
developed techniques for calculating B(g) in Yang Mills theories, and in June 1972
he announced at a conference on gauge theory at Marseilles'® that (g) < 0, but he
waited to publish this result and work out its implications while he was doing other
things, so his result did not attract much attention.
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scalars, and accept the consequence that the gluons, the SU(3) gauge
bosons, have zero mass.!® The decrease of the strong coupling constant at
high energy or short distance of course implies an increase at low energy or
large distance, and it was suggested that this might explain why massless
gluons and quarks had not been detected. According to this hypothesis,
only color-neutral particles like baryons or mesons will ever appear in
isolation.!” This is unfortunately still a hypothesis rather than a theorem,
but after two decades there seems to be little doubt that it is correct.
Even though quarks cannot materialize as free particles, they are in a
sense observed as jets produced in high energy collision processes. For
Instance, in many events in electron—positron annihilation, the final state
consists of two narrowly collimated hadron jets, with a distribution in
the angle ¢ between the colliding lepton momenta and the jet directions
(in the center-of-mass system) given by 1 + sin? @, just as expected from
the tree graph for electron—positron annihilation into quark-antiquark
final states.?® This can be understood?! in terms of the general analysis
of infrared divergences in Section 13.4. At extremely high energies we
would expect the rate for a physical process to be given by lowest-order
perturbation theory, provided it is ‘infrared-safe; in the semse of not
becoming infrared divergent when all masses are taken to zero. The
total rate for electron-positron annihilation into hadrons is infrared-safe,
since we sum over all hadronic final states. (We are ignoring higher-
order electromagnetic effects here.) Therefore we can rely on perturbation
theory, which immediately tells us that the ratio R of this rate to the rate
for et + e~ — u™ +p~ is R =3Y,, 02, where the sum runs over all quark
flavors, Q, is their charge in units of e, and the factor 3 is the number
of colors. (For instance, in the wide energy range between my, ~ 4.5 GeV
and m; ~ 180 GeV, R =~ 3(2(2/3)* + 3(~1/3)?) = 11/3.) On the other
hand, the rate for electron—positron annihilation into some definite state
of quarks and gluons i1s not infrared-safe, and its rate therefore cannot
be calculated in perturbation theory at all; in fact, it is zero. In between
these two extremes is the rate for electron—positron annihilation into a
definite number of jets, each jet carrying a definite total momentum and
charge, together with a set of unobserved hadrons with limited total energy
outside the jets. As discussed in Section 13.4, this rate is infrared-safe. It
can therefore be calculated at high energy in the tree approximation of
perturbation theory, identifying jets (in this order of perturbation theory)
with the outgoing quarks, antiquarks, and gluons. We can even calculate
the rate for three-jet events, arising from tree diagrams in which a gluon is
emitted from the outgoing quark or antiquark, and use the comparison of
the results with experiment to measure the value of «,(y).2* But we cannot
use perturbation theory to predict the distribution of momenta within a
jet, because such a differential rate is not infrared-safe. Similar remarks
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apply to the production of jets in deep inelastic lepton—hadron collisions,
to be discussed in Section 20.6, but the presence of hadrons in the initial
state makes the analysis more complicated.

Following the same reasoning as in Section 12,5, with no scalar fields the
most general renormalizable Lagrangian for quantum chromodynamics
can be put in the form

K= — VP Fy — Y P17 — ig Auta + mulwn (18.7.5)

where A} is the color gauge vector potential; F¥ is the color gauge-
covariant field strength tensor; g is the strong coupling constant; ¢, are
a complete set of generators of color SU(3) in the 3 representation (that

Py e e Y I RWCN P WaTa)] P Y]

15, Hermitian traceless 3 x 3 matrices with rows and columns labelled
by the three quark colors), normalized so that Tr(tstg) = 18,4; and
the subscript n labels quark flavors, with quark color indices suppressed.
Just as we found for electrodynamics in Section 12.5, this Lagrangian
has important accidental symmetries: it conserves space parity,’ charge
conjugation parity, and the numbers of quarks of each flavor (minus the
number of the corresponding antiquarks), including the long-established
‘strangeness’ quantum number, which counts the numbers of ‘s” quarks.
Thus quantum chromodynamics immediately explained the mysterious
fact that the strong interactions respect various symmetries that are not
symmetries of all interactions. This argument also makes it clear why, as
mentioned earlier, in this theory the weak interactions do not introduce
large violations of parity, charge conjugation, sirangeness, etc. Since
all renormalizable interactions among quarks and gluons conserve these
symmetries, at energies E much less than the masses mw of the particles
that carry the weak interactions these symmetries could be violated only
by non-renormalizable terms in the effective field theory, such as pyppy
interactions, which as discussed in Section 12.3 would be suppressed by
negative powers of my as well as by the coupling constants of the weak
interactions.

Of course, it is possible that the quarks and gluons exhibit some new
kind of strong interaction at an energy scale A’ much larger than the scale
A characteristic of quantum chromodynamics. For instance, as discussed
in Section 22.5, the quarks might be bound states of more fundamen-
tal fermions, which interact with gauge fields whose asymptotically free
couplings become strong at energies of order A’, trapping them into the
quarks. In that case the effective Lagrangian density for quarks at en-

T Although it was not known in 1973, we shall scc in Section 23.6 that non-perturbalive
effects can violate parity in quantum chromodynamics. Various ways of avoiding
strong parily violation have been suggested, but it is nol yet clear which is correct.
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ergies E € A’ would contain non-renormalizable interactions such as
Pyipy, which are suppressed only by powers of E/A’. These interactions
could show up, not only in small violations of symmetries like parity and
quark flavor conservation at ordinary energies, but also in departures??
from the quantitative predictions of quantum chromodynamics at energies
approaching A’.

Now let us consider the behaviour of the coupling constant of quantum
chromodynamics in greater detail. In lowest order, the renormalization
group equation is given by Eq. (18.7.4) as

d g1
ne =51 (T-5m)- (18.76)

The solution is

g%(u) 127
dn (33— 2n;)In(u2/A2)°

where A is an integration constant. This formula exhibits a characteristic
property of theories of massless (or, for the quarks, approximately mass-
less) particles: in such theories one of the dimensionless couplings in the
Lagrangian is exchanged for a free dimensionful parameter. Eq. (18.7.7)
involves no free dimensionless parameters, but it does involve one free
parameter with the dimensions of mass, the integration constant A.
These calculations have been carried to three-loop order. The renor-

as(p) = (18.7.7)

malization group equations to this order are*
d g, 2w g’(w
hll = — — 18.7.
k8 =~PoSels — iz —Prgtons (18.738)
where B, are the numerical coefficients:
2
fo=11— 3N (18.7.9)
19
b= 51‘““?’13‘3 (18.7.10)
5033 325 5
Br = 2857 — ==np — on (18.7.11)
The solution is
2
_ 87 (p
OCS(#) - 471.'
4z [ 28 In[ln(?/A%)

Poln (u?/A?) [1 B In(ui/AY)

4Pt 242y _ )2, BB2fo S
+ﬁ31n2(u2//\2) ((ln[ln(# /AN 2) + 5 4)](18.7.12)
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It should be recalled that n; in the above results is the number of
quark flavors with masses below the energies of interest. In each energy
range between any two successive quark masses we have a different
value of ny, and also a different A, chosen to make g(u) continuous
at each quark mass. In particular, experiments on the deep inelastic
scattering of electrons typically involve energies above only the first four
quark flavors (u, d, s, and ¢), so here we must take ny = 4. On the
other hand, experiments at electron—positron colliders like PEP, PETRA,
TRISTRAN, and LEP are at energies well above the fifth (b) quark mass,
so in these experiments we must take ny = 5. But these results may
be expressed in terms of those for ny = 4 by matching the solutions of
the renormalization group equations at the b quark mass. In this way

it is found® (using the modified minimum subtraction prescription in
calculating fB») that the strong coupling extrapolated to mz = 91.2 GeV
is ay(mz) = gZ(mz)/4n = 0.118 + 0.006, corresponding to A = 250 MeV
for energies p with mp < u < m;, where ny = 5. A more recent study®¢ of
hadronic production in e*—¢~ annihilation at the Z resonance has given
a directly measured value o;(my;) = 0.1200 + 0.0025, with a theoretical

uncertainty of +0.0078, corresponding to A = 2531“(1320 MeV.

18.8 Improved Perturbation Theory”

The ground-breaking paper! of Gell-Mann and Low was in large part
directed to the problem of ‘improving’ perturbation theory — that is, of us-
ing the ideas of the renormalization group and the results of perturbation
theory to a given order to say something about the next order of pertur-
bation theory. To illustrate this, let’s return to the specific case studied by
Gell-Mann and Low: vacuum polarization in quantum electrodynamics.

Recall that the renormalized electric charge e, at a sliding scale p is
given by Eq. (18.2.36) in terms of the bare charge eg as

e, = N lep (18.8.1)

where NLA) is the constant which, when multiplied into the unrenormal-
ized electromagnetic field, gives a field renormalized at scale u. (See
Eqg. (18.2.21)) Thus we can define a renormalized (and hence cut-off-
independent) complete photon propagator A.(q, ,EL, e,) in terms of the
complete propagator Ag,.(q,ep) of the unrenormalized field as

g
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* This section lies somewhal oul of the book’s main line of development, and may be
omitted in a first reading.
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in such a way that the function ezA’J(q,p, ¢,) is both independent of g,
because it equals e3A%,4(q. eg), and independent of the cut-off, because
both e, and Al (q,u,e,) are renormalized quantities. (We are not ex-
plicitly displaying cut-ofl dependence here.) But Lorentz invariance and
dimensional analysis tell us that this function must take the form:

: HpoB(q®/ 12, )
A (g, pe,) = 2 " £+ g,4s terms . (18.8.3)
Since Eq. (18.8.3) is u-independent, we can set u = 1/g2 = g here, so that
dq”/ i’ e,) = d(1,¢5) . (18.8.4)

Now let us see what this tells us about the structute of the perturbation
series for d(g*/y*, e,). The beta-function for e has the expansion:

Ble) = b’ + bre® + bse” +... . (18.8.5)
The renormalization group equation for ¢, then has a power series solution
2

2

2 _ 2 4.4 61v 4

eq—e#—ble ln;—bgep]nﬁ
bbby, 54’ g’ §

In byln = X 18.8.
(2 “2+ n# T (18.8.6)
If we also expand d:
d(l,e) = €> + de* + dre® + dze® + ... (18.8.7)

then
q* q
d(q* /1P e,) = d(l,eg) =€, — (m In %5 — dl) el — (b2 In =5 — dz) &
H p

1 2 g’ q’ 8
— | zb2b21n = + (b3 — bid2)In = — d3 e,+... . (18.8.8)
2 u u

Note that the leading powers of In(g%/;?) in each order of d(g® /42, eﬂ) are
respectively 0, 1,1,2,3,.... Also, if we calculate d(¢?/ i, e,) to order eu and
thus determine b1 and bz, we can immediately write down the coeflicient
of the leading logarithm in order eﬁ, as — b by. None of this would be
easy to infer without using the method of the renormalization group.

Probiems

1. Consider an SU(N) gauge theory with a scalar field in the defining
representation of SU(N). Calculate the beta-function for the gauge
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coupling to one-loop order, including the contribution of a scalar
loop. (Recommendation: Use the background field gauge, with a
constant background field.)

- Suppose that the beta-function B(g) for a theory with positive cou-
pling constant g has a simple zero at g = g., where f(g) — a(g. —g)
with @ > 0. What is the asymptotic behavior of the correction to
the leading term oc E7°8) in the factor N& ! associated with the
inclusion of an operator ¢’ in a vacuum expectation value.

. Show that in a theory with (g) = hg?+-b'g> +b"g* +- -+, it is possible
by a redefinition of the coupling constant to make the coefficient b”
anything we want.

. Calculate the effective electric charge that should be used in studying
processes at energy 100 GeV, taking account of all known charged
quarks and leptons with masses below 100 GeV.

. Calculate the asymptotic behavior for large four-momentum of the
electron propagator in quantum electrodynamics. (You may use the
one-loop value of Z; calculated elsewhere, for instance in Section
114.)

. Calculate the anomalous exponent v to first order in the expansion
in € =4 —d for an O(N)-invariant theory of scalar fields ¢,(x) with
n=1,---,N belonging to the veclor representation of O(N), and an

interaction 1g(¥, ¢2)%
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Spontaneously Broken
Global Symmetries

Much of the physics of this century has been built on principles of
symmetry: first the spacetime symmetries of Einstein’s 1905 special theory
of relativity, and then internal symmetries, such as the approximate SU(2)
isospin symmetry of the 1930s. Tt was therefore exciting when in the
1960s it was discovered that there are more internal symmetries than
could be guessed by inspection of the spectrum of elementary particles.
There are exact or approximate symmetries of the underlying theory that
are ‘spontancously broken,” in the sense that they are not realized as
symmetry transformations of the physical states of the theory, and in
particular do not leave the vacuum state invariant. The breakthrough was
the discovery of a broken approximate global SU(2) x SU(2) symmetry of
the strong interactions, which will be discussed in detail in Section 19.3.
This was soon followed by the discovery of an exact but spontaneously
broken local SU(2) x U(1) symmetry of the weak and electromagnetic
interactions, which will be taken up along with more general broken local
symmetries in Chapter 21. In this chapter we shall begin with a general
discussion of broken global symmetries, and then move on to physical
examples.

19.1 Degenerate Vacua

We do not have to look far for examples of spontaneous symmetry
breaking. Consider a chair. The equations governing the atoms of the
chair are rotationally symmetric, but a solution of these equations, the
actual chair, has a definite orientation in space. Here we will be concerned
not so much with the breaking of symmetries by objects like chairs, but
rather with the symmetry breaking in the ground state of any realistic
quantum field theory, the vacuum.

A spontaneously broken symmetry in field theory is always associated
with a degeneracy of vacuum states. For instance, consider a symmetry

transformation of the action, and of the measure used in integrating over
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fields, that acts lincarly on a set of scalar fields ¢n(x):

Pn(X) = @y (x) = Zanqu (19.1.1)

(The ¢, need not be elementary fields; they can be composite objects, like
Playp.) As we saw in Section 16.4, the quantum effective action I’ [&b] will
then have the same symmetry

I'lg] =T'[Lg] . (19.1.2)

For the vacuum the expectation value of ¢(x) must be at a minimum of
the vacuum energy —I'[¢], say at ¢(x) = ¢ (a constant). But if L¢ # b,
then this vacuum is not unique; —I'[¢] has the same value at ¢ = L¢ as it

does at ¢. In the simple special case where the symmetry transformation

(19.1.1) is a reflection, ¢ — —¢, if —I'(¢) has a minimum at a non-zero
value ¢ of ¢, then it has two minima, at ¢ and —@, each corresponding
to a state of broken symmetry.

We are not yet ready to conclude that in such cases the symmetry
is broken, because we have not vet ruled out the possibility that the
true vacuum is a linear superposition of vacuum states in which ¢, has
various expectation values, which would respect the assumed symmetry.
For instance, in a theory with a symmetry ¢ — —¢, even if T'(¢) has a
minimum for some non-zero value ¢ of ¢, how do we know that the true
vacuum is one of the states |VAC, £) for which @ has expectation values ¢
and —@, and not some linear combination like [VAC,+) + [VAC, —) that
would respect the symmetry under ¢ — —¢? The assumed symmetry under
the transformation ¢ — —¢ tells us that the vacuum matrix elements of
the Hamiltonian are

{(VAC, +|H|VAC,+) = (VAC, —|H|VAC,—)} = a
(with a real) and
{VAC, +|H|VAC,—) = (VAC,—|H|VAC, +) = b,

(with b real), so the eigenstates of the Hamiltonian are [VAC,+) +
IVAC,—), with energies a + [b|. These energy eigenstates are invariant
(or invariant up to a sign) under the symmetry ¢ — —¢. In fact, the
same issue also arises for chairs. The quantum mechanical ground state
of an isolated chair is actually rotationally invariant; it is a state with
zero angular momentum quantum numbers, and hence with no definite
orientation in space.

Spontaneous symmetry breaking actually occurs only for idealized $YS-
tems that are infinitely large. The appearance of broken symmetry for a
chair arises because it has a macroscopic moment of inertia I, so that
its ground state is part of a tower of rotationally excited states whose
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energies are separated by only tiny amounts, of order #*/I. This gives
the state vector of the chair an exquisite sensitivity to external perturba-
tions; even very weak external fields will shift the energy by much more
than the energy difference of these rotational levels. In consequence, any
rotationally asymmetric external field will cause the ground state or any
other state of the chair with definite angular momentum numbers rapidly
to develop components with other angular momentum quantum numbers.
The states of the chair that are relatively stable with respect to small
external perturbations are not those with definite angular momentum
quantum numbers, but rather those with a definite orientation, in which
the rotational symmetry of the underiying theory is broken.

For the vacuum also, the possibility of spontaneous symmetry breaking
is again related to the large size of the system, specifically to the large
volume of space. In the above example of a reflection symmetry, the off-
diagonal matrix element b of the Hamiltonian involves an integration over
field configurations that tunnel from the minimum at ¢ = ¢ to the one at
¢ = —, so it is smaller than the diagonal matrix clement a by a barrier
penetration factor that for a spatial volume ¥~ is of the form exp(—C¥"),
where C is a positive constant™ depending on the microscopic parameters
of the theory. The two energy cigenstates |[VAC, +) + |[VAC, —) are thus
essentially degenerate for any macroscopic volume, and so are strongly
mixed by any perturbation that is an odd functional of ¢. Even if such a
perturbation H' is very weak, its diagonal elements (VAC, +|H/|VAC, +)
will differ by much more than the exponentially suppressed off-diagonal
elements of either H or the perturbation. Thus the vacuum eigenstates
of the perturbed Hamiltonian will be very close to either one of the
broken symmetry states |VAC,+) which diagonalize the perturbation,
and not to the invariant states [VAC, +) + [VAC,—). Which one of the
states |VAC, 1) is the true vacuum for very small perturbations? This
depends on the perturbation, but since these two states are related by a
symmetry transformation of the original Hamiltonian, it doesn’t matter;
if the perturbation is sufficiently small, no observer will be able to tell the
difference.

The vanishing of matrix elements between vacuum states with different
field expectation values becomes exact in a space of infinite volume.! For
infinite volume, a general vacuum state {v) may be defined as a state with

" For instance, by analogy with the classic wave mechanical problem of barrier
penetration, for a Lagrangian density of the form —id,40%¢ — V(¢), we have
C = f_Jr;JZV(cﬁ) d¢. We will not bother to calculate the off-diagonal matrix el-

ement b here, because we shall soon give a general argument that shows that it
vanishes for infinite volume.



166 19 Spontaneously Broken Global Symmetries

Zero momentum
Py =0 (19.1.3)

for which this is a discrete momentum eigenvalue. (This excludes single-
particle or multiparticle states, for which the momentum value zero is
always part of a continuum of momentum values in a space of infinite
volume.) In general there may be a number of such states. They can
usually be expanded in a discrete set, and our notation will treat them as
if they were discrete. They will be chosen to be orthonormal

{ulv) = Sy - (19.1.4)
Any matrix element of a product of local Hermitian operators at equal
fimec hpf\l!ﬂ.ﬂln thece states may ha nvnrnnned as a sum over gtates:

CALEAWALY RAW L VF Wwirdl Lilbrode oFLCL L Ay Vv WALIMWOD

(ulA(x) BO)lv) = _(u|A(0)|w) (w|B(0)jv)

+ [ Y WAO)IN,p) (N plBO), (19.15)
N

where |N,p) are a set of orthonormalized continuum states of definite
three-momentum p that together with the |¢) span the whole physical
Hilbert space. (Here N may include continuous as well as discrete labels.
Also, we are dropping time arguments.) We assume without proof that
because the |N, p) belong to the continuous spectrum of the momentum
operator P, the dependence of matrix elements on p is smooth enough
(that is, Lebesgue integrable) to allow the use of the Riemann Lebesgue
theorem,” so that the integral over p vanishes as x| — o0, In this limit, we
have then

(ulA() BO)lp) —— > _(ul(0)w) (wIBO)lo) (19.1.6)
Likewise,
wlBO) AX)lD) — > _{ulBO)w) {w|4(O)i) (19.1.7)

But causality telis us that the equal-time commutator [4(x), B(0)] vanishes
for x # 0 (see Section 5.1), so the matrix elements (19.1.6) and (19.1.7) are
equal, and thus the Hermitian matrices (u|A(0)|v), (u|B(0)|v), etc., must all
commute with one another. It follows that they can all be simultaneousiy
diagonalized. Changing if necessary to this basis, we have then for every
Hermitian local operator A(x) of the theory

(Ul AO)|6) = S (19.1.8)

with g, a real number, the expectation value of A in the state |v). So
for infinite volume any Hamiltonian constructed from local operators will
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have vanishing matrix elements between the different vacua |v). In the
absence of off-diagonal terms in the Hamiltonian, any two |v}s connected
by a symmetry operation will be degenerate. A symmetry-breaking per-
turbation built out of such local operators will be diagenal in the same
basis, and will therefore yield a ground state that is one of the |v)s, rather
than a linear combination of them.

It is reassuring that the vacuum states |[v) which are stable against
small field-dependent perturbations are also vacuum states in which the
cluster decomposition condition (see Chapter 4) is satisfied. This principle
requires that for the physical vacuum state [VAC)

(VAC|A(x)B(0)|VAC) :;(VAC\A(XHVAC) (VAC|B(0)[VAC) . (19.1.9)
This condition is satisfied if we take the vacuum state |[VAC) to be any
one of the states |v) in the basis defined by Eq. (19.1.8), but not if we take
it to be a general linear combination of several of the |v)s.

19.2 Goldstone Bosons

We now specialize to the case of a spontancously broken continuous
symmetry. In this case there is a theorem, that (with one important
exception, to be considered in Chapter 21) the spectrum of physical
particles must contain one particle of zero mass and spin for each broken
symmetry. Such particles, known as Goldstone bosons (or Nambu-—
Goldstone bosons) were first encountered in specific modeis by Goldstone®
and Nambu?; two general proofs of their existence were then given by
Goldstone, Satam, and myself’ This section will present both of these
proofs, and then go on to consider the properties of the Goldstone
bosons.

Suppose that the action and measure are invariant under a continu-
ous symmetry, under which a set of Hermitian scalar fields ¢,(x) (either
elementary or composite) are subjected to the linear infinitesimal trans-
formations

Pn(X) = Gu(X) + i€ ) tumdm(x) (19.2.1)

with it,, a finite real matrix. As we found in Section 16.4, the effective
action is then also invariant under this transformation

sT
mz; f Sa %[(‘T) tam®m(X) d*x =0 . (19.2.2)

We shall specialize to the case of a translationally invariant theory with
constant fields ¢,, where as we saw in Section 16.2, the effective action
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takes the form

L'l¢] =—7V(¢). (19.2.3)

where 77 is the spacctime volume and V(¢) is known as the effective
potential. Eq. (19.2.2) may then be written

We will use this symmetry requirement in a form obtained by differenti-
ating again with respect to ¢'f3

aV
e, +Z 6d> ch ) tom = 0. (19.2.5)

fi nn

Now specialize to the case where ¢, is at the minimum of V(¢), that
18, at the vacuum expectation value ¢,. Since V(¢) is stationary at its
minimum, the first term in Eq. (19.2.5) vanishes, so

&’V (¢)
gp; a¢n8¢{ b=

The general results of Section 16.1 show that the second derivative
in Eq. (19.2.6) is just the sum of all connected one-particle-irreducible
momentum-space Feynman diagrams with external lines labelled # and ¢
and carrying zero four-momentum. Ag¢ shown at the end of Section 16.1,
it is related to the reciprocal of the momentum-space propagator by

tom Gm =0 (19.2.6)

o*v

7 éﬁl = A (0), (19.2.7)
so Eq. (19.2.6) gives

Z A0 tumpm = 0. (19.2.8)

Thus, if the symmetry is broken, so that 3, tyném is non-zero, then this
is an eigenvector of A }(0) with eigenvalue zero. The existence of such
an eigenvector means that An/(q) has a pole at g*> = 0. The rank of the
residue of the pole at g> = 0 is equal to the dimensionality of the space
of the vectors t¢, with ¢t running over all the generators of continuous
symmetries of the theory. Roughly speaking, there is one massless boson
for every independent broken symmetry.

In the classic example of a broken symmetry, the Lagrangian involves
a set of N real scalar fields ¢, and takes the form

2
£=- zay;bn e — Z bapn — 2 (Z qbncbn) . (1929)
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This is invariant under the group O(N), consisting of rotations of the
N-vector with components ¢,. For constant fields the effective potential
in the tree approximation is given simply by minus the non-derivative
terms in the Lagrangian density

M 2
V(g) =~ o Z‘;bn(,bn +§‘ (Z ﬁbnﬁbn) . (19.2.10)

As usual we suppose that g is positive-definite. (Otherwise the minimum,
if any, of ¥(¢) lies outside the range of validity of perturbation theory.)
If .42 is also positive, the minimum of V() is at the point ¢ = 0, which
is invariant under O(N). On the other hand, for .#? < 0 the minimum is
at points ¢, at which

> bun=—4*/g . (19.2.11)
n
The mass matrix in the trec approximation is then

A
nm aqg)naqu ¢=éb

= »ﬂzénm + gSum Z q_bf&f + 2g(}n$m
I'4

=28 On . (19.2.12)
This has one eigenvector q?)n with a non-zero eigenvalue:
m =28 Gupn =24, (19.2.13)
13

and N — 1 eigenvectors perpendicular to ¢ with eigenvalue zero. The
reason for the appearance of only N — 1 Goldstone bosons is just that
O(N) is broken down to O(N — 1) (the subgroup of O(N) that leaves ¢
invariant), and so the number of independent broken symmetries is the
dimensionality of O(N) minus the dimensionality of O(N — 1), or

%N(N—l)—%(N—l)(N—2)=N—1. (19.2.14)

Here is another proof of the existence of Goldstone bosons, one that
makes no use of the effective action formalism. As we saw in Chapter
7, any continuous symmetry of the action leads to the existence of a
conserved current J#:

OIX) _ ¢ (19.2.15)

dxu

with a charge @ that induces the associated symmetry transformation

0= / dxJO(x,0) (19.2.16)
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(0. 9n(x)] = =3 tmbn). (19.2.17)

Operator relations like Eqs. (19.2.15)-(19.2.17) are unaffected by sponta-
neous symmetry breaking, which is manifested in the properties of physical
states. Now, consider the vacuum expectation value of the commutator of
the current and field. Summing over intermediate states, this is

(P00 6009} = @07 [ peitprer ™ = piprer=].
' (19.2.18)
where, using translation invariance,

@) Yiph(p) = 3_(VACIJH0)IN) (N|$n(0)VAC)S*(p — px) » (19.2.19)
N

(2n)*iph(p) = D_{VACI$n(0)N) (N|J*(0)| VAC)&*(p — p). (19.2.20)
N

We usually take J* as well as ¢, to be Hermitian operators, in which case
Eqgs. (19.2.19) and (19.2.20) are complex conjugates

pr(p) = —p3'(p) (19.2.21)

but this will not be assumed here.
Lorentz invariance tells us that p and p must take the forms

Pi(p) = P ou(=P")0(1") (19.2.22)
pa(p) = P Bal—PH)0(0°) . (19.2.23)

(The factor 8(p®), which is 41 for p° > 0 and zero otherwise, is required
by the fact that py is the four-momentum of a physical state.) This gives

qﬂ(y » ¢"(x)]> B 6%1/ Ay [pn(#"‘)AJr(y — xju%)

VAC
+Pn A5 =y (19:224)
where A, is the familiar function
Au(z; i) = (2n)~ / d*p0(p°)5(p” + u*) €7 . (19.2.25)

As remarked ln Chapter 5, Lorentz i 1nvarlance allows A+(z %) to depend
only on z2 ,u . and #(z°), and for z2 > 0 only on z? and w*. Hence
Ay(x — y;u?) and AL(y — x; u?) are equal for x — y spacelike, and so in
this case

([0 909)] Y = 7 [ 2 )+ P84 5 = ).
(19.2.26)
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But for x — y spacelike all commutators must vanish, so

pu(i®) = —Pu(i?) (19.2.27)
and therefore Eq. (19.2.24) gives for general x and y:

0
e o) )ue =55 [ o)Aty = x4 — Arx = 3]
(19.2.28)
Where Eq. (19.2.21) applies, Eq. (19.2.27) also shows that p,(p) is real.
Now let us use the fact that J*(y) is conserved. Applying the derivative
8/8y* to both sides of Eq. (19.2.28), and using the familiar equation

Oy — ) As(y —x, 17 = 0, (19.2.29)
we find, for all x and y
0= [ 42 ipnis®) Asly—x @)= A=) . (19230)
and so (since A (x — y) is not even for x — y timelike or lightlike)
W) =0. (19.2.31)

Normally we would conclude from this that p,(x”) vanishes for all 3.
However, this is not possible in the case of broken symmetry. Set 4 = 0
and x° = y¥ =t in Eq. (19.2.28):

([P0.08ux.0] )y, = 200077 [ diputsd)
=6 =) [ dipu(sd)

Integrating and using Eqs. (19.2.16) and (19.2.17) gives

=Y tum{Pm)vac =i / pn(p?) . (19.2.32)
Eqgs. (19.2.31) and (19.2.32) can be reconciled only if
o) =180 Y tum{m(0))vac - (19.2.33)

(This is real for Hermitian fields ¢, because in this case Eq. (19.2.1) requires
twm tO be imaginary.) Thus as long as the symmetry is broken, p,(1%) cannot
vanish, but rather consists entirely of a term proportional to 5(u?). Such
a term can obviously only arise in a theory that has massless particles,
because otherwise the spectrum of center-of-mass squared energies —pk
would not extend down to zero. Furthermore a delta-function §(u?) can
only arise from single particle states of zero mass; multiparticle states
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would contribute a continuum extending down to u?> = 0. The state
(0} VAC) is rotationally invariant, so {N|¢,(0)]VAC} must vanish for
any state N of non-zero helicity. Also (VAC|J %N} vanishes for any state N
that has different intrinsic parity or (unbroken) internal quantum numbers
from J° We conclude then that a broken symmetry with tp,{¢,(0)}vac # 0
requires the existence of a massless particle of spin zero and the same parity
and internal quantum numbers as J°. These are our Goldstone bosons.

The above argument breaks down when the spontaneously broken
symmetry is a local rather than a global symmetry. Either we choose
a Lorentz-invariant gauge, such as the Landau gauge with 0,4* = 0, in
which case as shown in Section 15.7 the positivity assumptions of quantum
mechanics are violated, or we adopt a gauge like the axial gauge with
A% =0, in which case the ordinary rules of quantum mechanics apply but
manifest Lorentz invariance is lost. As we shall see in Chapter 21, this
exception is not just a technicality ; spontaneously broken local symmetries
do not lead to Goldstone bosons.

It will be useful to look in a little more detail at how the coefficient of
the delta-function in pn(u?) is related to the properties of the Goldstone
boson. For a spin zetro boson B of four-momentum g#, Lorentz invariance
requires the matrix element of the current between the vacuum and one-
particle states to take the form

F e
(2m)32,/2p%

where pp is the momentum of B, p§ = |pg| and F is a constant coefficient
with the dimensions of energy. (This is consistent with current conservation

because ppiph = 0.) Also, the matrix element of the scalar field ¢u(y)
between a single-particle state and the vacuum is of the form

(VAC|JM(x)|B) = i (19.2.34)

(Blg(y) 0) = —22E
Y @np2 2%

where Z, is a dimensionless constant. From Eqs. (19.2.34) and (19.2.35),
we have then

r) ipa(—p 00" = [ #pn(VACIHO)B) (Blgn(OI0) 3°(p — pa)
)

(19.2.35)

80

pu(i?) = FZy 6(it%) . (19.2.36)
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Comparing with Eq. (19.2.33), this gives
iFZy == tum{dm(0))vac . (19.2.37)
m

More generally, we may have several broken symmetries with generators
t, and currents J¥ which we can take independent in the sense that no
linear combination of the t, is unbroken. For each of these, there is a
Goldstone boson |B,), and we define Z,,, and F, by

Fabpé e'PB

(VAC|J}(x)|Bp) = | —226B° (19.2.38)
’ (2m/2,/2p8
o . Z e PRy
(Bo|pn(¥)|0) = ————. (19.2.39)
(2m)3724/2p%
Eq. (19.2.37) applies for each a, so
iy FapZpy = — > [talim{dm(0))vac - (19.2.40)
b m

For instance, in the O(N) example discussed earlier, we can adapt our
basis so that the vacuum expectation value points in the one—direction

P = (m(0))vac = v3m; - (19.2.41)

The N—1 broken symmetry generators ¢, (witha = 2 -+ N) can be defined
as those for infinitesimal rotations in the 1 a plane. With a convenient
choice of normalization, these have the non-zero elements

[talia = —[tadar =i (19.2.42)

(with no summation over a). The unbroken O(N — 1) symmetry, under
which the N — 1 Goldstone bosons transform according to the vector
representation, tells us that

Fap =0aF, Za=0, Zyp=Zy. (19.2.43)
Then Eq. (19.2.40) requires
FZ =v. (19.2.44)

[t is conventional to adopt the field renormalization prescription that
Z =1, s0 F =v. Thus F is a measure of the strength of the symmetry
breaking. As we shall now see, the parameter 1/F determines the strength
with which the Goldstone bosons interact with each other and with other
particies,

A broken symmetry tells us more about the Goldstone bosons than just
that they have zero mass; it also tightly constrains their interactions at
low energy. To see this in the simplest case, consider the matrix element of
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o

Figure 19.1. Feynmun diagrams for pole terms in the matrix element of a

symmetry current J#(x) between general states o and £, due to a Goldstone
boson internal line, denoted =.

the current J#(x) associated with a broken symmetry. Between arbitrary
states o,

(B (i) = € <5\J“(0)|cx> , (19.2.45)

with
gt =pt — pg . (19.2.46)
We know that J#(x) has a non-zero matrix element between the vacuum
and a one-Goldstone-boson state |B, q), given by Eq. (19.2.34). It follows

by the usual rules of polology (see Chapter 10) that the matrix element
(19.2.45) has a pole at g> - 0, with”

F
(B1IH(0)|2) —° qg Mg, , (19.2.47)

where i(2m)*0%(py — pg — q)Mp,/(27)3/%(2p")!/? is the S-matrix element for
emitting a Goldstone boson of four-momentum g in the transition « — f.
Let us therefore write

iF g
(BI*(0))a) = N%, + —q‘,%m Mg, , (19.2.48)

where Ny, is defined as the non-pole contributions to the matrix element
of the current. From Eq. (19.2.45), we see that the conservation law

" Where the Goldstone boson corresponds to an elementary field, Eq. (19.2.47) may be
obtained by inspection of the class of Feynman diagrams shown in Figure 19.1. The
factor i(2m)* in the S-matrix element for « — B+ B is cancelled by the factor —i(2m)™
associated with the B propagator. The general rules of polology tell us that the same
holds even where the Goldstone boson is a composite particle.
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(a) (b)

Figure 19.2. Feynman diagrams for pole terms in the matrix element of a
symmetry current J#(x) between general states ¢ and f, due to internal lines
close to their mass shell. Solid lines indicate ‘hard’ external particles; wavy lines
indicate insertions of the current J#(x); the cross-hatched disk represents the sum
of diagrams with the indicated external lines.

0, J# = 0 for the current J* requires (19.2.48) to vanish when contracted
with ¢#, and so

i

_ n
Mg, = = 4Nj, (19.2.49)

One immediate consequence is that unless Ng, has a pole at ¢ — 0, the
matrix element My, for emitting a Goldstone boson in a transition & — B
vanishes as g — 0. This is called an ‘Adler zero.

In fact, it often happens that NEI does have a pole at g = 0. This is
because the vertex for the current J#(x) might be attached to an external
line of the process o — f. (See Figure 19.2.) For instance, if a four-
momentum g# is carried away by a current J* inserted into an outgoing
or incoming particle line of four-momentum p and mass m, then the
internal line that connects this vertex to the rest of the diagram will carry
a four-momentum p# + g# or p¥ — g# respectively, and its propagator will
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therefore contribute to N E‘a a factor

+ 1
T2prq
For a fixed direction of q, the factor 1/|q| from Eq. (19.2.50) cancels the
factor |q] in Eq. (19.2.49), yielding a finite (though q-direction-dependent)
result in the limit |[q — 0. On the other hand, the contribution to N§,
of diagrams in which the current J* is attached to an internal line of the
process « — B has no singularity for |q) — 0, and therefore is cancelled
by the factor |q| in Eq. (19.2.49). Thus Eq. (19.2.49) can be interpreted
to mean that the amplitude for emitting a very soft Goldstone boson in
a process o — f can be calculated from graphs in which the Goldstone
boson is emitted only from the external lines of the process, with the vertex
for emitting the Goldstone boson given by applying Eq. (19.2.49) to the
transition between single-particle states.

The effective action formalism can be used to derive interesting results
for the interactions of the Goldstone bosons with each other and with
other scalars. For this purpose, we note that if we define a set of
renormalized Goldstone boson fields n, for which

(p£aq) +m2] = [:t2p-q + qz]_1 — (19.2.50)

e_ipB-xaab
(Ba|p(x)I0) = ——— ==, (19.2.51)
(2mP3/2/2pY
then Eq. (19.2.39) tells us that
bn(x) =D ZanaX) + ... , (19.2.52)

.

where *..." indicates fields that do not create Goldstone bosons. But
Eq. (19.2.40) gives Za = 3., F3'(itp¢p)n. Thus the amplitude for any
reaction among N zero-four-momentum Goldstone bosons 7g, ..., Tay,
is the same as would be calculated in the tree approximation from the
effective interaction

1
E;ﬁﬂcﬂ‘ = mgal---an{ﬂal o .ﬂ:aN ] (19.2.53)
with
- 1 e 3 .o NV (¢
Bapray = a1%)1 Y FaNle(ltbLQS)nl o (Itpy Oy W o
bi.by ny ny =

(19.2.54)
Eq. (19.2.4) at ¢ = ¢ then implies that the sum of all ‘tadpole’ graphs
for a single Goldstone boson line disappearing into the vacuum vanishes,
and Eq. (19.2.6) tells us that the amplitudes vanish for Goldstone bosons
to make transitions at zero four-momentum into any other scalars. To
go beyond these results, we can continue to differentiate with respect to
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the scalar fields. For instance, the derivative of Eq. (19.2.5) gives for any
symmelry generator t;

PV (¢) 1V (¢) Sd) )
; Snipm T zn: Igndd, T Xk: B, WO =0 (19255)

Taking ¢t as one of the broken symmetry generators t,, setting ¢ = ¢,
contracting with (tph)m(tc¢h)s, and using Eq. (19.2.6) gives
oV o

> s (BltnBmlted) =0, (19.256)

nme OPn0PmOde b=o
so the sum of all graphs with three external zero-four-momentum Gold-
stone boson lines vanishes. In particular, this means that in general
processes, to leading order in smalt Goldstone boson energies, low energy
Goldstone bosons are not emitted from external low energy Goldstone
boson lines.

19.3  Spontaneously Broken Approximate Symmetries

In the previous section we dealt with exact symmetries of the action that do
not leave the vacuum invariant, and are said to be spontaneously broken.
We shall now consider the effect of adding small symmetry-breaking terms
to the action in such a theory. Such spontaneously broken approximate
symmetries are important in the theory of strong interactions, and in
some areas of condensed matter physics. As we shall see, the spontaneous
breakdown of an approximate symmetry does not lead to the appearance
of massless Goldstone bosons, but of low-mass spinless particles, often
called pseudo-Goldstone bosons.”

We continue here to treat translationally invariant theories, in which
the effective action is expressed as in Eq. (19.2.8) in terms of an effective
potential V(¢) that depends on a set of spacetime-independent scatar field
expectation values ¢,. For an action that obeys some set of approximate
continuous symmetries with generators t,, the effective potential may be
written

Vig) = Vo) + Vi(e), (19.3.1)
where Viy(¢h) satisfies the invariance condition®

Z azbi(qa) (ta)om@Pm =0 (19.3.2)

mm Y®n

* We denote general symmetry generators as £,, tg, €lc., in contrast with the independent
broken symmetry generators, for which the subscript « takes valucs a, b, etc.
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and Vi(¢) is a small correction due to the symmetry breaking in the
action. Suppose that this perturbation shifts the minimum of the potential
from ¢, the minimum of Vi(¢), to ¢ = ¢ + ¢y, where ¢y is small, of first
order in the symmetry-breaking perturbation. The equilibrium condition
for the vacuum is then

oVig)
=0. 19.3.3
Opr b=po+¢ ( )

The zeroth-order term on the left is just [@Vo(¢h)/@¢nl 5—4,. Which vanishes
because ¢hq is defined as the minimum of Viy(¢b). Thus the first-order terms
must also vanish, and so:

— V()| b+ M@
. _

Eq. (19.2.6) holds here with ¥V replaced with the invariant term V; and ¢
replaced with ¢hy:

o

(19.3.4)

ta)n =0. 19.35
Za¢na¢m¢¢()1¢01 (19.35)
Hence multiplying Eq. (19.3.4) with (t4¢0), and summing over n gives
(tago) LD _ g (193.6)
O¢hn b=t

Recalling the interpretation of V(¢) as the generating function for one-
particle-irreducible graphs, and noting that in the absence of the pertur-
bation Vi the Goldstone components of ¢, are those in the direction of
txpo (see Eq. (19.2.33)), the left-hand side of Eq. (19.3.6) is proportional
to the sum of all ‘tadpole’ graphs, in which a pseudo-Goldstone boson
disappears into the vacuum. Eq. (19.3.6) may thus be paraphrased as
the condition that, to first order in V|, pseudo-Goldstone bosons have no
tadpoles.

The moral of this calculation is that if we do not start with a zeroth-
order vacuum expectation value that satisfies Eq. (19.3.6), then even a small
perturbation will produce a large change in ¢, invalidating the expansion
of ¢ around ¢y. Fortunately, for compact Lie groups it is always possible
to choose ¢y to satisfy Eq. (19.3.6). To see this, note that the invariance of
the potential V3(¢) under a group of real linear transformations ¢ — L¢
implies that if ¢. is one minimum of the potential, then so is L¢p.. For
continuous groups of transformations, we can always parameterize the
transformations as L(#), in such a way that

M L1

spa L(0) = iNas(0)tg , (19.3.7)
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where Ny is a non-singular matrix depending on the group parameters
4. (Recall that in a real representation, it is it, rather than t, that is
real.) Now consider the function V1(L(0)¢.). Where the group is compact,
L(8)¢» maps out a compact manifold as 8 runs over the group volume,
and as long as V1(¢) is continuous, it must have a minimum on any such
compact surface, say at a point L(6.)¢.. The derivative of Vi(L(0)¢.)
with respect to 8, is

ViIL(O)ps) < OVi(¢)
88, _; Oy

This must vanish at the minimum 6., and since N, is non-singular, this
implies that

S pra NS

Nug(0) (itgL(B)s)s . (19.3.8)
b=Li6).

oVi(¢h)
=3

But then Eq. (19.3.6) is satisfied if we make the choice ¢ig = L(64)..

Eq. (19.3.6) is known as a vacuum alignment condition? because it gen-
erally has the effect of forcing the direction of the symmetry breaking
by the vacuum into some sort of alignment with the symmetry-breaking
terms in the Hamiltonian. For instance, consider the case of SO(N) spon-
taneously broken to SO(N — 1), introduced in the previous section. In
the absence of any symmetry-breaking perturbation, there is no way to
tell which SO(N — 1) subgroup is left unbroken; if the dynamics of the
theory leads to a ground state that is invariant under the SON —1)
subgroup of SO(N) that leaves some N-vector ¢, invariant, then by
performing an SO(N) rotation we can find a ground state that is in-
variant under the SO(N — 1) subgroup that leaves any other N-vector
invariant. If we add a perturbation that transforms under SO(N) like,
say, the component Y, u,¢, of an N-vector ¢, (not necessarily consisting
of elementary scalars), then the Hamiltonian is invariant under a spe-
cific SO(N — 1) subgroup of SO(N), consisting of rotations that leave
the vector u invariant. Without a vacuum alignment condition, we might
think that the remaining exact symmetry is SO(N — 2), consisting of
those rotations that leave invariant both u and the vector ¢o character-
izing the vacuum symmetry. But with Vi(¢) = 32, u,¢,, the condition
(19.3.6) tells us that at the true vacuum, Y., (t.ho)ntty = O for all SO(N)
generators ¢,. The SO(N) generators t, span the space of all antisym-
metric N x N maltrices, so this condition requites that ¢o must be in the
same direction as u, and so the unbroken symmetry is SO(N — 1), not
SO(N —2).

According to the general results of Section 16.1, the mass matrix M

(g L(Be)pu)n . (19.3.9)
=L}
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of the pseudo-Goldstone bosons is given to first order by

PVi¢)

Zzanzbm Y o), , (19.3.10)

p=do+¢1
where Z,, is the field renormalization constant defined by Eq. (19.2.39).

Since the mass matrix (19.3.10) vanishes in zeroth order, the first-order
terms give

O Volg) 3*Vi(¢)
Mgb = Zzanzbm EYSCY VS h1s + , (19.3.11)
mn 6¢{a¢ma¢,n ¢=¢){] a¢m6¢n ¢=¢'
where Z,, is here given by the zeroth-order approximation to (19.2.40):
Zan=>_ Fg' (itocpo)n - (19.3.12)
b

To calculate the mass matrix (19.3.11), we take t in Eq. (19.2.55) to be
one of the broken symmetry generators t,, set ¢p = ¢b, and contract with

(tsPo)m1s:
3
0= Z a ¢ V0(¢)

o 0 0Gmidn| W“ad’o)n(tbq&o)m
*Vo(¢) Vold)
m a¢na¢m _y (tagbl)n(tbqf’ﬂ + Z a¢na¢ ‘ (tﬂtb¢0)n¢1f )

The second term on the right-hand side vanishes accordmg to Eq. (19.2.6),
while the third may be rewritten using Eq. (19.3.4), leaving us with

Gl vV
Z 3¢;5£L¢;¢n Qre(taoln(too)m = Vi)

(tatppoln -
nm¢ d=do 0bn lg=g

(19.3.13)
Using this in Eq. (19.3.11) then yields a formula for the pseudo-Goldstone
boson mass matrix in terms of Vy:

2 1 82 V1(¢)
== FlFy l(taqso)n(tbeso)m
Vi)
+ltatbpoln — o ¢=¢J : (19.3.14)

For this to be a sensible mass matrix, it had better be positive. To
see that it is, it is convenient to rewrite this result in terms of derivatives
with respect to the group parameters 0,. Differentiating Eq. (19.3.8) with
respect to Op, setting 0 = 0., and using Eq. (19.3.9) and ¢o = L(0s)¢
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gives

P2Vi(L(6)¢s)
Mz =" N\ (8+) Ny (0. F . Fi 20,00,

cdafl

(19.3.15)
B=9:

The matrix on the right is positive, because 6w is the minimum of the
function Vi{L(6)¢.).

This formula has a somewhat more familiar version, in terms of the
vacuum expectation value of a double commutator of symmetry generators
with the symmetry-breaking perturbation. Suppose that the symmetry-
breaking perturbation H, in the Hamiltonian is a linear combination

=" u,d, (19.3.16)

of operators @, (not necessarily elementary scalar fields), which furnish a
representation of the symmetry group with generators ¢,, in the sense that

[Ta, @n] = —(t)um @ , (19.3.17)

where T, are the quantum mechanical generators of the symmetry group.
According to the results of Section 16.3, the symmetry- breaking part of
the potential is

Vilg) = (Hi)io)=p = D ttahn » (19.3.18)

the subscript in the middle expression indicating that the expectation value
is to be taken in the state of minimum energy in which ®, has expectation
value ¢,. The vacuum alignment condition (19.3.6) then reads

0= Z un(ta¢0)n s

or using Eq. (19.3.17)
= ([Ts, Hil}o , (19.3.19)

the subscript 0 now indicating that the expectation value is to be taken
in the vacuum state, in which ®, has expectation value ¢on. Also,
Eq. (19.3.14) gives the mass matrix here as

cd - Z F(:ledbl Z iy tatb¢)0

and, using Eq. (19.3.17), this is
My == Fu'Fi' ([Ta [Ty, Hill)o . (19.3.20)
This is symmetric in ¢ and d. To see this, note that the Jacobi identity

and group commutation relations may be used to wrile the difference
of Eq. (19.3.20) and the same with ¢ and 4 interchanged as a linear
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combination of terms {[T,, H]}o, which vanish according to the vacuum
alignment condition (19.3.19). The mass matrix (19.3.20) is also posi-
tive, because the point & = 0 is at the minimwm of the vacuum energy
{exp(—if, T,)H1 exp(if, T,))o for rotated vacuum states exp(if, T,)|0}.

194 Pions as Goldstone Bosons

The classic example of a broken symmetry in elementary particle physics
is the approximate symmetry of strong interactions known as chiral
SU(2) x SU(2). According to our present understanding, this symme-
try arises because there are two quark fields, u and d, that happen to
have relatively small masses. (An estimate is given in Section 19.7.) In the
approximation that the u and d are massless, the Lagrangian (18.7.5) of
quantum chromodynamics is

£ =~uy*Dyu—dy*Dd— -, (19.4.1)

where D, is a color-gauge-covariant derivative (see Eq. (15.1.10)) and * - -’
refers to terms involving only gluon fields and/or other quark flavors, but
not u or d. This Lagrangian is invariant under the transformations

(;)ﬂem@éﬁE+wmﬂa (;), (19.4.2)

where { is the three-vector” of isospin matrices

Lo L_l0 =i Lt oo
=20V -1 0 /" 272\ i 0 )¢ 37280 —1 /¢

and 8" and 84 are independent real three-vectors.”* This Lie algebra
may be written in terms of two commuting SU(2) subaigebras that act
respectively only on the left- and right-handed parts of the quark fields,
with generators

- 1 - . 1 -
f =51 +ys)t. R =S —ys) (19.4.3)

" We use arrows for three-vectors in isotopic spin space to distinguish them from
ordinary three-vectors, which will continue to be indicated by boldface letters,

" The Lagrangian (19.4.1) has this symmetry because J5gy* = —dysp* = +pykys.
The Lagrangian also has two other continuous internal symmetries. One is baryon
conservation, the invariance under a common phase transformation of the # and d
quark fields. This is unbroken and commutes with the other symmetries, so it does
not affect our discussion in this section. The other symmelry is invariance under
multiplication of the quark doublet with cxp(izys). As discussed in Section 23.5, this
U(1} symmetry is strongly intrinsically broken by non-pertutbative effects associated
with instantons.
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satisfying the commutation reiations

[tri, 1] = i€ b, (19.4.4)
[tRi, tRj] = i€k trc (19.4.5)
[I‘Li, IRJ'] =0. (1946)

The underlying symmetry group is therefore identified as SU(2) x SU(2).
It has another obvious SU(2) subgroup, consisting of ordinary isospin
transformations with #4 = 0, and generators

i=1ir+1ir. (19.4.7)

The algebra of SU(2) x SU(2) may be written in terms of ¢ and another
triplet of generators:

f, —tg = yst (19.4.8)
with commutation relations
[ty 1] = degjp bk (19.4.9)
[ti xj] = fesu X, (19.4.10)
[xi, x;] = i€ b . (19.4.11)

We will see that the SU(2) x SU(2) symmetry is spontaneously broken,
while its isotopic spin subgroup generated by the ¢ is an ordinary unbroken
(though approximate) symmetry.

By Noether's method (see, e.g., Section 7.3) we may derive from the
Lagrangian (19.4.1) the conserved vector and axial-vector currents

Ve = igytiq, A* = igyysig (19.4.12)

BuVH = 8,4 =0, (19.4.13)
where g 1s the quark doublet,

qz(z). (19.4.14)

Their associated charges are the generators respectively of isospin and of
the remaining symmetries

- /d3x o (19.4.15)

X:ffxr. (19.4.16)

-

The currents (19.4.12) are normalized so that the quantum operators T
and X satisfy the same commutation relations as the matrices f and %

[Tj, Tj] =iei Tk, (19.4.17)
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[Tf, Xﬂ = ieijk Xk , (19418)
[Xf, X}] = iE;jk Tk . (19419)

Acting on the quark fields, these operators induce the transformation
(19.4.2), in the sense that

[T, q] = —igq, (19.4.20)
[5(, q] = —%q. (19.4.21)

This symmetry if exact and unbroken would require any one-hadron
state |h) to be degenerate with another state X |h) of opposite parity and
equal spin, baryon number, and strangeness.” No such parity doubling

linda that Ff +h
is seen in the hadron spectrum, so we are forced to conclude that if the

chiral symmetry SU(2) x SU(2) is a good approximation at all, then it
must be spontaneously broken to its isotopic spin SU(2) subgroup. In
this case the operator X takes a one-hadron state |k} into a hadron k plus
a massless pseudoscalar Goldstone boson, so there is no need for parity
doubling of the hadron spectrum.

The question of whether quantum chromodynamics actually exhibits
such a pattern of symmetry breaking involves all the complications of
strong interaction dynamics. As we shall see in Section 19.9, there are
general grounds for believing that the isospin SU(2) is not spontancously
broken in quantum chromodynamics, but it is much more difficult to
show that the chiral part of SU(2) x SU(2) is spontaneously broken.
(But according to an argument given in Section 22.5, the SU(3) x SU(3)
symmetry of quantum chromodynamics with three massless quark flavors
must be spontaneously broken.) It was something of a breakthrough in the
1960s to realize that one does not have to have a detailed understanding
of the mechanism of the breaking of chiral symmetry; we derive the most
interesting consequences of this symmetry breaking by simply assuming
that SU(2) x SU(2) is spontaneously broken to SU(2).

The u and d quarks have small but nonzero masses, so the SU(2)xSU(2)
symmetry is not exact. A broken approximate chiral symmetry entails the
existence of an approximately massless Goldstone boson with the same
quantum numbers as the broken symmetry generator X: it must be a
state of negative parity, zero spin, unit isospin, and zero baryon number

T One way to satisfy this condition is for the hadron to have zcro mass, with two states
|£) of helicity +4 and equal spin, baryon number, and strangeness; the states |+)+|—)
and |+) — |—) would then huve opposite parity. It is not true that an unbroken chiral
symmetry necessarily implies a zero nucleon mass, unless we make further assumptions
about the matrix elements of the axial-vector current. But as we shall see in Section
22,5, an exact unbroken chiral symmetry would in fact require that some baryons be
massless.
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and strangeness. In fact the lightest of all hadrons is the pion, which
has precisely these quantum numbers, so we are led to identify the pion
as the Goldstone boson associated with the spontaneous breaking of
approximate chiral symmetry. As we shall see below, it is m2 rather
than m,f that is proportlonal to a linear combination of m, and my,
and m3/m%, ~ 0.022 is very small, so the consequences we derive from
spontaneously broken SU(2) x SU(2) should be reasonably accurate.

In exploring the consequences of chiral symmetry for pion interactions,
it is very useful to note that although the chiral symmetry of the strong
interactions does not depend in anly way on the existence of weak in-
teractions, the symmetry currents V# and A* happen to be the currents
entering into strangeness-conserving semileptonic weak interactions like
nuclear beta decay. As we shall see in Section 21.3, the standard model of
electroweak interactions requires that the effective Lagrangian for these
interactions at low energy must take the form:

iGwi
2

where £ runs over the renormalized fields of the three charged leptons e,
p and t; vy runs over the renormalized fields of the associated neutrinos:
and V} and A% are the charge changing currents

Lo = =25 (Vi 4 42) Y lpa(l +yshve + He. (19422)
£

vi=vi+ivi, AL = At +id}. (19.4.23)

The constant'™ Gy, may be measured from the rates of beta transitions
between states of zero spin within the same isotopic multiplet, such as the
decays nt - 7%+ et 4+ v, and Y0 — YN* + et +v,. The momentum
transfer in these transitions is very small, so parity conservation (in strong
interactions) and rotational invariance tell us that only the matrix elements
of f @x VY = T; —iT, enter in the S-matrix elements for these decays.
This operator has matrix elements between states in a given isospin
multiplet that are just known Clebsch-Gordan coefficients, so from the
rates for these ‘0 — 0’ processes we may calculate a value® for the coupling
in Eq. (19.4.22): Gy =~ 1.14959(38) x 10~° GeV 2. On the other hand, in
the process of pion decay, #t —» yt +v,, the only current matrix element
we need is the matrix element of A* between a one-pion state and the
vacuum:

1F 6Upﬂ [Pn

22m)p2y /20

" Gy is related to the conventional Fermi coupling constant G and the Cabibbo angle
O¢ by G, — Grcos B¢ see Section 21.3.

(VAC|AH(x)Im;) = (19.4.24)
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which is completely known except for the factor F,. The rate for pion
decay turns out to be

2 2. 22 242
GuicFammy —my) (19.4.25)

Ifn > u+v)= T
b

From the known rate for % —» pt +v,, I’ = (2.6033(24) x 10~ )71, and
the above value of Gy, one finds that*

Fr ~ [84 MeV . (19.4.26)

Now let us consider the matrix element of A* between one-nucleon
states. This is of interest in its own right, and as discussed in Section 19.2,
1t mprmaradan infrrmaatiat e tiasd o calanlata tha armicetinm af locgy amnares
1L PI.UVI\.ICD ALLIAVAL THIAVIVLIL ¥y LAl WY WAL U Lld GILILOOIVIL WL IUAWY \-'11\-15)'
pions in collisions of nucleons. Following the same reasoning as used
for the electromagnetic current in Section 10.6, one finds that Lorentz
invariance and parity conservation require this matrix element to take the

form*
(plAk (x)ln) = (2m) 7 €1
x B[ — ipysf(g%) + a'ysg@®) + iau [y, Tpshia®)wn ,  (19.4.27)

where g = p, — pp. In the approximation in which the SU(2) x SU{(2)
symmetry is exact, the conservation of current requires that

qu{pl AL (x)|n) = 0. (19.4.28)
Using the defining equations for the Dirac spinors u, and wu,,

(i g, +mn)=(i g, +mnun =0,

we see that
gy lip [—iy*yslup = —2myiyysiy
and so Eq. (19.4.28) requires that
2my f(q°) = g’8ld’) - (19.4.29)

If g(g®) had no singularity at ¢g> = 0, then (19.4.29) would require that
either my = 0, which is certainly not true, or that f(0) = 0, which is not
true either. In fact, the quantity f(0) is measured in low energy nuclear

1t is common to encounter a pion decay constant f, which in terms of the F, used
here is variously defined as Fy, F,{/\/Z or F, /2.
H The currents A% in the standard model have charge conjugation properties that make

the coefficient k(g?) vanish. It is possible that there are ‘second-class’ terms' in the
weak currents with opposite charge conjugation propertics that give a non-vanishing
h(g*), but there is no evidence for such terms. As we shall see, keeping the h(g*) term
here has no effect on the inferences drawn irom chiral symmetry.
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beta decays, like neutron decay, where it is usually called g4; it is found
to have the value

£(0) = g4 = 1.2573(28) . (19.4.30)

The fact that neither my nor f(0) = g4 is small requires that in the limit
of exact SU(2) x SU(2) symmetry, g(g°) must have a pole as g2 — 0:

2mnga
q>
Such a pole 1s naturally provided by the massless pion that would be
required by the spontaneous breakdown of an exact SU(2) x SU(2) sym-
metry. Suppose that the pion couples to the one-nucleon state as if the
interaction Lagrangian were® —2iG,y2NysiN. Eq. (19.4.24) tells us that
the matrix element of the current between a one-pion state and.the vac-
uum is the same as if there were a term in A#(x) of the form F,d##/2.
Therefore in the limit g — 0 the matrix clement (19.4.27) has the pole

g(q’) - (19.4.31)

Iq-x

(Pl ) = [55 (zn—qu} lig"Fx/2].

Comparing with Eq. (19.4.27), we see that one-pion exchange gives the
function g(g?) a pole

| [it2my* 2Gan dplivsu)

F
g(q’) G"‘;‘; . (19.4.32)
for g> — 0. Putting together Eqs. (19.4.31) and (19.4.32), we find
Gy = 2m; g4 (19.4.33)

This is the famous Goldberger-Treiman relation.!! It works reasonably
well; taking my = (m, + m,)/2 = 938.9 MeV, g4 = 1.257, and F, = 184
MeV gives G,y =~ 12.7, in fair agreement with the value®™ G,y = 13.5
measured in various ways (including the effects of the one-pion pole
in nucleon—nuclear scattering and the one-nucleon pole in pion—nucleon
scattering.)

In the real world the pion is not massless and the SU(2) x SU(2)
symmetry is not exact (even before being spontaneously broken.) This
circumstance may be analyzed using the general formalism presented in

“ This is the conventional definition of the pseudoscalar pion—nucleon coupling G,.y.
The factor 2 is introduced here to cancel the 1/2 in the isospin matrices.

% The textbook!? value is G2, /dn = 14.3, or G.» = 13.4. More recently, a high precision
study® of ncutron-proton charge-exchange scattering at 162 MeV has given a valuc
G2y /4n = 14.6 03, or G,y = 13.5.
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the previous section. The Lagrangian (19.4.1) yields a symmetry-breaking
term in the Hamiltonian
Hy = myiiu + madd = (my, + mg)®F + (my — mg)®3 (19.4.34)
where
Of = (i +dd), @7 = au—dd). (19.4.35)

The operators @ and &7 are spatial scalars and, as this notation is
meant to suggest, they transform under SU(2) x SU(2) as components of
independent chiral four-vectors ®F :

" = igysiq o7 = 134, (19.4.36)
b~ =giq, @7 = — ligysq . (19.4.37)
These are chiral four-vectors, in the sense that
[T, d)ni] = — 5 (T )m®L, (19.4.38)
[5(, q)}] ==Y (@)m®L (19.4.39)
i3

where 9 and & are Hermitian 4 x 4 matrices that furnish the four-vector
representation of the algebra of SU(2) x SU(2) = SO4).

(g_a)br = — i €apc » (fra)m = (3_.;;)4}) = (Fa)44 =0 . (19.4.40)
(X =— Loy = —10ap,  (Xo)ap ={(X)aa=0. (19.441)

This notation makes it easy to see that the vacuum alighment conditions
for generators Ty, Ty, X1, X», and X3 respectively take the form

0= (@3 )0 = (D))o = (D))o = (DS o
= (my + mg){®F Yo + (ma — mu){DF o - (19.4.42)

We have been assuming that in the absence of u and d quark masses, the
symmetry SU(2) x SU(2) is spontaneously broken in such a way as to
preserve unbroken the SU(2) symmetry generated by T as well as parity,
in which case (@} )y points in the four-direction and {®, )¢ = 0 vanishes,
so that the conditions (19.4.42) are satisfied. But with m, = my = 0, we can
find other symmetry-breaking solutions with other definitions of parity by
subjecting this one to an arbitrary SU(2) x SU{(2) transformation. Thus
in the absence of u and d quark masses, there would be no way to tell
in what direction (@ }¢ = 0 should point, or which SU(2) subgroup of
SU(2) x SU(2) is left unbroken, though in all cases (®;)o = 0. The
vacuum alignment condition (19.4.42) tells us that, with the symmetry
broken intrinsically by the perturbation (19.4.34) and spontaneously in
such a way that (@, }¢ = 0, the vacuum must ‘line up’ in such a way



19.4 Pions as Goldstone Bosons 189

that {(®;)o = 0 points in the four-direction, so that the unbroken SU(2)
symmetry is ordinary isospin.

This formalism may be used to calculate the pion mass. From Egs.
(19.4.39)-(19.4.41) we find

[Xa, [Xp, D711 = 60p®7 [Xa, [Xp, D3]] = @7 3 . (19.4.43)

SO £ A Y Py | o~

nlbu lbprlll invariance tells us that the symmeiry—breaking parameter Fg,
introduced in Section 19.2 is prop rtlonal to d4p, with a proportionality

factor that according to (19.4.24) is just F, /2, so
Fop = 0apFr /2. (19.4.44)
Eq. (19.3.20) thus gives the pion mass matrix as
mi, = Sm2 (19.4.45)
where
mk = 4my +mgN O Yo/ F} . (19.4.46)

It is striking that the masses of the charged and neutral pions turn out to
be equal, even though we have made no assumption about the ratio of m,
and my. We shall see below that this ratio is not near unity; isospin is a
good quantum number not because the u and d quark masses are nearly
equal, but because they are small. Also, as promised, we see that it is the
square of the pion mass that is proportional to the quark masses, so the
quark masses should be quite small. (See Section 19.7 for an estimate.)
The observed pion mass difference arises not from the u-d quark mass
difference, but from electromagnetism. Indeed, the pion isospin multiplet
is the only one whose mass difference has been successfully calculated on
the basis of one-photon exchange alone.!*

Of course, even with quark masses taken into account, Eq. (19.4.24) can
still be used to define F; its divergence gives

Fﬂﬁijm%eipﬂ'x

22m)3 2200

Instead of assummg that Q,A*“ vanishes, we can now assume that it is
small, of order m2, except where a pion pole compensates for the smallness
of m2. According to Eq. (19.4.47), the behavior of matrix elements of 0, A
near a one-pion pole is the same as if 9,4 were Fym2 times a properly

renormalized pion field. For instance, the one-nucleon matrix element of
d, A% should be

(VAC|3, A} (x)|m;) = (19.4.47)

~i
(27I)4(q'2 +m3)

Fam

{plSu AL (0)|n) ~ 2

] [i(2m) 26 anig(—iyshun]
(19.4.48)
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so in terms of the form-factors in (19.4.27)

G,y F nm‘;‘c
4’ +mz

This is expected to be valid when g2 is of order m2, and not only in the

limit g* ~» —mzZ, because the pion pole dominates matrix elements of 8,4*
for all such small ¢2. Also, for such ¢, in place of Eq. (19.4.32) we have

GT[NFH

q’g(q?) — 2myf(g) =~ — (19.4.49)

%)~ . 9.4.50
g(qa°) 2+ (19.4.50)

From Eqs. (19.4.49) and (19.4.50) we find that for g> of order m2,
f(a%) = GunFy [2my . (19.4.51)

It should be no surprise that this function is roughly constant over the
range of ¢ from zero to of order m2, because it has no one-pion pole,
and there is nothing else that could give it a substantial variation in such
a small range of ¢°. This constant value is approximately f(0) = g4, and
Eqg. (19.4.51) thus again yields the Goldberger-Treiman relation.

We can now use the results of Section 19.2 to calculate the amplitude
for emission of a single low energy pion in an arbitrary process o — . We
found that the amplitude is to be calculated from Feynman diagrams in
which the pion is emiited onily from the external lines of the process, and
Eq. (19.2.49) shows that these contributions are to be calculated as if the
pion field interaction were 0,7 ‘A N/ Fz, 1n which the subscript N indicates
that we are to drop the one-pion pole term in matrix elements of the
axial-vector current. From Eq. (19.4.27) (and using isospin invariance) we
conclude that for soft pions emitted from a nucleon line this interaction
is effectively

4

T

Using the free-particle Dirac equation, we can see that for nucleons on

the mass shell (that is, at the one-nucleon poles in Figure 19.2) this is

equivalent to the pseudoscalar interaction —2imy g4 # - NystN/F,. This

provides yet another demonstration of the Goldberger-Treiman relation
(19.4.33).

Ouft NyPysiN |

* % %

Our discussion here has not paralleled the historical development of
these ideas. In fact, the course of historical development was chronologi-
cally almost exactly opposite to the line of argument presented here. Bro-
ken symmetries in particle physics started with the Goldberger-Treiman
relation (19.4.33), which was derived!! in 1957 on the basis of a dynamical
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calculation of pion decay. In order to explain the surprising success of
this very approximate calculation, several theorists'® introduced the idea
of a ‘partial conservation of the axial-vector current” (PCAC), the idea
that although the axial-vector current is not conserved (as shown by the
fact that pions do decay) its divergence d,4", is proportional to the pion
field. In itself, this assumption is meaningless — we saw in Chapter 10
that any field with a non-vanishing matrix element between the vacuum
and one-pion states may be regarded as a pion field. Although it was not
clear at the time, what was really being assumed was that the divergence
of the axial-vector current is small, of order m2, except where a pion pole
gives it a large matrix element. The problem was greatly clarified by a
1960 paper of Nambu,'® who pointed out that the axial-vector current
could be regarded as exactly conserved in the limit of zero pion mass, in
which case the Goldberger—Treiman relation could be derived as we have
done here. In this and a subsequent paper with Jona-Lasinio,!” Nambu
recognized that the appearance of this massless or nearly massless pion
was a symptom of a broken exact or approximate symmetiry. With other
collaborators,!® Nambu also showed how to calculate the rates of emis-
sion of a single soft pion in varjous processes. Subsequently Goldstone?
remarked that broken symmetries always entail massless bosons, and this
was proved in 1962 by Goldstone, Salam, and myself,? using the arguments
presented here in Section 19.2.

None of this early work on pions as Goldstone bosons depended on
any specific assumptions about the nature of the broken symmetry group;
for instance it might have been a direct product of three commuting U(1}
groups, whose generators form an isotopic spin vector, or it might have
been the non-compact group SO(3, 1), for which a minus sign appears on
the right-hand side of the commutation relation (19.4.19). The nature of
the broken symmetry group became important only with the consideration
of processes involving more than one pion, starting with the Adler-
Weisberger sum rule in 1965, whose success showed that the broken
symmetry is indeed SU(2) x SU(2). (Such processes are discussed in the
following section.) The identification of the symmetry group SU(2)xSU{(2)
led to a shift of emphasis,®® toward the implications of this symmetry
within strong interaction physics, and away from an earlier concentration?!
on the currents themselves.

All of this work was done without a specific theory of the strong
interactions. One of the reasons for the rapid acceptance of quantum
chromodynamics in 1973 as the correct theory of strong interactions was
that it explained the SU(2) x SU(2) symmetry as a simple consequence of
the smallness of the 4 and d quark masses.
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19.5 Effective Field Theories: Pions and Nucleons

In Section 19.2 we learned how to calculate the amplitude for emission
of a single low energy Goldstone boson B in a transition « — 8 + B by
applying the condition of current conservation to the matrix element of
the symmetry current between the states « and . In this calculation we
never had to use any information about the details of the broken symmeiry
group; current conservation was all we needed. A new element enters if we
wish to calculate the matrix element for the emission and/or absorption
of two Goldstone bosons, as for instance in a Goldstone boson scattering
process. Here we must apply the condition of current conservation to a

matrix element like

BIT (I (x1), J22(x2)} o)

where the states o and B contain the other particles besides the two
Goldstone bosons participating in the reaction. But when we let the
divergence operator &/dxj' act on this matrix element we encounter a
non-zero contribution from the derivative of the functions O(xy — x9)
and 6(xJ — xV) that appear in the definition of the time-ordered product
T{--+}. This contribution is equal to the matrix element of an equal-
time commutator &(x} — xJ)[JP(x1), le(xg)] whose value depends on the
commutation relations of the group algebra. This makes such multi-
Goldstone-boson processes specially interesting, because they can be used
to decide experimentally on the nature of the broken symmetry group, in
a way that is not possible for processes involving just a single Goldstone
boson. Because of the appearance of such current commutators, this
approach is known as the method of current algebra.2!

The current algebra method was used in early calculations of multi-
Goldstone-boson amplitudes.?> Unfortunately, such calculations are ted-
ious, especially when three or more Goldstone bosons are involved, and it
was also difficult to see how to deal with symmetries like the chiral sym-
metry of quantum chromodynamics that are not exact. For this reason
a different and more physical calculational technique was introduced,?
based on the use of effective Lagrangians: We simply calculate the Gold-
stone boson amplitudes by the methods of perturbation theory, using
some Lagrangian for the Goldstone bosons and the other particles in the
states @ and f that obeys the assumed broken symmetry.

Originally the justification for the effective Lagrangian procedure was
based on current algebra. By using current algebra one could see that
the amplitude for emission of a set of low energy Goldstone bosons in
a process &« — f + By + By + - is fixed once one knows the equal-
time commutation relations of the currents associated with the broken
symmetries as well as the matrix element for the process @ — f and the
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matrix elements of the currents between various one-particle states. We
know that a Lagrangian that respects the broken symmetry will allow
the construction of conserved currents with the appropriate equal-time
commutators by Noether’s technique, so if we simply calculate the low
energy Goldstone boson amplitudes with such a Lagrangian and insert
the correct values for Mp, and the one-particle matrix elements of the

B ] O emmy xamozrrover o wmweeecos A A Lo o |

currents, we must get the same answer as provided by current algebra.
In the case of interactions among Goldstone bosons alone, the states o
and § may both be taken as the vacuum, and we do not need any extra
information beyond the matrix element F between a Goldstone boson
state and the vacuum.

In the first example of this sort,”? the starting point was the Lagrangian
of the g-model.?* Restricting our attention for the moment to the bosonic
sector of this model, its Lagrangian is the $O(4)-invariant one used as an
example in Section 19.2:

1 A A
& = =5 0un0"bn — o onipn — Z(cpnqbn)z : (19.5.1)

where n 15 understood to be summed over the values 1, 2, 3, 4, with c_,r’b an
isovector pseudoscalar field and ¢4 an isoscalar scalar field.

The immediate problem faced by any sort of effective LLagrangian is that
in order to use it to calculate scattering amplitudes, we must either include
all Feynman diagrams of all orders of perturbation theory, or else find
some rationale for dropping higher-order diagrams. We can find no such
rationale with Lagrangians like (19.5.1}, in which the broken symmetry
i realized through linear transformations on the various fields. Fortu-
nately any such Lagrangian can be recast in a form that allows the use of
Feynman diagrams to generate an expansion for scattering amplitudes in
powers of GGoldstone boson energies. To do this, we perform a symmetry
transformation at every point in spacetime that eliminates the fields cor-
responding to the Goldstone bosons of the theory. The Goldstone boson
degrees of freedom reappear in the transformed theory as the parameters
of this symmetry transformation. However, since the Lagrangian is in-
variant under spacetime-independent symmetry transformations, it cannot
have any dependence on the new Goldstone boson fields when they are
constant, and so every term in the Lagrangian that involves these new
Goldstone boson fields must contain at least one spacetime derivative of
the field. These derivatives introduce factors of the Goldstone boson en-
ergy when we calculate S-matrix elements for Goldstone boson reactions,
and as we shall see we can use the Lagrangian to construct a series for
the S-matrix elements in powers of these energies.

For instance, to recast the Lagrangian (19.5.1) in a useful form, we write
the four-vector ¢, as a chiral rotation R acting on a four-vector {0,0,0, 0}
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whose first three components (the Goldstone part of ¢,) vanish:

$u(x) = Rua(x)a(x) (19.5.2)
with R,,(x} an orthogonal matrix
RT(x}R(x) =1 (19.5.3)

o(x)= | du(x). (19.5.4)

The Lagrangian (19.5.1) then becomes

1 4 o 1 1
1 = 3 AL
¢ =— 3 (R,m@#a + crauR,m) -3 Ma? — 17 (19.5.5)
n=1
Because R is an orthogonal matrix, the d,00¢ term is R-independent,
and the cross-term vanishes

1
D Ru=1, 3 RulRu=32> Ry=0,

s0 % becomes

4
A
F = —% duo0ta — %0'2 > 0Rus 0y Rua — %ﬂzﬂz — 104 . (195.6)

n=1

If .47 is negative then ¢ has a non-vanishing vacuum expectation value,
given in lowest order by the position of the minimum of the sum of the
last two terms, at ¢ = |.#|/+/A.

In place of the field variables ¢,, our variables now are ¢ —|.#|/ \/I and
whatever other variables are needed to parameterize the rotation R. For
instance, these parameters could be simply chosen as the R,y themselves
(where a,b,--- from now are isovector indices running over the values
1,2,3), with Ry4 given by the condition that R is orthogonal A different
parameterization will give simpler final results, and was historically the
first to be used for these purposes. It is to define

_ e
=g (19.57)
and take
2, 12 2als
= —— = —Rua, = — =0 — ——=, (1958
Raa LB Ris, Ruy g Rap b .z ( )
so that
2L, 1-{2
o= Rg= 2t —Ry=-—° 19.5.9
$a/0 = Raa 2 $4/0 = Ry e ( )

Ll
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Then the Lagrangian (19.5.6) becomes

| a1 ~
¥ = —350,00"c —20°D, D' — 5 M0’ — 304 , (19.5.10)

where
D, = 1?(:52 (19.5.11)

Whatever parameterization we use, it is clear that the fields ff describe
particles of zero mass, whose interactions all involve field derivatives.
These are (up to a normalization) our new pion fields.

Despite appearances, this Lagrangian is still invariant under $0(4), but
with SO(4) now realized non-linearly. Under an isospin transformation
with infinitesimal parameters é, the field E simply rotates like an ordinary
isovector, and ¢ is an isoscalar:

8l=0x7, 6a=0, (19.5.12)

so the Lagrangian (19.5.10} is manifestly isospin-invariant. On the other
hand, under the broken symmetry transformations parameterized by an
infinitesimal vector &, the original fields transform according to

O =28y, dpa=-28¢. (19.5.13)
From Eq. (19.5.7), we then find
l=e1-0+28@& 8y, So=0. (19.5.14)

The Lagrangian (19.5.10) is invariant under the broken symmetry transfor-
mation (19.5.14) because D, undergoes a linear (though field-dependent)

isospin rotation:?’

6D, =2t x& x D, (19.5.15)

and Eq. (19.5.10) is isospin-invariant. Because of the transformation rule
(19.5.15), f)# i often called the covariant derivative of the pion field.

The transformation rules (19.5.12) and (19.5.14) specify what is called a
non-linear realization of the group SU(2) x SU(2).2> The general theory of
non-linear realizations of Lie groups is given in the next section; we shall
show there that, up to field redefinitions, the transformation rules (19.5.12)
and (19.5.14) provide the most general realization of SU(2} x SU(2) in
which the isospin S U(2) subgroup is realized linearly on {.

We see that each interaction of these new pion fields is accompanied
with a spacetime derivative, so that the effective coupling is weak for low
pion energies. (This remark will be made more precise below.) Therefore
for sufficiently small pion energies we may use this Lagrangian in the tree
approximation to reproduce the soft-pion theorems of current algebra. For
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this purpose, it 1s only necessary that the Lagrangian be §0(4)-invariant.
But since the ¢ field is an SO(4) scalar, it plays no role in maintaining
the $0(4) invariance of the Lagrangian, and may be simply discarded.”
Of course, this procedure changes the physical content of the theory,
but it does not change the amplitudes given by soft-pion theorems. The
Lagrangian (19.5.10) then simplifies to
2 242 Auf
¥ = —F—D D# = E—M , (19.5.16})
2 2 (1 +¢ 2)2
where F = 2(o) = 2|J{|/\f (As we shall soon see, this F is the same as
the constant F, discussed in the previous section.}) For many purposes it

mnre cnnuaniant tn warl nnfk a ranventinnally nnrmalqvp:‘l ninn held
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#=F{ (19.5.17)
for which the Lagrangian (19.5.16) reads
L o
po L Ot 0% (19.5.18)

2(1+#2/F22°
The factor 1/F acts as a coupling parameter that accompanies the in-
teraction of each additional pion. Eq. (19.5.18) describes what is often
called the ‘non-linear ¢-model, for the special case of SU(2} x SU(2)
spontancously broken to SU(2).

An important point: to derive Eq. (19.5.18) it was not really necessary
to start with the ‘linear o-model’ Lagrangian (19.5.1}. Indeed, we did not
need to start with any specific theory. Eq. (19.5.18) can be used simply
because it is invariant under the §O(4) transformation (19.5.12}), (19.5.14),
and current algebra tells us that this is all we need to get the right results
for low energy pion reaction amplitudes.

Some years after the introduction of effective Lagrangians for soft pi-
ons, there emerged a different justification for the effective field theory
technique,2® one that does not rely on current algebra and allows calcu-
lations that are not limited to the limit of vanishingly small Goldstone
boson energies. It is based on the realization (not yet formally embodied
in a theorem) that when we calculate a physical amplitude from Feynman
diagrams using the most general Lagrangian that involves the relevant
degrees of freedom and satisfies the assumed symmetries of the theory,
we are simply constructing the most general amplitude that is consistent
with general principles of relativity, quantum mechanics, and the assumed
symmetries. This was the point of view underlying Volume I of this book.
In the present context, the ‘relevant’ degrees of freedom are the Goldstone

* Alternatively, we can pass to the limit where .4 and A go to infinity together, keeping
the expectation value of ¢ constant.
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bosons themselves, together with the particles in the states « and § and
any other particle states that can be produced from them by interactions
with low energy Goldstone bosons. By invoking this justification for
effective field theories, we are freed from any need to wrestle with the
complications of current algebra. More importantly, the modern effective
field theory approach yields results that take us beyond the extreme low

arvorry limait and oll na guotoriatio frantriant ~F g Jesbeirtose Qi e b
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breaking.

According to this approach, in order to calculate pion interaction
amplitudes to any desired order in pion energies, we must use the most

general Lagrangian involving a pion field { that transforms according to
the rules (19.5.12) and (19.5.14):

Feit = —— DD —%(bpﬁ#)l——%(ﬁ#-bv)(ﬁﬂ-f)*’)—... . (19.5.19)

The terms indicated by ... will contain higher powers of the covariant
derivative f)#, or higher covariant derivatives, whose general structure is
described in the next section. The coefficients ¢4 and ¢} are dimensionless,
and all higher terms have coefficients with the dimensionality of negative
powers of mass.

Consider a general process involving arbitrary numbers of incoming
and outgoing pions. We suppose that their energies and momenta are all
at most of some order @, which is small compared with a typical quantum
chromodynamics energy scale (say, the nucleon or p mass). Even though
Lagrangians like (19.5.19) are not renormalizable in the usual sense, we
saw in Section 12.3 that such Lagrangians can yield finite results as long
as they contain all possible terms allowed by symmetries, for then there
will be a counterterm available to cancel every infinity. If we define
the renormalized values of the constants F2, ¢, ¢y, ... by specifying the
values of various Goldstone boson scattering amplitudes at energies of
order (J, then the integrals in momentum-space Feynman diagrams will
be dominated by contributions from virtual momenta which are also of
order Q (because renormalization makes them finite, and there is no other
possible effective cut-off in the theory.) We can then develop perturbation
theory as a power series expansion in (J.

Each derivative and hence each f)# in each interaction vertex contributes
one factor of Q to the order of magnitude of the diagram: each internal
pion propagator contributes a factor ¢~2; and each integration volume
d*q associated with the loops of the diagram contributes a factor 04; so
a general connected diagram makes a contribution of order Q*, where

v=>3_ Vidi—2I +4L. (19.5.20)
i
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Here d; is the number of derivatives in an interaction of type i, V; is the
number of interaction vertices of type i in the diagram, I is the number
of mnternal pion lines, and L is the number of loops. These quantities are
related by the familiar topological identity (see Eq. (4.4.7)):

L=1-YVi+1, (19.5.21)

s0 we can eliminate I and write

vV = [/,'(di — 2) + 2L + 2. 19522)
(
i

The point of this is that each term here is positive; every interaction in
Eq. (19.5.19) has at least two derivatives, and of course L > 0. Therefore
the leading term of each process is of order @2, and arises solely from tree
graphs (that is, L = 0) constructed solely from the term in Eq. (19.5.19)
with only two derivatives (that is, V; = 0 for d; # 2):

F2 ., .
Py = - b,b* =

1 dumoFa
— o T a3 3 - 19.5.23
3 (11 R2/F) (19.5:23)
For instance, the invariant amplitude M that appears in the pion—pion
scattering S-matrix element

S =i(2n)*6*(p4 +Ps — pc — pp)M(Q2r) Y (16E4EgEcEp) ? (19.5.24)

15 given to this order by

Myl = 4F ™ [5ab5cd(—PA “PB — PC " Pp) + acdbalPa - Pc + PB " PD)
+0uadsc(p4 P> +P5 P} | . (19.5.25)

where a, b, ¢, d are the isovector indices of the pions A, B, C, D, respectively.
(The effect of the finite pion mass will be taken up a little later in
this section.} Using Eq. (19.5.25) as the leading term does not depend
on any assumption of the smallness of the coupling constant 2 in the
original Lagrangian (19.5.1), or even on the validity of this formula for
the Lagrangian, but only on the assumed smallness of the typical pion
energy Q.

The next term in the amplitude for any Goldstone boson reaction will
be of order @*, and arises both from one-loop graphs involving only the
Lagrangian (19.5.16), and also from tree graphs constructed solely from
the interaction (19.5.16) plus a single vertex arising from the d = 4 terms
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in Eq. (19.5.19):

{(v=4 5ab5cd t 2
Malf;cd): 7 [‘*- —=% 5 ln(

53 (u* — 5% + 3t In(—1)

1
12n2
1
BT (t* — §% + 3u?) In{(—u) + ﬁ(s‘2 +12 4 uz) In A2
L TR P R
C45 ca(t” + u")] + crossed terms | (19.5.26}

9

2 4

where ‘crossed terms’ denotes terms given by the interchanges B « C and
B« D, and s, t, and u are the Mandelstam variables

o —
5 —

The dependence of this result on the cut-off A can be eliminated by a
redefinition of the constants ¢4 and c¢j. The renormalized couplings are

2

o = €s— — In (Az) : (19.5.27)
3n2 J7;
4 A?

C;R = C:‘ — ﬁ In (‘uz) , (195.28)

where u is an arbitrary renormalization scale of order ¢ inserted in order
to make the logarithms well-defined. In terms of these renormalized
couplings, the amplitude (19.5.26) takes the form

(v=a) _ OupOcd 1 2in (=S 1 ) 2 ) —t
Mpea - T4 [ 2n2 1n(#2)— o7 (" —s” + 3t} In ?

t

1 —U 2 1 y)
~ T2 (r -8 +3u)ln(F)—§ RS —ZC4R(f +u)]

+crossed terms . (19.5.29)

This sort of calculation can be carried to arbitrary orders in @, always
with the result that in each order we encounter a finite number of new
couplings whose renormalization serves to eliminate the cut-off depen-
dence of physical amplitudes. Notice that the ratio of the leading v =2
terms and the v = 4 corrections is of order Q?/8n2F?, so this is likely to
be a useful expansion as long as the pion energies are all much less than
an amount of order 2nF.

This perturbative expansion may also be used to relate the ubiquitous
parameter F to the measured pion decay amplitude F. Recalhng the
transformation rule (19.5.14) for {, the axial-vector current is given by

"!af N

E-AH = — — 8L
3(0,L)
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and so

- -+ 6.,‘2’ i ay
At =— (1 =2 , —2{1;-( ) 19.5.30
( ) HOul) A(0ul) ( )

(This A* is the Noether current of the symmetry generated by 2x, which
on the nucleon doublet is represented by 2yst = yst.) After integrating
out all other fields, and using Eq. {(19.5.17) to express { in terms of the
canonically normalized pion field 7, we find

—»2 2 = 3-N -
#ﬁ(l—n /F*) 27(n - oM7) ]

A =F {3
(1+72/F%) F2(1 + #2/F?)2 +

(19.5.31)

F.=F. (19.5.32)

Furthermore Lorentz invariance and Eq. (19.5.22) tell us that the higher-
order corrections must be proportional to powers of p2 /F2, which vanishes
for a massless pion, so Eq. (19.5.32) 1s actually exact in the limit m, — 0.
We may therefore guess that our perturbation expansion will be useful for
pion energies that are less than an amount of order 2nF, = 1200 MeV.

In order to make contact with experiment, we must deal with the fact
that the pion mass 18 not zero. On the mass shell it is not possible for
the time component of a pion four-momentum to be less than m;, so in
counting powers of the typical pion energy and momentum @, we must
regard m, as being of order Q. But we saw in the previous section that m2
is proportional to a linear combination of quark masses, so our formula
(19.5.22) for the order Q¥ of a given Feynman diagram should be rewritten
to read

v=> Vidi+2m—2)+2L+2, (19.5.33)
i

where m; i1s the number of factors of quark masses in the interaction of
type i.

The interactions involving quark masses may be distinguished by their
transformation properties under SU(2) x SU(2), or equivalently, under
50(4). Eq. (19.4.34) shows that the terms of first order in quark masses
transform as a linear combination of two scalars, the fourth component of
a chiral four-vector @, with coefficient m, +my, and the third component
of a different chiral four-vector @, , with coefficient m, — m;. Thus the
terms A¥*T and A#~ in the effective Lagrangian that are of first order
in m, + my and m, — my must have the chiral transformation properties
of the fourth and third components of chiral four-vectors, respectively,

and of course be Lorentz scalars. One obvious candidate for a chiral
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four-vector whose fourth component is a scalar is the ¢, with which we
started in this section. According to Eq. (19.5.9}, its fourth component is
just 6(1 — £2)}/(1 + £2). The factor ¢ may be dropped, as it is a chiral
scalar, and therefore has no effect on the chiral transformation properties
of this quantity. We Cdn fix the normallzatlon of this term by requiring
that the coefficient of % = F, ZC 2 be —mZ /2, so that, apart from an additive

roanetant
LAALIOLLLLL L,

1R P2 2 %2
Mol & M M (19.5.34)

2 14f2 2 14 #2/F2
We shall see in the next section that this is the unique scalar function of
the pion field without derivatives that transforms as the fourth component
of a chiral four-vector. On the other hand, there 1s no scalar function of
the pion field without derivatives that transforms as the third component
of a chiral four-vector because such a function, if the third component of
a chiral four-vector, would have to be odd in the pion field, and therefore
pseudoscalar rather than scalar. Thus (19.5.34) is the only interaction with
d; = 0 and m; = 1. It is striking that the isospin violating difference in the
u and d quark masses has not only no effect on the pion masses, as we
saw in the previous section, but also has no effect on any non-derivative
multipion interaction.

We are now in a position to do a realistic calculation of the leading v = 2
terms in the pion-pion scattering amplitude. According to Eq. (19.5.33),
these terms arise only from tree graphs constructed from the d =2, m =0
pion interaction in Eq. (19.5.23) or from the d = 0, m = 1 pion interaction
in Eq. (19.5.34). To this order, the invariant amplitude M defined by
Eq. (19.5.24) is now

ALY =—

MU = 4F 2 [SapBea(s—mE)+Sacdpalt—mE +,adpelu—m2)| . (19.5.35)
In particular, at threshold s = 4m2, t = u =0, so

M= (threshold) = 4m2 ;2 [3860ca — SacObd — Saddbc]
= 4mlF2 [TMlp,, — 2 MG | . (19.536)

where M® and M@ are the appropriate tensors representing two-pion
states with isospin T =0o0or T = 2:

MY = 10adea, (19.5.37)
Mabf,. = 1 (BacOpd + Saifbc — % 0abdca) (19.5.38)
normalized so that TrM(T) = 2T + 1. This result is usually expressed in

terms of the scattering lengths. According to Sections 3.6 and 3.7, the
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scattering length ay for two pions in a state of isospin T is given?’ by
1/32nm; times the coefficient of M'7) in Eq. (19.5.36):

Tmy 1 My -1
ag = =0.16m a» = = —0.046 m;,
" 8aF 7 " 2T T 4nr2
The pion scattering lengths are difficult to measure, but careful study of
nraraccac liba s LA oy wr | o nd B [ Y I i

PLIOCESES58S8 1IKT .-u.—ru — n,-ru,-rn' anid A — u-r.rr,-re—r-v ud.b given ine wauus“

(0.2610.05)m, ! and (—0.028+0.012) m; ! for ag and as, respectively, which
are consistent w1th these theoretical values. Corrections of higher order in
my /2nF; seem to improve the agreement.

This formalism can be extended to describe the interactions of pions
with nucleons or other particles. The easiest approach is to suppose that
we add a term involving the nucleon doublet field N to the Lagrangian
with which we started:

Py = —N(6+g[¢4+2if- &5;;5]) N, (19.5.39)

where 7 is the isospin matrix vector for isospin 1/2 (that is, half the Pauli
spinor 1.} This is invariant under chiral SU(2) x SU(2) transformations
with
S = 2€ s, Spa =28, (19.5.40)
ON = —2ipsé - I N . (19.5.41)
Now in eliminating the non-derivative pion couplings we must express the

nucleon field N as the SO(4) rotation R in the representation (19.5.41)
acting upon a new nucleon field N

(1—2ipsi-{) o
Vi+{2

with { given again by Eq. (19.5.7). With this transformation the non-
derivative term in Eq. (19.5.39) now depends only on N and o

N

(19.5.42)

Nl + 2ii - ¢y5s]N = aNN .
On the other hand, the derivative term involves derivatives of the matrix
in Eq. (19.5.41), yielding a nucleonic Lagrangian;
= _f ' ¢ 7 s —~
PN =—N [ﬁ+ga+2i #{Zfﬁ +2iy5t-l?5] N (19.5.43)
+

or in terms of the canonically normalized pion field (19.5.17):

it - (f x #7) iyst - Pt
F2IL+#2/F2] * Fpl1 +#2/F2]

¥y =—N {6 +go+ } M. (19544
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Since ¢ has a non-vanishing vacuum expectation value, we see that the
nucleon here has a non-zero rest mass, a result that would be prohibited if
the symmetry under the transformation (19.5.40), (19.5.41) were unbroken.

By its construction, the Lagrangian (19.5.44) is chiral-invariant. This can
also be seen directly, using the previously obtained chiral transformation
properties of ¢ and 7, and now also noting that under the chiral transfor-
mation (19.5.40), (19.5.41), the new nucleon field defined by Eq. (19.5.42)

transforms as
SN =2it - [{ x &N . (19.5.45)

That is, under a chiral transformation N simply undergoes the same
isospin rotation (19.5.15) as the guantity f)#, but of course in the T =
1/2 representation. The isospin rotation parameter [ x & is spacetime-
dependent, so derivatives of N do not have the same chiral transformation
property, but it is straightforward to check that the combination of the first
and third terms in Eq. (19.5.43) behaves as a chiral-covariant derivative:
that is,
39N = 2it - [{ x &9,N | (19.5.46)
where
@ xad)g

14?2
Thus the Lagrangian (19543) (and hence (19.5.44)) is obviously chiral-
invariant, because it is isospin-invariant, and constructed solely from
the ingredients N, 2N, 4, and D,, all of which transform under chiral
transformations with the same isospin rotation.

Again, the specific Lagrangian with which we started here is not im-
portant. As in the case of the pure pion theory considered earlier, the
important thing is the chiral invariance of the Lagrangian. For chiral
invariance, the Lagrangian must conserve isospin, and be constructed
only from the ingredients N, ,@MN and D (together with higher covariant
derivatives of these objects). The most general chiral-invariant Lagrangian
that is bilinear in the new nucleon field and involves no more than one
derivative therefore takes the form

LNo = —I:\? {@ +my + 2igA'y5_f . IB} N (19.5.48)
or in terms of the pion field (19.5.17):
2it - (% % B7) Qigayst - O7t
Fi[1+#2/F2] * Fill +7%/F2]
Note that we have inserted an arbitrary constant g4 in the last term
in Eq. (19.5.48) because this term is chiral symmetric by itself, and so

Z,N =6, +2i (19.5.47)

PLrno=—N {a +m } N. (19.5.49)
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chiral symmetry cannot dictate its coefficient. (This is in contrast with
the third term in Eq. (19.5.43), whose coefficient is fixed by the condition
that it and the first term together give a chiral invariant.) We can check
that the constant g, inserted here is indeed the axial-vector coupling of
beta decay by constructing the extra term in the axial-vector current that
arises from the nucleonic Lagrangian (19.5.48). Alternatively, integrating
by parts and using the Dirac equation, we find that the pion—nucleon
interaction —2ig4Nysi - (#%)N/F, is equivalent on the nucleon mass shell
to an interaction —dimy g Nyst - N/ F,, corresponding to a pion-nucleon
coupling constant

GRN = ZmNgA/FR’ [

which is just the Goldberger -Treiman relation (19.4.33).

Incidentally, if we had used the Lagrangian (19.5.44) in this calculation,
we would have obtained the Goldberger—Treiman relation with g4 = 1.
However, this result is in fact an artifact of the particular form (19.5.39)
of the interaction with which we started. We might have included a
non-renormalizable derivative coupling term™

Cy = ig/N bbb —gui - s +1- G x DN, (19550)

It is straightforward to show that in terms of the transformed fields o, N,
and {, this takes the form

f;\, = _Siazg’ﬁF ' l:bysf‘\} .

Since ¢ has a non-vanishing vacuum expectation value, this makes a
contribution to the pion—nucleon coupling constant and to g, proportional
to g’. Hence the value g4 == 1 is not dictated by the broken SU(2) x SU(2)
symmetry alone; by including the interaction (19.5.50} and adjusting ¢,
we can make g4 anything we like.

Now let us consider how to use this Lagrangian to calculate amplitudes
for reactions involving both pions and nucleons. We will have to give
special attention to the nucleon propagators, since a nucleon can never be
a ‘soft’ particle like a pion. A nucleon line that enters a diagram with an
on-shell four-momentum p of order my, and then from interactions with

" The left- and right-handed parts of the nucleon doublet transform according to the
representations (3,0) and (0, 3) of SU(2) x SU(2), respectively. The bilincar Ny,isN
18 thus a sum of (erms quadratic in (%,0) or (0,1) terms, so it transforms likc a
direct sum of the (1,0), (0,0), and (0,1) representations. In Eq. (19.5.50) we have
coupled the (1,0) + (0, 1) terms in Ny, 5N to the antisymmetric lensor formed from
the SU(2) x SU(2) four-vectors ¢, and d,¢,. Its invariance under the transformation
(19.5.40), (19.5.41) can of course be checked direcily.
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soft pions absorbs a net four-momentum g with components much less
than my, will have a propagator:

—i(f+ §)+my , T y+my . (19.5.51)

(p+q) +mi g0 2p-q

(The neglected terms may be taken into account by including higher
derivative terms in the nucleon Lagrangian.} Suppose again that all
external pion four-momenta have components at most of order Q and
define all renormalized couplings at renormalization points of order Q, so
that integrals converge in such a way that internal pion lines also have
four-momenta . Then Eq. (19.5.51) shows that internal nucleon lines
make a contribution of order 1/Q. A general Feynman diagram for such
a process will make a contribution to the invariant amplitude of order @7,
where now

v = Vidi+2m)—2I, —Iy+4L. (19.5.52)

Here V; is the number of vertices associated with interactions of type i,
d; 1s the number of derivatives in each such interaction, m; is the number
of gquark mass factors in each interaction, I; and [y are the numbers
of internal pion and nucleon lines, respectively, and L is the number of
loops in the graph. We use the familiar topological relations for connected
graphs:

L=ly+Iy=)Y Vi+1 (19.5.53)

and

2y +Exn=>_ Vi, (19.5.54)

i

where #; is the number of nucleon fields in interactions of type i, and Ex
is the number of external nucleon lines. Eliminating the quantities Iy and
I, this gives

v:ZVi(di+2mi+%—2)+2L—EN+2. (19.5.55)

The important point here is that the coefficient d; + 2m; + 1n; —2 in the
first term is always positive or zero. We have already seen that d;+2m; > 2
for the purely pionic interactions with n; = 0, and inspection of (19.5.49)
shows that d; > ! for the pion-nucleon interactions with n; = 2 and
m; = 0. Any interaction with n; =2 and m; > 1 or n; > 4 clearly also has
d; > 2. Hence the leading terms for Q < 2nF; are tree graphs (that is,
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Figure 19.3. Feynman diagrams used with an effective chiral Langrangian to
calculate the scattering of a soft pion from a nucleon. Dashed lines are pions;
solid lines are nucleons.

L =0} for which all interactions have
di+2m+ 2 —=2=0.

The interactions that satisfy this condition are just those shown explicitly
in Egs. (19.5.23), (19.5.34), and (19.5.49), plus possible interactions with
d,'=0 and n =4:

=

(NT.N) (v ), (19.5.56)

where I', and I'* are any matrices in spin and isospin space that yield
Lorentz, space inversion, and isospin-invariant four-fermion interactions.
These last interactions are important for multinucleon processes,” which
will not be considered here.

Let us now apply this method to pion—nucleon scattering. For pion
energies roughly of order m,, the pion—nucleon scattering amplitude is
given by the Feynman graphs of Figure 19.3, all of which make contribu-
tions of order m, to the invariant amplitude. However, at threshold the
leading contribution is from Figure 19.3(c}, the others being suppressed
by an extra factor of m,/my. This is because at threshold in the rest
frame the incoming and outgoing pion four-momenta ¢,q’ and nucleon
four-momenta p,p’ are given by

g=gq =(0,0,0,my) = (ﬁ) p= (m—) 7. (19.5.57)
muy mpy

Thus the invariant amplitude at threshold from either Figure 19.3(a) or
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19.3(b} is proportional to
_ (g £ )+ my)
uys ¢ P LaR+md 75 qu

_ myys(—i p(1 & my /my) + my)ysu
(F2m my — m2)

Fm, m>
I — 1 - -
FI— u(i p(l £ mz/my)+ myu Sy + e

where u is a Dirac spinor with 7w = 1. In contrast, the diagram of
Figure 19.3(c) gives a contribution to M of order m,. We may write this
amplitude as a 2 X 2 matrix in the nucleon isospin indices:

—2i . e

My, = —5 le€abe u(—i g —i d Ju,

F‘.'I
where ¢' and ¢ are the final and initial pion four-momenta and b and
a are the corresponding isovector indices. Using Eq. (19.5.57) and the
momentum-space Dirac equation (i g + my)u = 0, this becomes

_4. _4 -+ ~+
T teeue = g T [, (19.5.58)
FTE Fﬂ

Mba =

where [t™)],, = —iepqe is the pion isovector matrix. The matrix ¢ - 7™ has

eigenvalues in states of total isospin T equal to %[T(T + 1) —-2— %], SO

in the two isospin states, T = 1/2 and T = 3/2, the invariant amplitudes
30

are

My =4mg /FF My, = —2m. /F},

These results are usually expressed in terms of the scattering lengths,
which are defined as the invariant amplitudes divided by 4n(1 4+ m, /my):

— Max _ —1

Ay = ZF2(1 £ majm) 0.15m;", (19.5.59)
—_ My - _ —1

az;y = 37FI1 + ma ) 0.075m;" . (19.5.60)

These are in reasonable agreement with the experimental values!'? ayp =

(0.173 £0.003)m;" and a3y = (—0.101 1 0.004) mz". (The results (19.5.59)
and (19.5.60) are only supposed to be valid to lowest order in m; /my, but
we retain the factor 1 + m;/my, because it arises just from the definition
of the scattering lengths.}

The corrections to the scattering lengths of next order in m, arise
from several sources. There are the Born diagram graphs of Figures
19.3(a} and 19.3(b), which are nominally of leading order but as we have
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seen at threshold are suppressed by an extra factor of m;/my. There
are additional tree graphs containing a vertex with two derivatives. Of
special interest are tree graphs containing a vertex with no derivatives that
arises from a symmelry-breaking interaction proportional to m2. These
interactions must have the chiral and spacetime transformation properties
of the operators in Eq. (19.4.34}: the fourth and third components of two
different chiral four-vectors ®;" and @;. There are two obvious candidates
for such operators that are bilinear in the nucleon fields: a ®; term,

: 1=\z=c T\ & -
NN= E——— NN—4I oy N'JJSIN,
1+ (2 1+{2

el o — e
did a W, 1erm,

< ey G Yz 25 f B V2 o
NtsN=N —2 — | Nt — — | NvsN .
3 talV (1+C2) t- (N 1(1_‘_&2) ysN

Chiral symmetries act on N like ordinary isospin rotations, so they cannot
mix up scalar and pseudoscalar nucleon bilinears. Thus there are really
two independent @} operators:

1 —&2\ =
-~ | NN (19.5.61)
1+ (2
and
i zﬁ NvsiN (19.5.62)
1+ {2
and two independent @3 operators:
= — C:; =, o
NN =2 — |Nt-{N 19.5.63
()i 4 (19.56)
and
P8 NysN . (19.5.64)
1+4¢2

We shall show in the next section that these are the only operators
with the transformation properties of the terms in Eq. (19.4.34) that
are bilinear in the nucleon fields. The operators (19.5.62) and (19.5.64)
evidently provide isospin-conserving and isospin-violating corrections to
the Goldberger-Treiman formula for the pion-nucleon couplings. The
other two operators, (19.5.61) and (19.5.63), contribute directly to both
the nucleon mass and to low energy pion nucleon scattering. From
their contribution to the nucleon mass, we see that these latter terms
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enter into the effective Lagrangian in the form (now replacing { with the
conventionally normalized pion field):

Sy + dmy (1 —72/F2\ =
== (1+n”/F2 N

—(ﬁm, —ﬁmn} [n{uft N 2 (—753'___ ;T: .u‘:-| R
[ F2\1+a%/F2) ]
where dm, and dm, are the contributions of the quark mass terms (19.4.34)
to the proton and neutron masses. This makes a contribution to the pion—
nucleon scattering amplitude (again written as a matrix in the isospin
space of the nucleon);

2[om, + dmy)
Fz

2[omp — dmy)
¥

oMy, = dab + (t203p + tp034) . (19.5.66)
The first term in Eq. (19.5.65) is often known as the ‘o-term’. The second
term is an isospin violating correction to the o-term, which shows up only
in processes involving neutral pions, such as the charge-exchange processes
*+n—-na’+pand n~ +p — 7%+ n. Even though it is not possible
to measure the nucleon mass shifts dm,, directly, we shall see in Section
19.7 that an SU(3) symmetry allows their difference to be calculated from
hyperon mass differences. This yields the result dm, — dm, = —2.5 MeV.
Unfortunately, we still do not have a firm theoretical estimate of the
coefficient dm, + dm,, of the first term in Eq. (19.5.65).

Eq. (19.4.34) shows that in quantum chromodynamics the coefficients
dm, + 0m, and ém, — dm, in Eq. (19.5.66) are respectively proportional to
my, + my and m, — my. We shall see in Section 19.7 that m,, and my are not
at all degenerate, so these coefficients are roughly of the same order of
magnitude; the isospin-violating corrections to the ¢-term are not much
smaller than the o-term itself. We see again that the reason that isospin
conservation is such a good approximation in hadronic physics is not that
the u and d quark masses are nearly equal, but just that they are small.

The use here of Lagrangians like (19.5.19) or (19.5.49} is one example of
the method of effective field theories, already introduced in Section 12.3.
Similar techniques have been employed to deal with meson and baryon
interactions including strange particles (see Section 19.7), with quark and
lepton interactions at energies below the scale of electroweak symmetry
breaking (see Section 21.3), and even with superconductivity (see Section
21.6). In all these cases effective field theories provide the most convenient
method for working out the consequences of symmetries and the general
principles underlying quantum field theory.

* ¥k 3k
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The low energy theorems provided by broken symmetries when com-
bined with dispersion relations yield useful sum rules. Let’s see how this
works for chiral symmetry, ignoring the small ¥ and d quark masses and
the pion mass. Consider the forward scattering of a massless pion with
isovector index a and four-momentum g on a nucleon of four-momentum
p, yielding a pion with isovector index b. The scattering amplitude M,

defined by Sy = —Znié"'(Pf — P;)My;, 1s given to first order in g by the
Feynman diagrams of Figure 19.3 as
2niM !
—2niM = ——r——-
(27)8(24°)
[/ (2n142gwa d\ [ —i —i(p+ d)+ma\ [ (275}422 ysta o \
Xu||—i ] 3 ) i
e orar e )\ )
N i(zﬂ)4284?55a q ( ~i —i(§— d) +mN) _I.(27EJ42§A?51?5 q
Fr (27)* (p—q)* + M? Fr
Ac€abe
— 4 ;j,% ‘i] u (19.5.67)

To this order in g, the nucleon propagator in the first two terms inside
the square brackets may by approximated by

—i(pE d)+mny _ —ip+mn
(pxq)+M? 2p-q

Eq. {(19.5.67) can then be further simplified, using the relations ¢ ¢ =

2 =0, uyPu = —ip - q/mn, and [t 5] = ieact,. Also, in the laboratory
frame (which for small g is the same as the center-of-mass frame) we have
p-q = —myw, where @ = ¢° is the pion energy in the nucleon rest frame.
Finally, the conventional forward scattering amplitude (whose absolute
square is the differential cross section for forward scattertng) is given by
Eq. (3.6.9) as f = —4n’wM. Putting this all together, we find the forward
scattering amplitude at pion energy o is given for w < my by

W
Fral©) = —i—5 (1 — g3} €apete - (19.5.68)

In particular, for n*—proton scattering, we must contract Eq. (19.5.68) with

viva, where ¥ is the normalized isovector (1,7,0)/+/2, and set t3 = + L. The
forward low energy nt—proton scattering amplitude is then

faep(@) = =55 (1—g3). (19.5.69)

Now, the dispersion relation for the forward scattering of a massless
nt on a proton is given by Eq. (10.8.24) (with subtraction polynomial
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P(E)oc E) as
[147]
f,,+p(cu) =R+ EJR.PP(CU)
W [ Ot p(E)  an-p(E)
+4n2/0 [E—w Eto dE | (19.5.70)

L2 ] l" L]
in the proton rest frame. Comparison of this dispersion relation with the
low energy limit (19.5.69) shows that R = 0, and that

FZ [»
gi=1+ ﬁfo [07+p(E) — 0n-p(E)] dE/E . (19.5.71)

This is the celebrated Adler—Weisberger sum rule,'® for the case of exact
chiral symmetry, with m, = 0. A similar sum rule may be derived for the
scattering of pions on any baryon or meson, including the pion itself.>%

19.6 Effective Field Theories: General Broken Symmetries

The techniques described in the previous section for constructing effective
Lagrangians for the case of SU(2) x §U(2) broken to SU(2) were soon
generalized®! to the case of a general group G broken to an arbitrary
subgroup H. Consider a quantum field theory whose Lagrangian is
invariant under an arbitrary compact Lie group G of ordinary linear
spacetime-independent transformations g of the fields yy(x):

wﬂ(x) - Zgrlml,Um(x) . (1961)

We suppose that this symmetry group is spontaneously broken to some
subgroup H < G of symmetry transformations that leave all vacuum
expectation values invariant: for 1 € H,

D hum{pm(x)vac = (@a(x))vac - (19.6.2)

(Not all of the ys need be scalars, but of course only the scalars will
have non-vanishing vacuum expectation values.) In the example at the
beginning of the previous section, G was the group S0O(4), the fields v,
furnished a four-vector representation of this group, and their vacuum
expectation values broke SQ(4) down to the subgroup H = S0(3) of
rotations that leave the four-axis invariant. In the general case the fields
y, may furnish a reducible rather than an irreducible representation of G,
as for instance became the case when we introduced the nucleon fields in
the previous section.
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We next express a general ‘point’ y, in field space as a G transformation
acting on fields {, from which the massless Goldstone mode has been
eliminated:

wn(X) = Z Yam(X) P (X (19.6.3)

io W SO(4) rolation we called
P, was that the first three components
of the four-vector should vanish.

In order to formulate this condition more generally, let us suppose that
we are working with a real representation of G. (There is no loss of gen-
erality here, because we are not insisting on an irreducible representation,
so if we start with a set of fields forming a complex representation of G
we can always take the i, to be the real and imaginary parts of these
complex fields.) As shown in Section 19.2, the massless eigenvectors of the
mass matrix are just the independent linear combinations of the vectors
> mltalom{wm(0)) vac, where ¢, are the generators of G. (The reality of the
representation means that it, is real, and the fact that G is compact means
that we can choose the representation to be unitary and hence orthogonal,
so that the t, are imaginary and antisymmetric.) The condition that ¢,
does not contain Goldstone modes may thus be formulated as

Zﬁ)n(x)[ta]nm(Wm(O))VAC =0. (19.6.4)

The number of independent conditions here is the dimensionality of the
group G minus the dimensionality of the subgroup H whose generators
annihilate {y,,(0))vac. As in the previous section, the Goldstone bosons
whose fields are eliminated in this way will reappear in the dim(G) —
dim{H) fields needed to parameterize the transformation y,(x). In general
the , include all the heavy fields of the theory, including those (like
nucleons in the previous section) that have different spacetime symmetry
properties from the Goldstone bosons.

[t is necessary to show that we may always choose the transformation
Pam(x) 80 as to satisfy Eq. (19.6.4). For this purpose, consider the quantity

V() =D wn um(wm(0))vac , (19.6.5)

nmm

where g runs over the whole group G in the real orthogonal representation
furnished by the .. This is obviously a continuous real function of g, and
since the group is compact V,,(g) is also a bounded function of g. At each
spacetime point x, Vyx)(g) therefore reaches a maximum value for some
group element, which we shall call y(x). At g = y(x), Viyx)(g) must be
stationary with respect to arbitrary variations in g. But any infinitesimal
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shift in a group element g may always be written as a linear combination
og= iz €xgt™,
o

with real infinitesimal coefficients ¢, that may depend on g. Hence the
condition that Vyx(g) be stationary with respect to the variation dg at
g = y(x) reads

0= c‘in(x)( x)) = sza D wnl)ym(¥) i {pm(0)vac ,

nm|

= "Z €x D177 (N imtn(x) th(wm(0)) vac .

nml

This must be satisfied for all variations, and thus for all ¢, so we see that
Eq. (19.6.4) is satisfied for {(x) = y~1(x)p(x), as was to be shown. In the
purely bosonic theory with Lagrangian (19.4.1), §%, was the four-vector
field (0,0,0,0). This points in the direction of the vacuum expectation
value (y,), but this is not always the case.

Incidentally, it is not necessary in dealing with complex fields to for-
mulate the condition on §(x) explicitly in terms of its real and imaginary
parts. If a set of fields y(x) transform according to some complex represen-
tation of G with Hermitian generators 7%, then in the real representation

- (222

the generators are

it =

—ImT7T* —ReT®
ReT* —ImT*®

The condition (19.6.4) may then be expressed directly in terms of T* and
4(x) as

m (3x)' T* (1())vac ) =0.

Because the Lagrangian is assumed to be only invariant under
spacetime-independent G transformations, it will be found after the trans-
formation (19.6.3) to depend on y(x) as well as on §(x), though always
with at least one derivative in each y-dependent term. As already re-
marked, the spacetime-dependent parameters needed to specify y(x) will
play the role of Goldstone boson fields. We now have to consider how to
parameterize p(x).

It must be recognized from the outset that the choice of y in Eq. (19.6.3)
is generally not unique. Because {y,,(0))vac is H-invariant in the sense of

q. (19.6.2), the quantity V,(g) defined by Eq. (19.6.5) is invariant under
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right multiplication of g by any element 4 of the unbroken subgroup H:
Velg) = Vy,(gh) for he H. (19.6.6)

It follows that if y maximizes V,,(g), then so does yh, so that condition
(19.6.4) is satisfied for §» = h 1y lip as well as §» = y~typ. Hence y is only
deﬁned so far up to right multiplication by an element of H. (For instance
in the example of the previous section, the four-dimensional rotation R
could have been multiplied on the right with any rotation acting only on
the first three components of four-vectors.) We may think of two group
elements y; and y, as equivalent if y; = y;h with h € H. This is an
equivalence relation because it is reflexive (if y; is equivalent to y; then
2 18 equivalent to y;), symmetric (y is equivalent to itself), and transitive
(if y1 is equivalent to y» and y; is equivalent to y; then y; is equivalent
to y3). The elements of the group G can therefore be sorted into disjoint
‘tquivalence classes’, each consisting of elements y that differ only by right
multiplication by an element of H. These are known as the right cosets
of G with respect to H, What we need is a parameterization of the space
(known as G/H) of right cosets.

For this purpose we need only choose one representative group element
from each right coset. For the SO(4) symmetry broken to SO(3) of the
previous section, it was convenient to choose these representative elements
as the rotations R parameterized by the three-vector {. There is another
choice that is available for any compact group G broken to any subgroup
H. Let us first adapt our notation for the generators of G to the pattern
of symmetry breaking. The complete set of independent generators of H
will be called t;. According to Eq. (19.6.2) these satisfy

Y (ti)m (wmdvac =0. (19.6.7)

Since H is a subgroup, the t; form a subalgebra
] =i ) Gt (19.6.8)
k

We will take the x, to be the other independent generators of G, in any
basis with totally antisymmetric structure constants. (Such a basis always
exists for compact groups; see Section 15.2.) Since x, does not appear on
the right-hand side of Eq. (19.6.8), the structure constants Cij, all vanish,
and since they are totally antisymmetric, it follows that Ci,; = 0, so

[ti,Xal =i Ciapxp - (19.6.9)
b

However, it is not necessarily the case that commutators of xs with each
other are linear combinations of ts; this depends on the nature of G and
H, and also on how H is embedded in G. (Where C,, vanishes, the coset
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space G/H is known as a symmetric space). In general we may write

[Xa, Xp} =i Z Capiti +i Z CapeXe - (19.6.10)
i ¢

Any set of generators with commutation relations of the form (19.6.8)-

(19 6.10) is called a Cartan decomposition of the Lie algebra. An example
is prnvldpd bv the r'lmrcﬂ QTT(?\ % QT”?\ Tie -n](:rphrn ”Q A.Q'\ (19 41 1\ for

vl vy A CLd

which the Cabc did happen to le’llSh
Because ¢; and x, span the Lie algebra of G, any finite element of G
may be expressed in the form

= exp I-i Z {axa] exp [i Zﬁfr_i] , (19.6.11)
L = ] L5

where £, and #; are a set of real parameters. But the transformation y(x)
in Eq. (19.6.3) is only defined so far up to right-multiplication with an
element of H, so we may standardize our definition of y by taking it in
the form

—exp[ 3 Eax)x ] . (19.6.12)

The &,(x) may be identified (apart from normalization) with the Goldstone
boson fields.

In what follows we will simply assume that representative elements have
been chosen from each right coset, and expressed as continuous functions
(&) of some parameters &, Eq. (19.6.12) in general provides one explicit
example, but we will not limit ourselves to this parameterization.

Now, suppose we use Eq. {19.6.3) to replace all fields ¥(x) in the
Lagrangian with y(x)®(x). The derivatives of the fields are given by

8up(x) = (%) [8,B(x) + (77 (XD (<NP)] - (196.13)

Therefore when we express the Lagrangian in terms of { rather than v,
the Goldstone boson fields appear through the dependence of y~1(x)3,y(x)
on &,(x) and its derivatives.

Any variation of a group element like y(x) may be written as the group
element times a linear combination of the generators of the group. In our
case, we may write this as

y )8 p(x) = 1> XaDau(x) +i Y tiEiu(x) (19.6.14)
a i
where D,, and E;, take the forms

Dap(¥) =3 Da (ﬁ(x)) ,E0(x) (19.6.15)
b
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Ey(x)=3" E,-b(é(x)) 2,uEn(x) . (19.6.16)
b

The Goldstone boson fields will thus enter the Lagrangian through the
appearance of the quantities Dg,(x) and Ej,(x) (and their derivatives).
Note that for exact broken symmetries every interaction of the ¢s must
involve at least one derivative, so mass terms m2, &,&, cannot appear in
the Lagrangian, and all interactions vanish when any Goldstone boson
four-momentum vanishes.

Even where we do not know the details of the underlying Lagrangian,
we can learn a great deal about the way that the quantities D, and
E;, appear in the transformed Lagrangian from their transformation

properties. Under an arbitrary element g of the group G, the original field
p transforms according to Eq. (19.6.1):
P(x) = v'(3) = gu(x) = g7(€(x)) B() (19.6.17)

Now, gy(£) is an element of G, so it must be in the same right coset as
some p(¢'), and may therefore be written in the form

g7(400) =v(£0)h(Ex).g) (196.18)

where h is some element of the unbroken subgroup H. Using this in
Eq. (19.6.17), we find that /() is of the form (19.6.3)

Y'(x) =y (?:’(X)) P'(x), (19.6.19)
with £'(x) defined by Eq. (19.6.18), and
P00 = h(Ex),2)p(x) . (19.6.20)

In the example at the beginning of the previous section, P consisted of a
single isoscalar ¢, and since this was invariant under the unbroken isospin
subgroup, it was also chiral invariant. More generally, we find here
that §(x) is not necessarily invariant under general G transformations,
but that its G transformation depends only on its transformation under
the unbroken subgroup H. We saw this in the previous section when
we introduced the nucleon fields; under a general infinitesimal broken
chiral symmetry, the fields N transformed according to the field-dependent
isospin rotation (19.5.43).

The transformation rules ¢ — ¢’ and { — §' specified by Egs. (19.6.18)
and (19.6.20) make no reference to the particular linear G transformation
properties of the original fields v,. Indeed, we did not need to start with
a Lagrangian that was invariant under linear G transformations in order
to deduce these transformation rules. Given any set of fields on which
a group G acts linearly or non-linearly, with a subgroup H that leaves
one special set of field values (their vacuum expectation values) invariant,
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we can always express these fields (in at least a finite neighborhood of
the special field values) in terms of a set £, and @, which transform
under G according to the standard realization &, — £, § — ¢ defined
by Eqgs. (19.6.18) and (19.6.20). The essential uniqueness of this realization
was first proved? for SU(2) x SU(2) broken to SU(2), and then for
general Lie groups broken to any subgroup.’! For an easier argument,

ok gy [P SR N F-J

we may note that for any set of fields that transforms according to a
non-linear realization of an arbitrary compact Lie group G, it is always
possible to define functions of these fields (and perhaps additional fields")
that transform linearly under G.>> Starting from this linear realization, the
arguments of this section allow us to construct fields £ and ¢ with the
transformation rules (19.6.18) and (19.6.20).

Although the transformation of &(x) and §(x) is complicated for general
g € G, it is much simpler when g is itself a member h of the unbroken
subgroup H. It is usual and always possible to choose the Goldstone
boson fields &,(x) to transform according to some linear representation
Dap(h) of the unbroken subgroup H:

hy(©)h " =y (2h)¢) . (19.6.21)

For instance, in the parameterization of the coset space SO(4)/S0(3) used
in the previous section, the Goldstone boson fields {, formed an isospin
three-vector. For the more generally applicable parameterization based
on Eq. (19.6.12), the commutation relations (19.6.9) show that the x,
transform linearly under H:

hxph™ =" Dap(h)xa (19.6.22)

from which Eq. {19.6.21) follows immediately. Comparing Eq. (19.6.21)
with Eq. (19.6.18), we see that for g =h € H,

E(x) =Y Dap(h)ép(x) (19.6.23)
ip:ﬁ(x) = Zhnm{pm(x) : (19.6.24)

In other words, &, and ¢, transform under H according to the represen-
tations Z,,(h) and h,,, itself, respectively.

We must now consider how to construct the most general Lagrangian
that is invariant under the transformations (19.6.18) and (19.6.20). The
transformation ¢ — £’ for general g € G is non-linear and rather compli-
cated, and rules out the appearance of &,(x) in the Lagrangian except in

* For instance, the polar and azimuthal angles 6 and y furnish a non-linear realization
of SO(3); by adding an additional variable r we can construct quantities x;, x,, and
x3 that transform linearly under SO(3).
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quantities like Dg4,(x) and E;,(x). Fortunately, these quantities obey very
simple transformation rules. Differentiate Eq. (19.6.18) with respect to x#
and multiply on the left with its inverse. This gives

- (é(x))a#}, (g(x)) = {gv (C(X))]_Ia [g?’( (x))][

=h 1(5(x1 g) —1(5 (xﬂ@p v(f’ x))h(éj(x),g)]
( ) [ (E)aw ()] #(é)
+h (é(x),g)ayh(e:(xxg)
and so
7 HEE)aw (€)= h(Ex)e) [y (€0 g) o (600, 2) | A (20 g)
— e {Exg)] n (&x).8) - (19.6.25)

Eq. (19.6.12) gives the quantity y‘laﬂy as a linear combinations of xs and
ts. Also, the second term on the right-hand side of Eq. (19.6.25) is a
linear combination of ts alone. Since the x, and ¢; are all independent,
the coefficients of each generator on both sides of Eq. (19.6.25) must all
be equal:

Zan h(¢, g) (Z Xa a,u) ¢.8)s (19.6.26)
ZtiE;,u = h(¢, 8) (ZtiEip) hl(¢,8)

+i|aun.g)] (), (19.6.27)

or in more detail

Z Dap (h(f )) Dyu(x),
Zé“u( (£00).8)) Bl
*Z%‘” i (h(£(x),8) ) Budol), (19.6.28)

where Dy, and E;, are defined by Eqs. (19.6.15) and (19.6.16), and
uh(E(xg) | H (E(x) ) =i A (E00)t0,En(x)
ib

hegh™ =" &t
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while 2 is defined by Eq. (19.6.22). We see that the quantities D,,(x) are
‘covariant derivatives’ of the Goldstone boson fields, transforming under a
general element g € G much like the fields {: both are subjected to the H
transformation h(&(x), g), though in different representations. For instance,
in the SO(4) theory of the previous section, the covariant derivative of the
pion field { was the quantlty 7 C / (1 +£2), which is transformed under an
lllllIIiLCSlH]dl lv[llfdl ll'dIlSlOTH]dllOIl Dy an ISOSPIII romuon [ly 3 lDJ

On the other hand, E;,(x) transforms inhomogeneously, much like a
gauge field. The extra term in Eq. (19.6.28) allows a cancellation of the
inhomogeneous term in derivatives of {. Differentiating Eq. (19.6.20), we
have

2.(
U

——
E

NET ,\ A o
= n{eix)g) |0uPlx
Combmmg this with Eq. (19.6.27) gives

(2.0()) = h(ex).8) 2,0(x), (19.629)

where 2, is a covariant derivative of the heavy particle fields:
Dup(x) = Bup(x) +i Y LEp(X)P(x) . (19.6.30)
i

(Eq. (19.5.47) provides an example of such a covariant derivative in the
case of SO(4) broken to SO(3).) Any Lagrangian that is invariant under
the unbroken subgroup H and is constructed from {, 2,p, and D,y will
thus also be invariant under the full group G.

Renormalizability is not an issue here, so we can also consider quantities
involving more than one spacetime derivative. One such is 2,2,9,
obtained by just repeating the operation (19.6.30):
O+ GEy|®

i

DD P = (19.6.31)

av =+ IZ rjEjv
J

This transforms just like Z,3

(22,D) = ME DD . (19.6.32)

Another covariant quantity can be constructed from the covariant deriva-
tive of the covariant Goldstone boson derivative (19.6.15), which is defined
just like (19.6.30), but with ¢; replaced with the corresponding matrix in
the representation of H furnished by the x,:

gvDa,u = avDap + Zciab Eiva,u ’ (19633)
b

which transforms just like Dy,

(2,Dyg,) Z@ab(h )7, Dy, . (19.6.34)
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Also, by antisymmetrizing the derivative of E; we can eliminate the
inhomogeneous term in (19.6.27). This yields a ‘curvature’

Riw = 0,Eiy — 8,Eyy — iCijcEj, By (19.6.35)

This is not really new; it is easy to see that the antisymmetric covariant
derivative of the ‘matter’ field { is proportional to this curvature

(2y, 2% =Dt Rywp . (19.6.36)

Of course, we can continue this process and construct yet more covariants
by taking higher and higher covariant derivatives of 2,§ and D,

It is useful to note that the quantities D,, and E;, may be calculated
once and for all for given groups G and H and a given parameterization of
the coset space G/H, and do not depend on the assumed transformation
properties of the fields y, or the specific matrices x,,t; used to represent
the Lie algebra of the broken symmetry group. For instance, in the
exponential parameterization (19.6.12), the first few terms in the power
series for these covariants are easily calculated from Egs. (19.6.12) and
(19.6.14) as

Da,u = ayéa + I@Z Cabréha,ugc ’
be

+ 150U CteCrea + Y CatiCia | Enéediua

bed L € i
+ 0(£0,8) (19.6.37)
Ei,u = % Z Cab:faa,uéb + :7, Z Cacd Chdi Eaébapéc
ab abcd
+ 0@35#@' (19.6.38)

All we need to know in order to construct the most general Lagrangian
involving the Goldstone boson fields ¢, and a set of heavy particle fields
is the pattern of spontaneous symmetry breaking, of G to H, and the
transformation of the heavy particle fields under H, not G: the Lagrangian
is taken to be the most general H-invariant function of ¢, 2, §, Dg,,
and higher covariant derivatives.

Now consider the case where the symmetry under G is not only sponta-
neously broken, but not even exact to begin with. Suppose that there is a
term A% in the initial Lagrangian that is not invariant under the group G
of linear transformations y — g, but transforms as a linear combination
of the components of some representation (reducible or irreducible) of G.
That is, we take

AL = ca0y, (19.6.39)
A



19.6 Effective Field Theories: General Broken Symmetries 221

where (4 transforms under G according to some representation D[g]45:

Os— Y DIglas0s . (19.6.40)
B

If we now replace the fields y with the set &, (¢, this term in the Lagrangian
will still take the form (19.6.39), but Eq. (19.6.40} now reads

Oalfall,8) DINEgNDP| =" Dlglasls ¢, 7], (19.6.41)
B

where f,(£, g) is the result of applying the transformation g to £, defined
by Eq. (19.6.18):

PN

g7(&) =7(f(&,0))h(Eg) - (19.6.42)

As we shall see, it is easy to find sets of operators satisfying (19.6.41),
and the solution is unique up to a specification of certain H-invariant
functions of the .

First, consider the case £, = 0, with g = p(£’). In this case gy(&) = y(&'),
50

fa(09&)) =&, h0pE)) =1,
Applying this in Eq. (19.6.41), we find (now dropping the prime):
048 ®] = 3 DION48 08 [0, . (19.6.43)
B

This gives the operators €0 4{¢,, ] for all £, if we know them for £, = 0.

Now take £, = 0, with g an element 4 of the unbroken subgroup H.
Here we have gy(&) = h, so

fa0,h) =0, hO,h)y=h.
Applying this in Eq. (19.6.41), we find here
0410,k =Y D[R an 0[0.9] . (19.6.44)
B

In other words, the 74 for ¢ = 0 must have the same transformation under
linear H transformations as are found in the representation (19.6.40) of
G. (However, there is nothing in this that fixes the normalization of
the different irreducible H representations found in the G representation
(19.6.40); some of them may even be absent altogether.)

Finally, we note that any set of ¢ operators satisfying (19.6.44) allows
the construction using Eq. (19.6.43) of operators satistying the general
G-transformation rules (19.6.40). Using Eqgs. (19.6.43) and (19.6.44), the
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left-hand side of Eq. (19.6.41] becomes

Oalfue.8). W& 0)0] = DU (116 9)LanCn 0.h(E, )
_chn[y(f (%)) 1asPIh(E g)lsc Oc |0, )]
- Bz Dy (£(2.8)) <. 8)an €5 (0. ]
- iD[gy(i)]AB 050,7]
=§D[g]AB O5]E,9],

as was to be shown.

As an example, consider the group SO(4) spontaneously broken to
S0(3) as in the previous section, and suppose we want to construct
operators that transform according to the four-vector representation of
S0(4) out of the Goldstone boson field {(x) and the other fields §(x).
According to (19.6.43), these must take the form

0n (8, 9] = Runl?) 0 [0, ,
where R is the SO(4) rotation defined by Eqgs. (19.5.8) and (19.5.9):

e 122

The condition that R is an orthogonal matrix is satisfied if we choose its
other components as

ZCacb 2Ca
= g — —2b =0
Rap b [+22 Ryg 1172

Thus any scalar (as opposed to pseudoscalar) operators that transform
as the fourth and third components of chiral four-vectors must appear in
the effective Lagrangian in the forms

i (2e) @l (55
and

orfe.o) = [osfo] - (122520 fos] |+ (22 oxfos].

The only condition on the operators ®*[0, ], ®F[0,p], ®[0,7], and
®, [0, ] is that they should transform under Lorentz and isospin trans-
formations respectively as a pseudoscalar isovector, a scalar isoscalar, a
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scalar isovector, and a pseudoscalar isoscalar, but they do not have to be
related in any way. For processes involving only pions we use an effective
Lagrangian that involves no fields except the pion field Z, so the operators
@0, ], &[0, ], and @, [0, §] must all vanish, while ®7[0,%] is just
a numerical constant. We see as promised in the previous section that
the only non-derivative chiral symmetry breakmg operator in the effective
Lagrangian is proportional to (1 —{ 7)/(1 +{?), and hence to the operator
(19.5.34). In order to include symmetry-breaking operators bilinear in the

nucleon field, parity and isospin conservation require that we take

Thus as claimed in the previous section the only non-derivative symmetry-
breaking terms involving nucleon bilinears are of the form (19.5.61)
(19.5.64).

The phenomenological Lagrangian may be used to calculate the ampli-
tudes for processes involving particles of small three-momentum in much
the same way as was done for the chiral theory of pions and nucleons in
the previous section. In counting powers of a characteristic small momen-
tum @, Goldstone boson internal lines always contribute factors of order
Q2. Also, an internal line for one of the heavy particles (of any spin)
described by the fields § that has absorbed a net four-momentum g from
the Goldstone boson field will have a propagator

Nip+q) | N

(P+a)*+M*  2p-g
(where N is some polynomial, depending on the particle spin and field
type, and M is the particle mass) so it will contribute a factor of order

Q1. The same argument that led to (19.5.55) applies here, and gives the
number of powers of Q in a given Feynman diagram as

v=> Vi{di+h/2—2) +2L—E,+2, (19.6.45)

where V; is the number of vertices of type i, d; is the number of derivatives
(or for approximate broken symmetries, derivatives or Goldstone boson
masses) at a vertex of type i, h; is the number of heavy particle lines at
a vertex of type i, L is the number of loops, and Ej; is the number of
external lines of heavy particles. In general the coefficient d; + h;/2 — 2
is non-negative for all interactions allowed by chiral symmetries. The
interactions among Goldstone bosons alone always have d; > 2, because
they must either be at least bilinear in the covariant derivative (19.6.15), or
proportional to symmetry-breaking parameters (like quark masses in the
previous section) which are of order of the squares of the Goldstone boson
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masses. Interactions between Goldstone bosons and heavy particles must
involve the covariant derivatives (19.6.15) or (19.6.30), and so must have
d; =2 1 as well as i; > 2. The only interactions for which d;+h;/2 < 2 would
be trilinear interactions among the heavy particles, which we exclude
because we are only considering graphs in which all heavy hadrons remain
non-relativistic. With d; + h;/2 > 2 for all interactions, the leading graphs

are those constructed solely from interactions with d; + h;/2 = 2 and
no loops. Corrections are again provided by interactions with more
derivatives and/or more heavy-particle fields, and/or one or more loops.

In the absence of intrinsic symmetry breaking, the part of the La-
grangian that involves only the Goldstone boson fields has a unique

d; = 2 term

1
Zos =3 > " FaDaDY (19.6.46)
ab

with F2 some real positive-definite matrix. For (19.6.12) and a large class
of other parameterizations of the cosets, y(£) approaches 1 + i¢,x, for
¢a — 0, so Eq. (19.6.14) shows that the linear term in Dy, is just d,£,.
The canonically normalized Goldstone boson fields n, with a kinematic
Lagrangian —% > a Oum,O0Fm, are then

ma=» Faép. (19.6.47)
b

In the SO(4) theory of the previous section, the generators x, and the
fields ¢, transform according to an irreducible representation of the un-
broken subgroup H = SO(3), so in this case F% = F2dy, with F; a
single constant that characterizes the energy scale of the spontaneous
symmetry breakdown. In the general case we can choose the generators
(without changing the structure constants) so that F2, is diagonal, with
diagonal elements all equal within each irreducible representation of H,
but otherwise independent.

* ¥ ¥

We have seen how to construct theories of Goldstone boson fields
by starting with fields belonging to linear representations of the broken
symmetry group, such as the SU(2) x SU(2) four-vector ¢,(x) with which
we started in Section 19.5. At very low energy the only significant degrees
of freedom are the Goldstone bosons, so we generally throw away the non-
Goldstone parts of the field, such as the field o(x) given by Eq. (19.5.4).
But there are circumstances in which it is necessary to return to full linear
representations of the broken symmetry group, in which the Goldstone
boson fields are just one part.

This happens when, by varying the temperature or turning on an
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external field of some sort, a system is brought close to a second-order
transition, in which it smoothly goes from broken to unbroken symmetry.
On one side of this transition the symmetry is broken, so we have massless
Goldstone bosons, and various other massive excitations, not generally
forming complete multiplets that would furnish linear representations of
the broken symmetry group. On the other side of the transition the

symmetry is unbroken, so here we have complete linear multiplets, not

generally massless. If this transition is continuous, then very near the
phase transition the Goldstone boson must form part of a complete
linear multiplet of nearly massless excitations. Barring accidents or other
symmetries, this multiplet will form an irreducible representation of the
broken symmetry group. This irreducible multiplet of fields, which become
massless only just at the phase transition, is known as the order parameter.

This is a more precise definition of order parameters than usual, Often
one speaks of an order parameter as any set of fields whose expectation
values break the symmetry, but this is too vague — there is no one set of
fields whose expectation values can be blamed for a broken symmetry. For
instance, the SU(2) x SU(2) symmetry of quantum chromodynamics with
massless u and d quarks is broken by the expectation value of #u-+dd, which
is the fourth component of a chiral four-vector, but quartic and higher
powers of quark fields also have non-vanishing vacuum expectation values,
and these belong to other representations of SU(2) x SU(2). In contrast, at
a smooth phase transition at which SU(2) x SU(2) becomes unbroken the
Goldstone boson becomes a member of just one massless representation
of SU({2) x SU(2), and this provides an unambiguous definition of the
order parameter.

It is important to identify the correct order parameters, both in order to
calculate the critical exponents discussed in Section 18.5, and to deal with
configurations like vortex lines or magnetic monopoles, where, as we shall
see in Sections 21.6 and 23.3, there is a singularity at which the broken
symmetry becomes unbroken, It is often assumed that the order parameter
for the chiral SU(2) x SU(2) symmetry of quantum chromodynamics is a
chiral four-vector, but this is not known to be the case.3%

19.7 Effective Field Theories: SU(3) x SU(3)

The approximate SU(2) isospin symmetry of nuclear physics was extended
in the early 1960s by Gell-Mann®® and Ne’eman® to an even less exact
SU(3) symmetry, which grouped the known baryons and mesons in various
irreducible representations: an octet of 1/2% baryons p, n, A%, Z£0, 2=,
an octet of 0~ mesons Kt9 gt0 540 K =0 an octet of 1~ mesons
K*+t0 p0 o KF~0 and a decuplet of 3/2+ baryons A+ +0.— F*+0—
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0= Q~. (The n and Q were not discovered until later.}) After the
successes of the chiral S U(2) xS U(2) symmetry in the mid-1960s, it became
natural to suppose that the strong interactions also respect an approximate
SU(3) x SU(3) symmetry, which like SU(2) x SU(2) is spontaneously
broken to its diagonal subgroup, the SU(3)} of Gell-Mann and Ne’eman.
Then after the advent of quantum chromodynamics it became clear that
this byi‘ﬂﬁlﬁti’y arises because there are not two but three falﬂ_y hght
quarks; the u and d, and a third quark s which like 4 has charge —1/3.
In this case the SU(3) x SU(3) symmetry consists of independent SU(3)
transformations (analogous to Eq. (19.4.2)} on the left- and right-handed
parts of the u,d, s quark fields:

u u
( d ) — exp {iZ(eg’zﬁog‘Aam} ( d ) : (19.7.1)
5 a M

where J; are a complete set of traceless Hermitian matrices:

010 0 —i 0 1 0 0
A=11007], A= i 0 0], A3=[0 —1 0],
00 0 0 0 0 0 0 0
00 1 00 —i 000
w=1000), is={00 0 ), ={001],
10 0 i 0 0 010

00 0 L (L0 0
m=lo00 <), ==[01 0], (19.7.2)
0 i 0 ~/§00—2)

normalized so that Tr(A,4;) = 2d,. The generators of SU(3) x SU(3)
are thus represented on the quark fields by the generators t, = 4, of the
unbroken S U(3) symmetry and the broken symmetry generators x, = Aqys.

To define the Goldstone boson fields and work out their transformation
properties, we note that in the representation furnished by the quark fields,
any SU(3) x SU(3) transformation may be written as exp(—iys >_, ada)
times a transformation exp(iy_, 0,4,) belonging to the unbroken SU(3)
subgroup of SU(3) x SU(3). (The minus sign accompanying ¢ is inserted
for convenience in later comparing components of this field with the pion
fields introduced in Section 19.5.) Hence in this representation, each right
coset of SU(3) x SU(3)/SU(3) is represented by the matrix of the form
(&) = exp(—iys 3, Eadq) that it contains, and aside from normalization,
the parameters &, of these right cosets may be taken as our Goldstone
boson fields. According to Eq. (19.6.18), the transformation rule of these
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fields is dictated by

EXp [i Z(Bc&/’la + BaAAaVS)] Cxp (_‘i'}’S Z éa(x]ia)
= exp (—iy5 > E(x) ) exp ( > Ba(x)A ) (19.7.3)

with 0,(x) some function of 9V, 84, and ¢(x). Also, according to
Eq. (19.6.3), the Goldstone-free quark fields §(x) are here defined by

u(x)

g(x) = ( d(x) ) = exp ( —ips > 5a(x)/la) g(x) (19.7.4)
\ s(x) / N /

and have the transformation rule given by Eq. (19.6.24):

' (x) = exp ( Zﬂa(x ) (19.7.5)

We could proceed to introduce covariant derivatives (19.6.15) and (19.6.30),
and use them to construct chiral-invariant Lagrangian densities, but for
chiral symmetries there is a simpler approach available.

Note that the parts of Eq. (19.7.3) that are proportional to (1 + ys) and
(1 —ps) read

CxXp (i Z Gé‘ja) ¢xXp (__i Z 5(1(35))‘11)
= exp (—iz r‘,‘;(x]la) exp (IZ Oa(xlla) (19.7.6)

and

exp (12 Bf&a) exp (i > éa(x)ia)

a

= exp (12 if,(x)&a) exp (;Z Ga(xlﬂa) : (19.7.7)
where
oL = 9" + 04, R =p¥ —p4.

By multiplying Eq. (19.7.7) on the right by the inverse of Eq. (19.7.6), we
find the simple transformation rule

U'(x) = exp (zz Aafiff) U(x)exp (—iz PL(,QQE,‘) , (19.7.8)
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where U(x) is the unitary unimodular matrix
U(x) = exp (2iZia(x)la) : (19.7.9)
a

3) representation of

»
n nf FIily s OT7¢Y
1 o1 (J3) X ouiJ})

CT7{y w €774y Thie i1c cotill a nan_linaaer ranlizat

S o el UU]\J,. A LI 1D Okl o MIVLLITHILIWAL LwdllZidal

AN
because the components of U(x) are not independent; they are subject to
the nonlinear constraints UTU =1 and Det U = 1.
The unique (SU(3) x SU(3))-invariant term in the Goldstone boson
Lagrangian that is of second order in spacetime derivatives is

In other words, U(x) transforms according to the (3

L 2deriv = — %Fz Tr {(?#U fj#UT} , (19.7.10)

with FZ a positive constant to be determined. We can express the £, in
terms of conventionally normalized pseudoscalar meson fields by writing

1 .0 1 .0 + +
Aé = Y. T —ITCO'J{“L’?O KO .
E asa — F 7] \/6 - = F
a o — 0 0
K R ~/%n

(19.7.11)
so that the kinematic term in Eq. (19.7.10) is of the usual form

Prin = — 10,1°0#7% — 8, mtdFn~ — 8,K+0* K~ — 8, KK — 10,n%0"n° |

To determine the constant F, we note by comparing Eq. (19.7.4) with
Eq. (19.5.42), that for ¢ infinitesimal, the components ¢y, &, and &; are
the same as the Goldstone boson fields {;, {», and {3 introduced in Section
19.5. Then, comparing (19.7.11} with (19.5.17) and (19.5.32), we see that
the constant F defined by Eq. (19.7.10) is the same as the F; = 184 MeV
introduced in Section 19.4.

The SU(3) x SU(3) symmetry of quantum chromodynamics is broken
by the quark mass term, which in terms of the quark field §(x) defined by
Eq. (19.7.4) is

ZLmass = —§ Mgq = —§ e_iﬁVSB/Fn Mq e_iﬁJ’SB/F“ g (19.7.12)
where
m, 0 0
M, = 0 my 0O . (19.7.13)
0 0 m

Eq. (19.7.12) contains a purely bosonic part, obtained by replacing the
quark bilinear with its vacuum expectation value, given by the unbroken
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SU(3) and parity symmetries as”
< Gp5dm >0=0, < qylm >0= —00um - (19.7.14)

The Goldstone boson mass term in the Lagrangian is then

v v 1 1 2
—F Tr{B,{B,M,}} = — P {4mu(‘ n° _1__/,1 0) +4(my, +mg)ntn

. A

2
+d(my + m)K K™ + 4my (—ino + ino)

V2o e

+4(mg +m)K°R® + gmg(no)zl . (19.7.15)
From this, we can read off that’
v
mi. =miy = ﬁ[mu+md] ,
4v
m%{_'_ = 72 [y, +my] ,
g (19.7.16)
2 4v
Mo = ‘PTj‘[md +mgl,
2 dv [dme+mg +my
m'fﬂ - F_T% 3 H
and there is also a term that mixes the 7% and #%:
SO (19.7.17)

RN

The same results can also be obtained by operator methods. Noether’s
theorem allows us to construct generators T, and X, for which

[Ta.q] = —aq , [Xa,q] = —754aq - (19.7.18)

We can write the Goldstone boson fields in a real basis as n,;, with

(m + mg)/ﬁ 0 = m, K+ = (mg + ins)/ /2, K® = (m6 +
m7)/\/§ KO = (mg — 171:7)/\/5 and #® = ng. The SU(3) symmetry that
survives the spontaneous symmetry breaking tells us that the F-matrix

* The fact that the conscrvation laws of parity, charge, and strangeness respected hy the
vacuum atre the same as those respected by the quark mass matrix is a result of the
vacuum alignment condition discussed in Section 19.3. Likewisc, if the quark ficlds
are defined so that the quark masses are all positive, then with ¢ > 0 the minus sign in
Eq. (19.7.3) is required by the condition that the true vacuum be at a minimum rather
than a maximum of the vacuum energy for vacuum states rotated by SU(3) x SU(3)
transformations, for as wc shall sce, it is this sign that will yield positive masses for
the pseudo-Goldstone boson octet.
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for these bosons takes the form F,, = F,d;. The SU(3) x SU(3) sym-
metry is also intrinsically broken by the mass term in the Hamiltonian
Hy = myiau + mqgdd + mg3s = GM,q, where M, is the quark mass matrix
(19.7.13). The mass matrix of the pseudo-Goldstone bosons is given here
by (19.3.20) as

M%, = —F72q {Aa {00 M} @o - (19.7.19)

Since this is already of first order in quark masses, to this order we may
use the unbroken SU(3) relations {iu)y = {(dd)y = (3s)¢ = —v, and find
the results (19.7.16) and (19.7.17), as before.

The masses mg+ = 493.65 MeV and mgo = 497.7 MeV of the kaon
doublet are quite close, and considerably larger than the pion mass, so
we can see from (19.7.16) that the m, and my; must be considerably
smaller than m,. In calculating quantities that are sensitive to m, and my,
like the kaon mass difference or the pion masses, we should also take
into account another small correction, the effect of electromagnetism. The
electromagnetic current is J® = jeqy“Qq, where Q is a diagonal matrix with
elements 2/3, —1/3, and —1/3. Its commutators with the SU(3) x SU(3)
generators are

[T, J"] = —ie 4q7"[Q, Aulg,  [XaJ¥] = —ie 13y"ys[Q, Ad]q .

We see that J# commutes with X3, X¢, X7, and X3 as well as T3, Tg, T7,
and T3, so the electromagnetic part of the Hamiltonian is invariant under
the SU(2)yxSU(2) x U(1)yx U(1} subgroup with these generators. Therefore
in the limit of zero quark masses, electromagnetic effects give no mass to
the neutral pseudo-Goldstone bosons*® 7%, K°, K¢, and 5% the Goldstone
bosons associated with the spontaneous breakdown of the symmetries with
generators X3, X4, X7 and Xg. Also, in the zero-quark-mass limit there
is an unbroken SU(2) symmetry generated by Ty, T, and \/§T g — 13,
under which the K+ and =t transform as a doublet, so that for zero
quark masses the electromagnetic corrections to the K+ and n masses are
equal.®® Since the quark mass terms and electromagnetic corrections are
all small, it is reasonable to treat these effects as additive corrections to
the effective quark Hamiltonian, We see then that with electromagnetism
taken into account, the mass formulas (19.7.16) should be corrected to
read?’

my+ = 4o(my +mg)/F2 + A,

mitﬂ = m%o = 4ov(mg + ms)/F,% .

m2. = do(mg +m,)/F2+ A, (19.7.20)
mig = 4o(my + mu)/F,% ,

mi = 4v(my + mg + 4mg)/3F2
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where A is the common electromagnetic correction to the K™ and o+
squared masses.

These formulas impose one linear relation on the five pseudo-Goldstone
masses, a version of the Gell-Mann-Okubo relation:™”

2 2 2 A2 2
3my + 2my. — my = 2mis + 2mi (19.7.21)
Malrdene +hie Lrosvee aeerd smdivge wsamooomoe ferigen moemaoisas svad Flado senliidti e xraaldo oe
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n mass of 566 MeV, in comparison with the experimental value of 547
MeV. The small discrepancy is usually attributed to the mixing of the 5
state with a heavier pseudoscalar particle, the #’ at 958 MeV.

From the mass formulas (19.7.20) we may derive formulas for the quark
mass ratios in terms of the pion and kaon masses:?’

2 2 2 2 2 2 2
my mKO—I—mﬂ+—mK+ my, ZmRO—mKO—mﬂ + my .
) 2 2 - 2 2 2
My M0 + Mg — My Mg Mo + Mg+ — W,

(19.7.22)
Using the mass values my,+ = 139.57 MeV, m,,c = 134.974 MeV, mg+ =
493.65 MeV and mgo = 497.7 MeV gives the ratios my/m; = 0.050 and
my/m; = 0.027. Thus the ratio of the d and u quark masses is closer to 2
than 1. (A 1996 calculation®? using various other pieces of information as
well as pseudoscalar meson masses has given values my/mg = 0.0531+0.002
and my, /ms = 0.029 4- 0.003.)

None of this gives definite values for the individual quark masses.
Indeed, these masses are not well defined until we define a renormalization
prescription for the quark bilinears. Often this prescription is fashioned
so that m, equals the mass difference between isomultiplets differing by
one unit of strangeness in some SU(3) multiplet. For instance, the
lightest vector meson octet .consists of an isotopic doublet K* at 892

MeV, interpreted as a bound state of an § antiquark and a u or d; its
antidoublet, consisting of an s and a # or d; and a 7' =1 p at 770

** This relation was originally derived®® on the basis of the approximate S U(3) symmetry
of Gell-Mann and Ne’eman generated by the T,, ignoring mass differences within
isotopic multiplets. From this derivation, one cannot tell whether this relation should
be applied to the pscudoscalar meson masses themselves, or as here to their squarcs.
Applying this relation to the pseudoscalar masses themsclves would not in fact work
very well; it gives an # mass of 613 MeV, The fact that the Gell-Mann—Okubo
relation works well for the squares of the meson masses, but not for their first powers,
supports the interpretation of these particles as Goldstone bosous of a spontaneously
broken approximate SU(3) x SU(3) symmetry. Gell-Mann and Okubo also used
the approximate SU(3) symmetry generated by the T, to derive relations among
the masses of other particles, such as (ignoring isospin violating cffects) the relation
2my + 2mz = 3my + mx among the masses of 1he lightest baryon octet. For such
multiplets, the average mass is so much larger than the mass differences within the
multiplet that it makes little difference whether one applies the relation to the masses
or their squares.
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MeV and a T = 0 o at 783 MeV, both interpreted as bound states of
afiordandau ord If we wish to attribute the difference between
the K* mass and the average of the p and « masses to the relatively
large s quark mass, then we must renormalize the quark bilinear so that
my, — Lmy, + my) = mgr — Hm, + my) = 120 MeV, yielding m; = 125
MeV. With the above quark mass ratios, this gives my = 6.0 MeV and

Y AAALT LT nuss .

m, = 3.3 MeV. However, these estimates of mass values are much less
reliable than the values of the mass ratios given in Eq. (19.7.22). Often m;
is estimated®®® as 180 MeV rather than 125 MeV.

The mass term (19.7.12) includes meson—-meson interactions, Using
Eqgs. (19.7.14), (19.7.11), and (19.7.9), we may write the purely bosonic

part of this term in the Lagrangian as
& mmass, bosonic = 3¢ TT {Mq(U+ + U)} . (19.7.23)

The form of this term could have been deduced from general symmetry
considerations, which also allow us to find the allowed terms of higher
order in M,. Suppose we invent an external 3 x 3 field y, and replace
the mass term (19.7.12} in the underlying quantum chromodynamics La-
grangian with the y—quark coupling term

#y=—q[ 10 +ysi+ 01 —yd] a. (19.7.24)

which becomes the same as Eq. (19.7.12) when we make the replacements
x = x" = M,. The point of this procedure is that the Lagrangian (19.7.24)
becomes formally invariant under SU(3) x SU(3) if we give y the formal
transformation rule

¥ — exp (iZAaf)f) X exp (—iZAaﬂﬁ) : (19.7.25)
Qa Qa

Thus we can work out the allowed bosonic terms involving quark masses
by writing the most general SU(3) x SU(3) Lagrangian (up to some given
order in derivatives and M) involving U and y, requiring also invariance
under the parity transformation

U(x, t)— Ul{—x, 1), x>yl (19.7.26)
and then making the replacements
i=x=M,. (19.7.27)

For instance, the interaction Tr{UTy + UyT) is invariant under SU(3) x
SU(3) and parity, and becomes of the same form as Eq. (19.7.23) when
we give y the values (19.7.27).

Using this technique, Gasser and Leutwyler®® have given the complete
effective Lagrangian for the pseudoscalar octet of fourth order in momenta
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or meson masses (with quark masses counted as being of second order in
meson masses) as

La= Ly Tr {3,U" G“U}z + Ly Te {2,U 0,0} Tr {orv Ut}

+L3 Tr {8,V 0*UT 8, U0 U} + Ly Tr {2,U8*U"} Tr {My(U + UM}

N 2

+LsTr {8,U 0" Ut (M,U + U Mq)}-Q—L(, { r {Mq(U+ UT)}]

{8,
+L4 [Tr {( —U)Mq}] 4 LgTr {((UMq)2+(U+Mq)2)} . (19.7.28)

where Li,...,Lg are constants to be determined by comparison with
experiment. The complete effective Lagrangian up to fourth order in
meson masses and momenta is

Kot = L2+ Xy, (19.7.29)
where & is the sum of the terms (19.7.10) and (19.7.23):
#r=— LT (U + Tr MU+ 1)} . (197.30)

Electroweak interactions may be included by replacing the derivatives 8,
with suitable gauge-covariant derivatives D, and adding a few additional
terms 10 ZF.f.

Following the same power-counting arguments as in Sections 19.5 and
19.6, to calculate S-matrix elements to fourth order in meson masses and
momenta we must include both tree graphs to all orders in ¥, and up to
first order in %4, and also one-loop graphs constructed from %5 alone.
Gasser and Leutwyler and others have carried out a comprehensive study
of meson dynamics (and associated electroweak interactions) using this
effective Lagrangian.%

& ok Xk

The quark mass term (19.7.12) naturally affects other SU(3) multiplets.
For any multiplet other than the pseudoscalar octet this can be treated as
a first-order perturbation, and therefore gives a shift in the mass matrix
of a generic multiplet {i} equal Lo

dmi; = (ilgM4dlJ) (19.7.31)
and SU(3) may be used* to relate the various matrix elements {i|§,3s|j}.
In this way, it is straightforward to show that

om, — ém, mz —my

== . (19.7.32)

hy — Ny Mg

Using this together with Eq. (19.7.22) gives the quark mass contribution
to the nucleon mass splitting dm, — 6m, =~ —2.5 MeV. This result may be
used in Eqs. (19.5.65) and (19.5.66} to calculate the leading violations of
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isospin symmetry in low energy pion-nucleon interactions. Of course, as
defined here dm, — dm, is not the full proton-neutron mass difference,
which receives an important contribution also from photon emission and
absorption. Because the neutron is electrically neutral, this electromag-
netic term is almost certainly positive, in agreement with the fact that
the observed proton neutron mass difference is —1.3 MeV, leaving +1.2
WAL 4~ by nvernzzam ad e D P By £ =z
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calculation of this electromagnetic mass difference has proved difficult.

19.8 Anomalous Terms in Effective Field Theories”

In implementing the effective field theory program described in the previ-
ous three sections, it is necessary that the action should contain all possible
terms allowed by the assumed symmetries of the theory. The methods de-
scribed in these sections allow us to identify all manifestly invariant terms,
either by using the general formalism of covariant derivatives described
in Section 19.6, or for chiral symmetries by using a linearly transforming
field subject to non-linear constraints, like the U(x) of Section 19.7. But
it is possible that there may be other terms in the action of the effective
ficld theory that are anomalous in the sense of being given by integrals of
four-dimensional Lagrangian densities that are not invariant, but whose
variation under the broken symmetry is a spacetime derivative, preserving
the invariance of the corresponding term in the action.

As we shall see in Section 22.7, such a term was discovered for SU(3) x
SU(3) by Wess and Zumino,*? in a study of ‘anomalies’ due to quark loop
graphs. However, the structure of this term can be understood without
knowing anything about the underlying theory of quarks and gluons.

The easiest way to describe the Wess—Zumino term is by an extension
of spacetime to five dimensions, introduced for this purpose by Witten.*?
As long as we require the fields in an effective field theory to approach
a common limit as x* — oo in any direction, we can think of spacetime
as having the topology of a sphere Sy, with the point at infinity included
as an ordinary point. As remarked in Section 19.6, when a group G is
broken to a subgroup H, the possible values of the Goldstone boson fields
£. at any spacetime point may be regarded as defining a point in the
coset space G/H (the space of elements of G, with two elements identified
if they differ by multiplication on the right by elements of H), so a set
of functions £,(x) represents a mapping of the spacetime S4 sphere into
G/H. Depending on the topology of G/H, it may be possible smoothly to

* This section lies somewhat out of the book’s main line of development, and may be
omitted in a first reading,
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deform any four-sphere in G/H to a point; that is, it may be possible to
extend any ¢.(x) to a continuous function &,(x:s) defined for 0 > s > 1,
for which u(x;0) = &4(x) and &,(x; 1) is any fixed point (say, &, = 0)
on the original sphere. Where this is true, it is expressed mathematically
as the statement that the homotopy group n4(G/H) is trivial. (For a
discussion of homotopy groups, see Section 23.2.) 1t is known that this is

the case for SU(N} x SU(N) spontaneously broken to SU(N), where the

coset space SU(N) x SU(N)/SU(N} has the topology of SU(N) itself.**
Hence in the case of physical interest, where G = SU(3) x SU(3) and
H = SU(3), we may extend the Goldstone boson fields, or equivalently
U(x), (see Eq. (19.7.9)) to a unitary unimodular matrix U(y) defined in a
five-dimensional ball Bs with coordinates x* and s, whose surface is the
four-dimensional sphere of spacetime.

Now consider the following function formed from U{y):

U au oU oU
1 10U - 1oV .ol

dyt P 5yf U ayk P oyt v ﬁy’"}
(19.8.1)

where indices i, j, etc. run over the five coordinate directions for the
coordinates x* and 5. (The phase and numerical coefficient are chosen
for later convenience.) This is manifestly invariant under the chiral
transformations (19.7.8). Also, because /%™ is a tensor density, the
integral of w(y) over the five-ball is manifestly independent (up to a
sign) of the choice of five-dimensional coordinates y'. Furthermore, this
integral depends only on the values taken by U(y) on the ball’s surface;
that is, in spacetime. To check this last point, note that when we make
an infinitesimal variation dU(y) in U(y) in the interior of the ball, w(y)
changes by a derivative:

i m © _
z*g;f”mmgﬁn {U

i ijklm -
w(y) = —WGJ’M Tr {U

1aUU_ oU i aUU_laU

dulyy=— oy ayf oyk cy!

U's U}
(19.8.2)

(for this calculation, see Section 23.4), so a change in U(y) that does not

affect its value in spacetime also does not affect the integral of (19.8.1)

over the five-ball Bs whose surface is spacetime. We can therefore include
this integral as a term in the action:

Iwzw[U] =n ; &y w(y) (19.8.3)

with n a coefficient that so far is arbitrary.

™ This is shown by tbe fact that we can use SU(N) elements U(x) to represent the right
cosets of SU(N) in SU(N} x SU(N).
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This term may be written as the four-dimensional integral of a La-
grangian density, but not of an (SU(3} x SU(3))-invariant Lagrangian
density. Using Eq. (19.7.9), the leading term in w(x) in the limit of small
meson ficlds is

82 {88 oB B 0B 0B }
YT hmim - i
a{x) — 15:::2!?36 Tr By 37 Ok Byl oy | (19.8.4)

where B is the matrix (19.7.11) of Goldstone boson fields. It follows then
from Gauss’s theorem that

N 0B 0B 0B 0B B
IWZW[U] = 157‘[2F§ e .. d4x Tr {Bax!‘ Ox' DxP Ox° } +0 (Fg) .

Y I

(19.8.5)

Although chiral invariani, this cannot be written as the integral of a
chiral-invariant density over spacetime, because any chiral invariant den-
sity would have to be constructed out of the first and higher covariant
derivatives of the Goldstone boson fields, and so, when expanded in pow-
ers of the Goldstone boson fields, such an invariant density would begin
with a term involving only derivatives of B, not B itself.

As Witten noted, the inclusion of this term in the effective action
resolved what otherwise would have been a conflict between the SU(3) X
SU(3) effective field theory and experiment. Because no e*'#” terms
appear in the effective Lagrangians (19.7.28) and (19.7.30) (or in higher-
order terms of this sort) parity conservation imposes the requirement that
these terms are even in the Goldstone boson fields, ruling out processes
like K - K — 37. Not only is there no symmetry in the underlying theory
of quantum chromodynamics that would account for such a selection rule
— there is even experimental evidence against it, for as Witten pointed
out, the ¢ meson is observed to decay both into K +K and 3= final states.
Eq. (19.8.5) shows that this unwanted selection rule is removed by the
Wess-Zumino—Witten term in the action.

Remarkably, the coefficient of the Wess—Zumino-Witten term is not a
freely adjustable parameter. As Witten showed,? this is because, although
this term is not changed by smooth deformations of the function U(y)
in Bs that do not affect U(x) on the spacetime boundary S, the Wess—
Zumino—Witten term can be changed by a discontinuous change in U(y)
that leaves U(x) unchanged on the boundary. We may think of the five-
ball Bs as half of a five-sphere Ss, with the spacetime Sy as the border
between Bs and the other half Bi. (Think of S5 as analogous to the
surface of the Earth, with the spacetime S4 as the equator and Bs and
B, as the northern and southern hemispheres.) Because Sy is also the
boundary of the other half of S5, we could just as well have written a
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Wess—Zumino—Witten term as
Iyzw U] = ﬁnf &’y w(y) (19.8.6)
Bf

with a minus sign inserted because the boundary of Bj is the four-sphere

with opposite orientation. It is not possible to require that the terms
(19.8.3) and (19.8.6) should be equal for arbitrary Goldstone boson fields
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W]thout setting n = 0, but in order that the weighting factor exp(il} in
path integrals should be unaffected by the difference between the terms
(19.8.3) and (19.8.6), it is only necessary to require that this difference
should be 2z times an integer. That is,

Iwzw U] — Iyzw (U njﬁ &y w(y) = 27 x integer . (19.8.7)
hY

With the normalization factors we have inserted in the definition (19.8.1)
of w(y), the integral of m(y) over any five-sphere turns out to have the
value® 2x. Tt follows that the coefficient n must be an integer.

The example of the Wess Zumino-Witten term raises the question
whether there may be other anomalous terms in the action, not necessarily
related to quark loops, that also are invariant under SU(3) x SU(3),
despite not being four-dimensional integrals of (SU(3) x SU(3))-invariant
Lagrangian densities. Fortunately, the answer is no. It has been shown?
that for a general group G broken to an arbitrary subgroup H (with
n4(G/H) = (), any term F[{] in the action of the Goldstone boson fields
£q(x) may always be written as the integral of a G-invariant five-form Q
over a five-ball Bs whose boundary is the spacetime four-sphere Sy:

jkim 08a 08p 08 084 0¢
— 5 Likim a ¢ e
oy e e Qi) (1989
In order that this should be independent of the particular way that &,(x)
is extended into the interior of the five-ball, it is necessary that Q should
be exact, in the sense that there it is the external derivative of a four-form

Qabrde(&) = (a/a‘f[a)ﬂg}bcde](i) (19-8-9)

(with square brackets as usual indicating antisymmetrization with respect
to the enclosed indices), so that

OE4 gEP pEe pEd
— 4 _uvpe
Fic] [5-4 f'xe Oxk Ox” BxP Ox°

It follows that Q is also closed; that is, it has a vanishing exterior derivative

(070 5) Qupeae)(€) = 0. (19.8.11)

Where the four-form 2 gcq(£) is also G-invariant, the functional (19.8.10)
is just one of the ordinary manifestly G-invariant terms in the action,

abrd(é) . (19810)
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discussed in the previous three sections. The anomalous terms in the
action arise from the possibility that, although every term in Q(y) is
G-invariant and the exterior derivative of a four-form, some terms may
not be the exterior derivatives of G-invariant four-forms. Thus the new
terms in the action may be identified with the closed G-invariant five-
forms that are independent, in the sense that no real linear combination
of them is the exterior derivative of a G-invariant four-form. These are
known in mathematics as the generators of the de Rham cohomology group
H5(G/H ;R). (The group multiplication rule here is just simple addition.)
The de Rham cohomology groups have been calculated for manifolds of
various topologies.®® In particular, H>(SU(N) x SU(N}/SU(N);R) has a
single generator, given by Eq. (19.8.1). Thus without knowing anything
about the underlying theory of quarks and gluons, we can learn everything
about the anomalous terms in the Goldstone boson action, with the single
exception of the value of the integer n. We will see in Section 22.7 that in
SU(N,) gauge theories this integer equals the number N, of colors, which
in quantum chromodynamics is n = 3.

19.9 Unbroken Symmetries

We have seen how the properties of Goldstone bosons and their low
energy interactions may be deduced from an assumption that the theory
is invariant (or approximately invariant) under a group G spontaneously
broken to a subgroup H. But in applying these methods to the cases where
G is SU(2) x SU(2) or SU(3) x SU(3), we had to take the pattern of sym-
metry breaking, of SU(2) x SU(2) or SU(3) x SU(3) to their non-chiral
SU(2) or SU(3) subgroups, from experiment. In Section 22.5 we shall
show that the SU(3) x SU(3) symmetry for massless u, d, and s quarks
must in fact be spontaneously broken in quantum chromodynamics, but
it is more difficult to show on the basis of quantum chromodynamics
that the SU(2) x SU(2) symmetry with only u and d massless is also
spontaneously broken.” On the other hand, there is an intuitive argument
that their non-chiral SU(2) or SU(3) subgroups are not broken, based on
a conjecture known as the persistent mass condition®®, which states that
composite particles will not be massless if the particles of which they are

* Weingarten?” has used lattice methods to show that whether or not chiral symmetry
is broken, the lightest particle in quantum chromodynamics with massless u and d
quarks must have the quantum numbers of the pion. As we will see in Section 22.5,
the existence of anomalies due to fermion loops in quantum chromodynamics together
with the assumption of quark trapping requircs that some hadron be massless, so
it follows that the pion is massless, which strongly suggests that chiral symmetry is
spontaneously broken.
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composed are massive. Non-chiral symmetries like isospin conservation
are not violated il we give the quarks equal masses, and then if they
were spontaneouly broken we would have the massless Goldstone bosons
formed as composites of massive quarks, in contradiction with the per-
sistent mass condition. In what follows we shall present a proof by Vafa
and Witten® that in gauge theories like quantum chromodynamics those
non-chiral symmetries that are not violated by quark masses can not be
spontaneously broken. This result is of more than academic interest; as we
shall see in Section 21.4, it is possible that the spontaneous breakdown of
electroweak gauge symmetries is described by a ‘technicolor’ theory similar
to quantum chromodynamics, and in testing this idea it is important to
know what symmetries are left unbroken in this theory.

Consider a gauge theory like quantum chromodynamics, with a number
of fermion ‘flavors’ in identical representations of the gauge group. If
all fermions have masses, then the theory will be invariant under all
unitary global non-chiral transformations on the fermion flavors that
commute with the fermion mass matrix. For instance, if n; fermions are
degenerate with a common mass m;y, #; fermions are degenerate with some
other common mass mp, and so on, then this global symmetry group is
Un) x U(m) x.... (As a special case, if there are no degeneracies we have
a global symmetry under U(1)x U(1) x...; an example is the conservation
of baryon number, strangeness, etc. in quantum chromodynamics.) These
symmetries cannot be spontaneously broken.

To prove this, let us consider a general Greens function for r fermion
and antifermion fields.*” In the path-integral formalism this is’

(T { ¥ (¥1) Wk, 06 Wh, ) 21, ) hvac
1
= o [y T e, (1) ik ) vl 1) ], )

X exXp (ifgauge[A] —+ ilpirac [, IPT ;A]) s (19.9.1)

where k1 ... k. and I} ...}, are Dirac spin indices, u; ...u, and v; ... v, are fla-

™ In the original work of Vafa and Witten,*® they first proved the absence of symmeiry
breaking in the case » = 1 with x = y, then observed that the absence of symmetry
breaking in this vacuum expectation value did nol rulc out the possibility of a
spontaneous symmetry hreakdown occurring in other Greens functions, and so went
on to different methods of proof.

' As we saw in Section 15.5, both numerator and denominator are proportional to the
infinite volume of the gauge group, which cancels in the ratio (19.9.1). The presence of
this infinite factor detracts from the rigor of the following arguments, but if we were
to remove it by introducing ghosts then some of the steps below that depend on the
positivity of the action would raise difficulties. One way to dea! with this problem is
to replace the spacetime continnum with a finite lattice of points, in which case the
gauge group has a finite volume, and no gauge fixing or ghosts arc needed.
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vor indices, Igauge[A] is the action for a pure gauge theory, Ipirac [p, 1yt Al
is the action for the Dirac fields in the presence of a gauge field A%(x),
and Z is the vacuum-vacuum amplitude

z = [1Aldplidy"] exp (o] + ipimcly. phidl) . (1992)

It wili be necessary here to work in a Euclidean spac
xq = ix0, y* = ys = iy®, and A% = A4, = iy, all real. (See Appendix A of
Chapter 23.) In this case, the Dirac action is

Ipirac[v, Q’*;A] = ifd3x / dx* TPT [+ My, (19.9.3)

where M is the fermion mass matrix, and P is the Euclidean gauge-
covariant derivative contracted with the Euclidean Dirac matrices

4
P=> (&—it"An)yi, (19.9.4)
i—1

where as usual y4 = iy0. Because the action is quadratic in fermion fields,
we can explicitly perform the integral over these fields

(T {Wuas(61) - Pk ) P] 1 (1) #] () Pvac
1
- f [dA] Det (B + M) exp (il gauge A])

x [(1) + M);llul kol (D + M);rlur ko younl, T permutations| ,
(19.9.5)

where ‘+ permutations’ indicates that we must sum over all r! permuta-
tions of the v fields, with a minus sign for odd permutations, and

Z= [ [4A] Det (D + M)yexp (il guge[4]) - (19.9.6)

The expression (19.9.5) is manifestly invariant under any unitary transfor-
mation on flavor indices that commutes with the mass matrix M. It does
not matter what non-perturbative effects are produced by the functional
integral over gauge fields and ghosts; these fields are inert under the
symmetries in question here, so that the remaining functional integral in
Eq. (19.9.5) cannot break these symmetries.? But for this argument to be
convincing, we must show that the expression (19.9.5) is well defined.

* It is more difficult to show that P, C, and T arc not spentaneously broken in quantum
chromodynamics with massive quarks, because these symmetries act non-trivially on
the gauge fields. Vafa and Witten™ have applied the methods of Ref. 49 to show that
P is not spontancously broken in quantum chromodynamics.
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This is not merely an academic question of mathematical rigor. As
we saw In Section 19.1, the sign that a symmetry is not spontaneously
broken is not just that the ground state is invariant under the symmetry
transformations, but also that the symmetry of the ground state is stable
under small perturbations. If we break the symmetries of M by adding
a small perturbation M, and if the expression (19.9.5) becomes singular
as 6M — 0, then factors of M in symmetry-breaking matrix elements
may be cancelled by the singularities in the matrix elements for M = 0.
Precisely this happens for chiral symmetries, which arise in a symmetry
limit where some of the eigenvalues of M vanish. In this case, as we
approach the symmetry limit of zero mass, the factors of mass in the
numerators of symmetry-breaking expectation values are cancelled by
factors of mass in the denominators of the propagators (P+M) ! wherever
P has zero eigenvalues. For this reason, the arguments here will apply
only to the non-chiral symmetries of theories with mass matrices M whose
eigenvalues are all non-zero.

To set a bound on the matrix element (19.9.5) in this case, note first
that the differential operator (19.9.4) is here antihermitian, so as long as
the hermitian matrix M has no null eigenvalues,  + M has a well-defined
inverse. It is still necessary to show that the remaining integration over
the gauge ficlds in Eq. (19.9.5), including that in Z, does not make this
expression singular when M satisfies the conditions for a symmetry, for
instance that n of its eigenvalues are equal for a U(n) symmetry. As
we shall see, this will insure that when a fermion mass matrix M that
is invariant under some global symmetry transformation is perturbed by
adding a small term M that breaks this symmetry, the change in the
expectation value (19.9.4) under this symmetry transformation vanishes in
the limit 6 M — 0.

It is difficult to show that the coordinate-space Greens functions
Eq. (19.9.5) are non-singular, so let us consider instead the matrix el-
ement for smeared fields

¥, [f] = ] Fx F4(0) P o) (19.9.7)

where f*(x) are arbitrary smooth squarc-integrable functions. In these
terms, Eq. (19.9.5) reads

<T {‘Pul FRVRRER PRTA NS R 24 [g,.]} >VAC
= Zif[dA] Det (P + M) exp (Hgauge[A])

X [(9 + M)Elul,gl b+ M)j_}[ur. o, T PErmutations|
(19.9.8)
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where
w+mﬁﬂzﬂm/fMme+Mmm”ﬂw.(M%)

[n this basis, the fermion propagators for a given gauge field are not only
well defined, but bounded uniformly in A%(x) +

szl

a Img!

(19.9.10)

B+ M)y g

where m, arc the eigenvalues of M, and for convenience we are now
normalizing the functions f;(x) and g;(y) so that

jfﬂﬂﬁumﬁﬁ5/£UMKmfy:1- (19.9.11)

(The summation convention is suspended here.) Furthermore, the weight
function for the average over gauge fields is positive

4 4
Det (I + M) exp (il gauge[4]) = exp (— %/,ﬁx [dx4 ZZ Fsz)

i=I j=1I

% \ﬂ)et [(,':D)2 + M2] . (19.9.12)

With a positive weight function, the average of any function is bounded
by the bound of that function. Using the bound (19.9.10) in Eq. (19.9.8),

t To see this, we may cxpand in the eigenvectors of M
. b
My o = m, (13 ) C: C, = Oub

and, adapting a trick of Vafa and Witten ¥ write Eq. (19.9.9) as

B+ ML, =D e / d'x / dy f5(x) (B +mid i 8'0)
DA / exp(—|ma7) f d*x / dy f4(x) (exp(FT M ,1 £0) 5
4 0

where + is the sign of m,. The matrix c}"c? and the operator (exp(1z D))cx,,: are
both unitary, so

2
S/d“xlf(x)l2 /d“yg(y)l2 =1.

Using this inside the integral yields Eq. (19.9.10).
t In the fermion determinant, we use the fact that Det (f + M) = Detys (I} + M)ys =
Det (— @ + M).

ol [ d*x / &'y F41(x) (exp(FT Bss y18' (V)
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the matrix element is bounded by

}(T {‘Pm FAARRER PATAR SN TEE "PI,[gr]})VAC‘ <r! [Z

1|
(19.9.13)

Thus there are no singularities as the symmetry-breaking terms M in M
g0 10 7ero that could cancel factors of M. To see this more explicitly
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we can use the same methods to show that if we perturb M by a small
symmetry-breaking term 6M, then the term in Eq. (19.9.8) of first order
in 6M is bounded by

(T (¥, L]+~ [£1 L]+ W ) Phvac]

—1

< rr!z (SM)gp] {Z . J | (19.9.14)

|mamb|

so this vanishes when 5M — 0

In the real world nene of the quark masses are zero or degenerate, so it
follows immediately from the above arguments that the U(1) symmetries
like conservation of baryon number, strangeness, etc., are neither sponta-
neously nor intrinsically broken. The other strong-interaction symmetries
like 1sospin or SU(3) are more problematic. These symmetries would be
completely unbroken if the u and d quarks, or u, d, and s quarks, had
equal non-zero masses, but as we saw in Section 19.7, these masses are
not at all degenerate; the isospin and S U(3) symmetries arise because the
quark masses are small, not equal. These symmetries do remain unbroken
if we give two or three quarks equal masses and let the masses become
arbitrarily small, so isospin or SU(3) will be good symmetries in any pro-
cess that is not sensitive to the small quark masses. But not all processes
are insensitive to these masses, because for two or three massless quarks,
the pion or the pseudoscalar meson octet to which it belongs becomes
massless. This is not a problem for isospin, because as we saw in Section
19.5, the pion triplet remains degenerate to first order in quark masses
even though my, # my. For SU(3) the quark mass differences produce first-
order mass differences ameng the pien, kaon, and eta, so that processes
dominated by one-meson poles can show large departures from S U(3).

19.10 The U/(1) Problem

The success of quantum chromodynamics in explaining the pattern of
strong-interaction symmetries seemed at first to be marred by one failure.
As we saw in Section 19.5, the broken SU(2) x SU(2) symmetry of the
strong interactions is a natural consequence of the smallness of the u and
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d quark masses. But the Lagrangian of quantum chromodynamics with
small # and d quark masses also has another chiral symmetry,* the U(1)4
symmetry under transformations

u — expliysOu , d — expliys0)d . (19.10.1)

Such a symmetry if unbroken would, like SU(2) x SU(2), impose a parity
doubling on the hadron spectrum, but no such parity doubling is observed.
On the other hand, a broken U(1)4 symmetry would imply the existence
of an isoscalar 0~ Goldstone boson with a mass compatable to that
of the pion, and this Goldstone boson is also not observed. It is true
that the # meson is an isoscalar 0~ boson, but it is considerably heavier
than the pion, and as we saw in Section 19.7, it is well understood as
one of the Goldstone bosons of SU(3) x SU(3). With the s as well
as the u and d quarks regarded as relatively light, the Lagrangian of
quantum chromodynamics would have a U(1) chiral symmetry in addition
to SU(3) x SU(3), under the transformations

u — expliys@u , d — expliys0)d , s — exp(iyst)s.  (19.10.2)

The spontaneous breakdown of such a symmetry would require the exist-
ence of two isoscalar 0~ mesons: one the #, and the other with a mass
comparable to that of the pion.

This prediction can be made more explicit.>? If we include the transfor-
mation (19.10.2) among the spontaneously broken symmetrics of massless
quantum chromodynamics, then in the presence of quark masses we en-
counter a term (19.7.12):

Prass = —G Mg q = = e~ NWB/Fx 0 o VBB B g (19.10.3)
where again
m, 0 0
My=10 m 0], (19.10.4)
0 0 m

but now B includes a Goeldstone boson field { for the broken symmetry
(19.10.2):

ﬁno + \/LE,,,,O nt K+
B_ - 10 1,0 KO
K~ K9 —y/2n®
F { 00
v 1o ¢ oo, (19.10.5)
V3F: |0 0 ¢
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with Fy the unknown coupling of the U(1)4 Goldstone boson to the cor-
responding current (and the factor /3 inserted for future convenience.)
We can again use the unbroken SU(3) symmeiry to write the vacuum ex-
pectation value of the quark bilinear in the form (19.7.14), and expanding
in powers of the bosen fields, we find a Goldstone boson mass term in
the Lagrangian of the form

v 1 i 2
_ﬁ Tr{B,{B,M,}} = " F2 [4m” (\fn N 7 JV3F; C)

+d(m, + mgntn~ + 4(m, + m)KTK ™
2

+4md[—-1—ﬁ0+—1""??0+ Fr C\
V2 T T BRS)

2
_ 2 F
d(mg +m)K K + dmg [ —4/Z4° a :
+4(mg + m;) s( 37 +\/§F€C
(19.10.6)

The charged and strange meson masses are the same as before, but now
the neutral non-strange mesons have a mass matrix

[ my+m My—my my—my
2F2 2./3F2 J6FrF;

) my—my  myt+mg+4ms  my+mg—2mg
M; =280 2\/5}:72{ 6F72r 3\ﬁF?EFC (19.10.7)

my—my  mytmg—2ms  mytmg+mg
J6FxFy  32FyF; 3F;

with rows and columns listed in the order %, #°, and ¢.
In the limit where m, and my vanish,‘ this has two eigenvectors with
eigenvalue zero:

1 ] 0
ug =1 0 |, Up = —F——=— Fy (19.10.8)
(0) VFR+2F\ 2R
In this orthonormal basis, the mass-squared matrix to first order in m,
and my is

4v (m, + my
2~ uT My, — (;2 ),

ﬂﬂ_

(19.10.9)
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120 (m, + myq)
F14+2F;

b =m; ‘/_v(mu _ 1) (
‘ ) A 2F?

he effect of the off-diaeonal term (19.10.11) is to decrease the prgdnc

A e b AT Rsaly =L “; VWRALL J LS. ANded ) uv AL T

of eigenvalues by a negligible fractlonal amount (m, — my)?/64(m, +mg)?,
while of course leaving the sum of the eigenvalues unchanged, so the
eigenvalues are given to a good approximation by the diagonal elements
(19.10.9) and (19.10.10). Comparing Eq. (19.10.9) with Eq. (19.7.16), we
see that the particle corresponding to the eigenvector u, is the n°. The
other particle, corresponding to u,, has a mass

m, ~ ul Méu, = (19.10.10)

F
my =/ m}, =~ ﬂf——"m < 3my . (19.10.12)
+2F}

Thus a broken U(l)4 symmetry would require a neutral pseudoscalar
Goldstone boson with mass less than ﬁmn, in addition to the pion
itself. It hardly needs to be said that no such strongly-interacting particle
exists." We shall see in Section 23.5 that this problem was eventually
solved by the discovery of non-perturbative effects that violate the extra
U(1)4 symmetry.

Problems

1. Apply the general theory of broken global symmetries to the case
where an SO(3) symmetry group (with generators ¢, t, t3) is sponta-
neously broken to its $Q(2) subgroup (with generator t3). How do the
Goldstone boson fields transform under infinitesimal $O(3) transfor-
mations? (Use the exponential parameterization of the coset space
S0(3)/5S0(2).) Evaluate the covariant derivative Dg, of the Gold-
stone boson field, and of a general field with a non-vanishing value
g for the unbroken symmetry generator r3. What is the most gen-
eral SO(3)-invariant Lagrangian involving Goldstone bosons alone
with no more than two derivatives? Use this Lagrangian to cal-
culate the terms in the invariant amplitude for elastic scattering of

* Note that taking F: >» F, would give the extra neutral scalar a very light mass, but
its interactions would be so weak that it might have escaped detection. It seems
unlikely that a very large ratio of F, to F: could arise in quantum chromodynamics,
but somecthing like this happens in thcories with cxtra ficld vanables that have been
proposed to avoid parity violation by instantons; see Section 23.6.
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the Goldstone bosons to lowest order in their energy. What is the
most general SO(3)-invariant Lagrangian with two non-Goldstone
field factors and at most one derivative? What is the most general
function of the Goldstone bosen field alone (with no derivatives)
that transforms like the three-component of an SO(3) three-vector.
Add this term to the Lagrangian, with a coefficient chosen to give
the Goldstone boson a mass m, and recaiculate the lowest order
amplitude for Goldstone boson scattering,

Consider a theory with an SU(N) global symmetry, spontaneously
broken to SU(N — 1). Suppose we add a small symmetry-breaking
perturbation, belonging to the defining representation N of SU(N).
Taking vacuum alignment into account, what symmetry group is
completely unbroken? What about the case where the symmetry-
breaking perturbation belongs to the adjoint representation of
SU(N)?

Calculate the pion-pion scattering amplitude to one-loop order, tak-
ing account of a finite pion mass.

Derive the ‘Adler sum rule, the analog for the case of pion—pion
scattering of the Adler—Weisberger sum rule.

. Calculate the SU(2) x SU(2) transformation properties of the pion
field £, in the case where the cosets of SU(2) x SU(2)/SU(2) are
parameterized as exp(ié,x,).

. Use Eq. (19.7.31) and SU(3) symmetry to derive the relation (19,7.32).
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Operator Product Expansions

We often find ourselves needing to know how an amplitude behaves when
the four-momentum brought in by one operator and out by another goes
to infinity, with all other e¢xternal lines held at fixed four-momenta. For
instance, we will see in Section 20.6 that the total cross section for the
scattering of an electron by an initial hadron H, with arbitrary hadrons in
the final state, is given by unitarity as a linear combination (with known
coefficients) of the components of the amplitude

f d*x e™** (H|J*(x)J* (0)|H) ,

where k is the four-momentum transferred from the electron to the
hadrons, and J#(x) is the electromagnetic current. In the case of deep
inelastic electric scattering the momentum k that is carried in by one
current operator and out by the other is allowed to go to infinity. Sim-
ilarly, in studying the high momentum limit of various propagators and
deriving corresponding spectral function sum rules in Section 20.5, we
shall encounter the high momentum limit of similar Fourier transforms,
but with the one-hadron state |H) replaced with the vacuum.

If an operator product such as J#(x)J"(0) were analytic in x¥, then its
Fourier transform would decrease exponentially as the Fourier variable &
gocs to infinity. The leading terms in the high momentum limit of the
Fourier transform arise from the singularities of the operator product as
the spacetime arguments approach one another. The study of such oper-
ator products was initiated in 1969 by Wilson,! originally as an attempt
to formulate a substitute for conventional quantum field theory. As has
happened earlier (for instance with dispersion relations and Feynman’s
diagrammatic rules) the effort to bypass quantum field theory led to valu-
able general results, but results that can best be understood as general
properties of quantum field theory.

The operator product expansion will be stated in Section 20.1. The
standard proof of this expansion was given in perturbation theory in
1970 by Zimmerman.? In Section 20.1 we shall offer a non-perturbative
and simpler though less rigorous derivation based on the path-integral

252
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formulation of ficld theory. Section 20.2 will present a different perspective
on the operator product expansion, in terms of the flow of large momenta
through Feynman graphs, which will lead us to a perturbative proof.

There are several aspects of the operator product expansion that make
it particularly useful for drawing consequences from theories like quantum
chromodynamics. One such property, discussed in Section 20.3, is that the
functions describing the singularities in this expansion have a momentum
dependence governed by renormalization group expansions, so that in
asymptotically free theories they can be calcutated at large momenta
using perturbation theory. Another aspect, shown in Section 20.4, is
that these functions exhibit the full symmetry of the underlying theory,
unaffected by possible spontaneous symmetry breaking. Applications will
be considered in Sections 20.5 and 20.6.

20.1 The Expansion: Description and Derivation

Wilson! hypothesized that the singular part as x — y of the product
A(x)B(y) of two operators is given by a sum over other local operators

AX)B(y) = D _FeP(x— ) C(y). (20.1.1)
C

where FAB(x — y) are singular c-number functions. Dimensional analysis
suggests that FZB(x— y) behaves for x — y like the power dc —d4 —dp of
x — y, where dp is the dimensionality of the operator O in powers of mass
or momentum. Since dp increases as we add more fields or derivatives
to an operator O, the strength of the singularity of FAB(x — y) decreases
for operators C of increasing complexity. The remarkable thing about
the operator product expansion is that it is an operdator relation; that
is, in applying it to any matrix clement {f|4(x)B(y)|a), we get the same
functions FAB(x — y) for all states |«) and |B).

It is the decrease of the singularity in Eq. (20.1.1) with operators C(y)
of increasing complexity that makes this expansion useful in drawing
conclusions about the behavior of the product A(x)B(y) for x — y. The
simple power-counting argument above is modified by renormalization
effects; the expansion (20.1.1) must be formulated in terms of operators
renormalized at some scale u, and then u appears along with x — y in
the coefficient function FAB(x — y). We shall see in Section 20.3 that
in asymptotically free theories FAB(x — y) does behave like the power
de —d4 —dpg of x — y suggested by dimensional analysis only up to a
power of In (x — y)?. Even in more general theories, it is plausible that the
singularities associated with various operators C(y) will decrease with the
complexity of the operators.
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The corresponding statement in momentum space is that for kK — oo,

/ d*x e 4(x)B(0) — Z B(k) C(0) (20.1.2)

and correspondingly
[ —ik'xT 7r7AB ol () N1 1
), |&V.1.5)

f Ar eyl 0 N0 FEAY
AX)BV = ) U iK)
C

where VAB(k) and UZP(k) are functions of k* that for large k decrease
increasingly rapidly for more and more complicated terms in the series.
We are going to derive a generalized version of the Wilson expansion,

in nrhinh the momenta carried hu any nnmhpr of inrafnrc g0 o 1ﬂﬁn1hr

1% 40 LilWw SR ENAWEELEL

together. For this purpose, let us consider a Greens function for local
operators Aj(x;), A2(x7), etc. whose arguments approach a point x, as
well as other local operators Bi(y), B2(y2), etc. with fixed arguments:

(T{Ay(x1), Az2(x2), ... Bi(»1), Ba(y2) ---})o

=[ [Hd@(z)} ay(x1) az(x2) - - bi(y1) ba(y2) - - -explil [¢])
F4

(20.1.4)

where the lower-case letters ¢ and b indicate replacement of the field
operators in the 4s and Bs with the c-number fields ¢. Now surround
the point x with a ball B(R) of radius R which is much larger than the
separations among the x;, x», etc. but much smaller than the separations
between x, y,, ya, etc. Since the action is local, it may be written as

- / &z 2(z) + ] iz #(z) . (20.1.5)
z€B(R) z¢B(R)
Eq. (20.1.4) may then be put in the form
(T{Ai(x1), A2(x2), ... Bi(y1), B2(y2) - })o

_/[ I1 d¢/(z] bi(y1) ba(y2) - eXP(LB{R) ‘5’/}(2))

¢B(R), ¢

X ] [ I dgb;(z)] a,(x1) ax(x2) . .. exp (i fZEB(R) g’(z)) . (20.1.6)

zeB(R). ¢

in which the path integral over the fields inside the ball 1s constrained by
the boundary condition that the fields merge smoothly at the ball’s surface
with the fields outside the ball. Aside from this boundary condition, the
path integral over the fields inside the ball is completely unaffected by the
behavior of the field outside the ball, so the integral over the fields inside



20.2 Momentum Flow 255

the ball may be expressed in terms of the values and derivatives of the
fields on the surface of the ball, which in turn may be expressed in terms
of the fields and their derivatives extrapolated from outside the ball to
the interior point x. If we express this integral as a series in products”
o(x) of the c-number fields and their derivatives extrapolated to x, then
the coefficients can only be functions U"“’A2 (x1 — X, X2 — ..) of the

[ o o i am aw e w aa ot

LUUI—UJ.IICILU UlllUlU[lLUb DIIILG I.llU PUllllb J/] yz, ¢tc. are aﬂ fal UUlDldh LhC

ball B(R), the exclusion of this ball in the action for the fields outside the
ball has no effect in the limit R — 0, so in this limit Eq. (20.1.6) becomes

(T{A1(x1), A2(x2), ... By(31), B2(¥2) .. .})o — / {Hd@(zﬂ

X bi(y1) ba(y2)... exp (lf 3(2))
P Z Ug"Az"“ (x1 —x, x2—X, ...} o(x)
0

=Y UL (xy — x, X3 —x, ..) (T{O(x), Bi(y1), B2(32) o
0

(20.1.7)

for x;, x,, etc. all approaching x, where O(x) is the quantum-mechanical
Heisenberg-picture operator corresponding to o(x). In particular, by
Fourier transforming with respect to the y variables and multiplying with
appropriate coefficient functions, this yields

(BIT{A1(x1), Aa(xa), - o) = > U™ (x1 = %, x2 = x, ..) (BlO(x)|o)
Q

(20.1.8)
for arbitrary states |«) and (f|. Because this applies for arbitrary states, it
is the operator product expansion in a generalized version:

T{Ai(x)), Aa(x2), ..} = Y UG (xp —x, X3 — x,...) O(x) . (20.1.9)
Q

20.2 Momentum Flow’

We shall now consider the simplest example of the operator product
expansion: the asymptotic behavior of an (n+2)-point Feynman amplitude

* In order for the cocflicients in this series to be finite, these products must be renor-
malized by multiplication with suitable infinite factors. This will be made clearer in
the derivation presented in the next section.

* This section lies somewhat out of the book’s main line of development, and may be
omitted in a first reading,
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in the theory of a single real scalar field ¢(x) with mass m and interaction
Lagrangian density — Lg¢*, when a large four-momentum k flows in
one line and out another, with all other external lines held at fixed
momentum. This will Jead us to a perturbative proof of the leading term
in the operator product expansion in this case, but our real purpose here
will be to gain some insight into the way that the flow of large momenta

1’1’\0-!‘\11("1’\ Favamion dinorarmie lande e~ sl oy wr e m o e A

UIOUgn Coyiiiian Qiagraiis 1ieaas 1o this CXpainsioi. Al appc‘:ndix to this
chapter will discuss the extension of these results to the general case.

Let us define I'(k;p; ' -p,) as the sum of all connected graphs for
the n-particle scattering amplitude, whose external lines carry incoming
momenta k, p—k, and outgoing momenta py - p,, where p = py + p2 +
*+ -+ pp. (It will be convenient to specify further that I'(k; p; - - - p,) includes
propagators for the external lines with momenta k and p — k, but not for
those with the fixed momenta p; - - - p,.) We wish to show that in any finite
order of perturbation theory, for k — oo,

Llkspre pn) = Uge(K)Fye(py - pa) + O(K ), (20.2.1)

where Uya(k) is a sum of terms of order™ &~ that is independent of
p1-pn and of a, and Fu(p;---py) is the amplitude for n ¢ lines with
insertion of a single ¢? vertex, times a suitable renormalization constant
Z 4 to make it finite. Because Fy:(py - - py) is a matrix element of the
renormalized operator (¢?)g = Z¢z¢>2(0), Eq. (20.2.1) corresponds to the
statement that the leading term in the operator product expansion for
k — oo ist

[ e T{orMIBRONc — Uplh) (#*O))r (202.2)

In assessing the asymptotic behavior of Feynman amplitudes, we must
take account of the fact that there are parts of the range of integration in
momentum space where some of the internal lines carry momenta of the
same order as the external line momenta that are going to infinity, while
other internal lines do not. The contribution to I'(k;p; - - p,) from the
part of the region of integration where the lines in some subgraph % have
momenta of order k has an asymptotic behavior of order kP?#, where Dy

** Throughout this chapter, whenever it is said that an amplitude is of order k%, it should
be understood that for k* = xn® where kK — oo with »#° a fixed generic four-vector, the
amplitude approaches k* times a sum of powers of Inx.

" The subscript C on the time-ordered product here indicates that we are including only
connected graphs. We have dropped the superscript ¢¢ on V42, because in this section
we are concerned only with the operator product expansion for two ¢ fields. These
fields are themselves renormalized, because we implicitly include counterterms along
with radiative corrections for the propagators of the lines carrying momenta k and
r—k
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is the dimensionality of the subgraph .&, calculated according to the rules
of Section 12.1. If & has m external lines that connect it to the rest of the
graph as well as the two external lines with momenta k and p — k, then
from Eq. (12.1.8) we have Dy =4 -2 —m—4=—2 —m. (The term —4
arises from the two propagators of the lines with momenta k and p — k,
which we have specified are to be included in I'(k;p1---pu)) Thus the

asymptotic behavior of T is dominated by the part of the momentum-space

integral where the large momentum k flows either through the whole graph
or through some subgraph, whichever has the smallest number of external
lines.>

For n = 0 this is always the whole graph; that is, the dominant part of
the integral comes from the part of the region of integration where every
line carrics a momentum of order k, giving an asymptotic behavior of
order k2. In this case the only operator in the operator product expansion
contributing to this matrix ¢lement is the unit operator, C = 1. This term
is excluded here for # > 0 because for the present we are limiting ourselves
to connected graphs.

For n = 2 the dominant contribution comes hoth from the whole graph,
and from subgraphs in which the two external lines with momenta k and
p — k are connected to the other two external lines by a bridge consisting
of two internal lines,T" giving an asymptotic behavior of order k=% For
n > 4 the dominant contribution comes only from subgraphs in which the
two external lines with momenta k and p — k are connected to the n > 2
other external lines by a bridge consisting of two internal lines, again
giving an asymptotic behavior of order k™.

The analysis of the cases n = 2 and n > 4 is complicated by the fact
that a general graph may contain several of these two-particle bridges.
Let us first consider the case n = 2. We define I(k,k’,p) as the sum of
all graphs contributing to I'(k;py,p2) (with p; = k', po = p— k) that
are two-particle-irreducible, in the sense that the two external lines with
incoming momenta k and p — k cannot be disconnected from the two
external lines with momenta &’ and p — &k’ by cutting through any pair
of internal lings. Then I'(k; k', p — k') — I(k,k’, p) consists of graphs that
can be disconnected in this way, and may therefore be written (see Figure
20.1):

Tk, p— k) — I(k, K, p) = ] K Tk K" T K p— k). (20.2.3)

(Like I'(k;k/, p— k'), the kernel I(k, k', p) includes propagators for the lines

' The possibility m = 1 is excluded because the symmetry of this theory under ¢ — —¢
rules out graphs or subgraphs with odd numbers of external lincs. The possibility
m — O is excluded because I' is defined to arise only from connected graphs.
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Figure 20.1. Diagrammatic representation of the integral equation (20.2.3). The
cross-hatched disks marked I' represent the sum of all connected Feynman
diagrams with the indicated external lines, while the cross-hatched disks marked
{, which are divided by a vertical line, represent the sum of all connected diagrams
for which the lines on the left cannot be separated from those on the right by

cutting through any pair of external lines.

Figure 20.2. Tree and one-loop graphs for the kernel /{k, k', p) in the theory of
a scalar field with interaction ®*.

with momenta k and p — k, but, to avoid double counting, not for the
lines with momenta &’ and p — k’.) The Feynman diagrams for I(k,k’,p)
to order g2 are shown in Figure 20.2.

To evaluate the behavior of the right-hand side of Eq. (20.2.3), let’s
first consider the asymptotic behavior of the kernel I(k,k’, p) when k — oo
with k' and p fixed. This is dominated by the region of momentum
space in which all internal lines carry momenta of order k, which makes
a contribution of order k™4, because in any other region the subgraph
consisting of internal lines that carry momenta of order & would have
more than four external lines, and hence would make a contribution that
decreases faster than k=% Tt follows that differentiating I(k,k', p) with
respect to k' or p would reduce the asymptotic behavior of this kernel by
a factor of k™. Hence for k — oo with k" and p fixed, we have

Ik, k', p) — Io(k), (20.2.4)

where I.(k) is a function only of k, of order k™ *.

Unfortunately, we cannot simply replace I'(k,k’,p) in Eq. (20.2.3) with
this asymptotic limit, because however large kK may become, the integral
will receive a large contribution from values of k' of order k. To deal with
this complication, we shall now employ a trick, based on mathematical
induction. In lowest order I'(k;k’,p — k') is given by a single vertex with



20.2 Momentum Flow 259

two attached bare propagators

o Y — ig
ik k', p—k') Rk T ) (p — K ) (lowest order) ,

for which it is easy to verify an asymptotic behavior of form Eq. (20.2.1).
Let us therefore assume that Eq. (20.2.1) for n = 2 holds up to some given
order N in g — that is, that up to this order, the asymptotic behavior for
k — oo takes the form

L(k;k',p—k) = Up(k)Fa(k',p — k') + O(k™), (20.2.5)
and try to verify this behavior to the next order. In order to ¢liminate the
contribution to the integral in Eq. (20.2.3) from values of &k’ of order k,
we rewrite Eq. (20.2.3) as

L(k;k',p—k)=1(k,K',p)
+ / 4" Tk, K, p) [T 3K p = k) = Up K" F ek, p— )
+F g2, p — ) f &K 1 K", p)U (k") (202.6)

Since I'(k,k’,p) is at least of first order, we may use Eq. (20.2.5) in the
right-hand side of Eq. (20.2.6). Hence in the second term on the right-
hand side, the part of the region of integration where k” is of order k
gives a contribution that vanishes like k—*+*~5 and may therefore be
neglected compared with the part where k” remains finite, which yields
the convergent integral

(k) f ' [T K, p—K) — UpK")F (K p— K)
Further, since the dominant part of [ d*k" I(k,k", p)U (k") comes from
the region of integration where every internal line of the graphs for
I(k,k”, p) carrics a momentum of order &, differentiating this integral with
respect to p would lower its asymptotic behavior by a factor of order
k~!, so asymptotically I(k,k’,p) may be replaced in this integral with
I{k,k'y = I(k,k',0). Therefore for k — oo, Eq. (20.2.6) becomes
T(k;K',p— k') — Fya(K,p — k) f B (kKU (K"
) {1+ [ a7 [D0K,p =) = Uk Fyet',p = k)] }.20.27)

Let us therefore define Uy (k) and Fyp(k',p— k') to order N+ 1 in g in
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terms of these functions in lower orders of perturbation theory, by
U a(k) = Cl (k) f &K 1k, KYU (), (202.8)
Fuk.,p—k)y=C™!
X {1 + [d4k” {F(k”;k’,p — k') = Uga(K"YFyo(k', p — k")] $ , (20.2.9)
LY ") L ! : 4
where C is a constant that can be chosen as we like. With these definitions,
Eq. (20.2.5) follows from Eq. (20.2.7).
It will be convenient to choose the constant C so that Fq%(k’, p—k') has
the value unity at some renormalization point &' = k(x) and p = p(p),

where k(y) and p(p) are standard four-momenta of order g Then

C=14+ / Tk (), plu) — k() — f PR Up(k).  (202.10)

Using Eq. (20.2.5), we see that the divergences in the two integrals in
Eq. (20.2.10) cancel.
Eq. (20.2.9) may now be written

F¢z(k’,p — k)= Zy {1 + fd“k” Tk"; K, p —k’)} , (20.2.11)
where

—1
Zy = [1 + f A" Tk k(p), p(,u)—k(pl))] . (20.2.12)

We can think of Z,. as the renormalization constant for the composite
operator ¢, defined in such a way that the operator Z,:¢* has the finite
two-particle matrix element Fy:(k,p—k), with the value unity for k = k(u)
and p = p(u).

It is not particularly convenient to calculate Ug(k) or Fy(k,p — k)
by using Egs. (20.2.8) and (20.2.11). Rather, it is simpler to calculate
I'(k;k,p — k'), and read off Uy(k) or Fyik,p — k) by comparison with
Eq. (20.2.5). By multiplying the function (12.2.26) with the product of
propagators for the lines with momenta k and p — k, we see that, to
one-loop order

—i —

(2m)*(k? + mz)] [(275)4((13 —k)? +m?)
g 1 m* 4 4x(1 — x)u?/3
X{l_@./o dx{ln( m? — sx(1 — x) )

2 _ 2
+1n(m2+4x(1—x)#2/3)+1n(m +4x(1 — x)p /3)+,.,}:

m? — tx(1 — x) m? —ux(1 — x)

T(k;k',p—K) = [ ] [—i(Zn)“ g}

(20.2.13)
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where s,7, and u are the Mandelstam variables
s=—p*, t=—(k—KyY, u=—(p—k-k),
i is the renormalization scale and g the corresponding renormalized

coupling, defined as the Feynman amplitude at s = r = u = —4?/3. This
has the asymptotic behavior

T(k; k', p— k) — — 8

(2m)*(k?)?
g 1 m? + 4x(1 — x)u/3
x{l—ﬁ—;— ./0 dx{ln( T = %) )
2 4 4x(1 — x)u?/3
+21n (’"m‘;;;(zx(l’?‘; )/ ) +} . (202.14)

To order g?, this agrees with Eq. (20.2.5) if we take

ig
(2m)3(k?)?

g /[ m? + 4x(1 — x)u?/3
X{l 167‘52 -/0 dx1n( m2_|_k2x(1--x) + »
(20.2.15)

Uqu(k) =

and

I Y & m? +4x(1 —x)?/3\ |
Fatop—h=1-3%5 [ ax ln( T A ) T 20216)

We have here chosen the renormalization point k(u), p(y) for the operator
¢? to be related to that for the coupling constant g in such a way that
p(p)’ = 4u?/3, so that Fyu(k,p— k) = 1 when p* = 4,%/3.

Now consider the case where the number n of external lines with fixed
momenta is greater than two. In accordance with our earlier discussion, in
the limit k¥ — oo, the leading graphs for I'(k;p, - - - ps) are those in which
the two external lines carrying momenta k and p — k can be disconnected
from the n e¢xternal lines with fixed momenta by cutting through a pair of
internal lines:

T(k:py- - pu) — / &K 1K, p)T(K 3 py- - D). (202.17)

As before, we cannot simply use the asymptotic limit of the kernel I (k,k’, p)
for k — oo on the right-hand side, because this integral receives important
contributions from k' of order k. We deal with this complication by
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rewriting Eq. (20.2.17) in the form

C(k;py--pn) — /d4k’1(k,k’,p) [F(k’;pl“-pn)— Uga(K')F g2 (m ---pn)}
+ Fppop) [ K10 kD) UpK),  (20218)

where by mathematical induction, we suppose that up to some given order
N

Ltk pye - pn) = Ug(k)Fg2(p1- -~ pn) (20.2.19)

: ; 5 .
with correction terms of order 1/k°. We can now us

together with Eq. (20.2.8) to rewrite Eq. (20.2.18) as

Ck;py- - pn) Ioo(k)/d4k’ [T :ps - p) = Ugelk) Fge(pr o)
+ Fyp(pt -+ pu) [Uga(k) = Clo(k)]

This agrees with Eq. (20.2.19) to order N + 1, provided we take
CFy(p1- " pa) = /d“k’ {F(k’;ps---pn)— quz(k’)Fqsz(m-“pn)]
or, using Eqgs. (20.2.10) and (20.2.12),
Fy(prpn)=Zy [ & T pr-pa) (202.20)

This just says that Fy(p; - - - ps) is the matrix element of the renormalized

operator Z (pquz, so that Eq. (20.2.1) corresponds to the operator product
formula (20.2.2). Note in particular that U (k) is the same coefficient
function whatever value » or the momenta p; -- - p, may take, as was to
be shown.

Strictly speaking, the (¢%)g operator is not the leading term in the
expansion of the product of two ¢s. There is also the operator unity, which
has lower dimensionality than (¢?)g, but was excluded from Eq. (20.2.2)
because (as indicated by the subscript C) we are excluding disconnected
graphs. As mentioned earlier, the graphs for I'(k) with n = 0 (and p* = 0)
are dominated for kK — oo by the region of integration where all internal
lines carry momenta of order k, and Uj(k) is the contribution of this
region.

Higher-dimensional operators and motre general theories will be con-
sidered in an appendix to this chapter.
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20.3 Renormalization Group Equations for Coefficient Functions

As mentioned earlier, one of the aspects of the operator product expansion
that makes it so useful is that the momentum dependence of the coefficient
functions is governed by renormalization group equations. This is because
they arise from limiting values of sums of Feynman graphs (such as
Io(k) in Section 20.2) in which all relevant momenta are going to infinity
together, so that masses may be set equal to zero without introducing
singularities. Nevertheless the operator product coefficient functions do
not obey simple scaling laws, because of renormalization effects: the
functions are multiplied with scale-dependent renormalization constants,
and depend on scale-dependent renormalized couplings.

Consider the operator product expansion for a Greens function
Tsp(k,k’, p) in which the incoming momenta (collectively labelled k, with
sum p) of a set £ of lines all go to infinity together, with the set £ of
remaining lines having fixed outgoing momenta (collectively labelled &',
with sum p):

Top(k, K, p) = > Uhik)Fgp (K. p). (20.3.1)
T
The function Fg #(k’, p) is the matrix element of a renormalized operator
Or = Y0 Zoe ', so its coefficient U(";(k) in the product of fields corre-
sponding to the lines £ is proportional to Z; v, as well as to Z,,, the
direct product of all the renormalization matrix factors for the field (or
composite) operators in the set /. Hence

d : %
pUe =2 e UG = 3 Ubve o+ BlR)7- Ut (2032)
# {! ﬂjl’ g
where
3 J
#azﬂ” = yeeZpp #@Zw = yoerZewy s (20.3.3)

{N ({)h‘

and for simplicity we assume a single renormalizable coupling g,, defined
as the value of some Feynman amplitude at a renormalization point with
momenta of order p, with udg,/du = p(g,). In order to be able to
use dimensional analysis, we multiply all operators by powers of u in
such a way that they become dimensionless. This has the effect that the
components of the Z and y matrices are also dimensionless, with the
values in the limit of zero coupling given by

Vep —> 5;«(1N({y) , Yo - 5@@!N(C{)) s (2034)

where N(C) is the dimensionality of the operator ¢, and N(¢) 1s the total
dimensionality of the set Z of fields (the sum of s+ 1 for each field, where
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s = 0 for scalar and massless gauge fields, s = 1/2 for Dirac fields, etc.)
Also, dimensional analysis tells us that for k¥ = xkn* with p* fixed, the
amplitude can depend on x only through the ratio x/y, aside from a factor
k444 arising from the integrals used in defining the Fourier transform.
The solution of Eq. (20.3.2) is then of the form

F L RN 4—4n{f |- [ ]-| v N
U@UC”) =K Y L M cxXp — '}’(glu) uﬂbr(gm, n)
2101 s gy
J _
x !M{ exp ( / L (8) H , (20.3.5)
H .0
where M denotes the ‘y-ordered’ nroduct. that 18 each term in th expan-
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sion of the exponentials rearranged so that the factors are in
decreasing u from left to right.

This gives especially simple results where g, approaches a fixed point
g+ for 4 — oo. The contribution of large us to M{exp(f* y(g,)du/p)} is
then a matrix factor k@) that because of the p-ordering appears on the
left. Thus Eq. (20.3.5) becomes

Uf,;(:cn) = A4t} Z [K"/(SA)]
&0

G o [K—?(g-)] , (20.3.6)

I o.¢

where % is either a constant or a sum of powers of Ink, depending on the
rate at which g, approaches g..

Asymptotically free theories like quantum chromodynamics are a special
case of particular physical interest. Here the fixed point is at g. = 0, and,
according to Eq. (20.3.4), near this fixed point the y matrices go as

y(g)ﬂw —_ N(f)aﬂw -|- gZ Cegr o, ?(g)(f)(fr’ - N((D)(S(r)(gr -|- g2 Cogv - (2037)
Also, if we write the renormalization group equation for the coupling in
the form
then

% d 8
/ jugj — —% In g2 + constant .

Using this in Eq. (20.3.5) yields the asymptotic behavior

- thc ” 2
Ué(;cn) —s AN =N(0) Z |:(g£) 8 f’b] %ﬂgy |:(g£) 8n ('/bjl ’
£0 e oo
(20.3.9)
where %, is a constant matrix, equal to %,(0,n) times constant factors

that are not calculable in perturbation theory because they come from the
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parts of the integrals in Eq. (20.3.5) where g, is not small. For x — o0,
the behavior of the coupling constant is g2 — 8n%/blnx, so Eq. (20.3.9)

may also be written
8 2p b , -8 2 b
U(&‘;‘(Kn) _y pATAHNO)-NO) Z [(ln K) nte/ j' .@"g, |:(1n K) nle/ jl ,
0,0

FaRul &
(20.3.1M
1 !

darN ot AT

where %%, is another constant matrix. The condition for Egs. (20.3.9) and
(20.3.10) to be valid is that g2/8n% < 1, but it is not necessary for Inx
to be so large that only one eigenvector of the ¢ matrix contributes to
the asymptotic behavior. Eq. (20.3.10) will be used to study deep inelastic
scattering in Section 20.6.

20.4 Symmetry Properties of Coefficient Functions

The usefulness of the operator product expansion is greatly enhanced by
the fact that the coefficient functions exhibit the full symmetry of the und-
erlying theory, even where part or all of that symmetry is spontaneously
broken.* To prove this, we consider the operator product expansion for
a product of renormalized operators (;(x) that transform linearly under
some symmetry with conserved current J#(x), in the sense that

Uox, 0,01y, 0] = =83 (x ~ ¥) > 1:;05(y.1) , (20.4.1)
J

where 1;; 1s a constant matrix. We can write the operator product ex-
pansion as the statement that, as xj,---x, approach x together (with
X1 — X, - %, — x all having fixed ratios)

BT {0 (x0) - Ci(enl ey = 30Uy = x, -+ xw = x){BIOx) )

(20.4.2)
Now suppose that the symmetry with current J# is spontaneously broken,
with the corresponding Goldstone boson n satisfying

FpH

(2mp/2\/2p8

Then, as we saw in Section 19.2, the matrix element of the operator
product between states with an additional low energy Goldstone boson is

1
(BIT{C: (x1) -~ Oy (xn)} M) = (232 /2P0 F

0
x [ s ABIT(O ) O, T, (2044)

(VAC|JH(0)|n) = (20.4.3)
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because only the Goldstone pole term survives in the integral on the
right-hand side of Eq. (20.4.4). Using Eq. (20.4.1) and the conservation of
the current, this can be put in the form

1

(ﬁ'T{@il (xl) . @;n(xn)”na) = _(2:”:)3/2 2p2_F

X3St BI040 05 (%) Oy (xm)} i) . (204.5)

r=1 jp

Now apply the operator product expansion to both sides of this formula.
In the limit as xi - - - x5 all approach x together, we find

1
(2m)3/2,/2pOF

3 UR et = x, e — X)) = —

r=1 j i
But as a special case of Eq. (20.4.5), we have
1

{B10i(x)|na) = N, ; (Bl (X)) - (20.4.7)

Since all this holds for arbitrary states (f| and |x), the coefficients of
(B0 (x)l2) on both sides of Eq. (20.4.6) must be equal, so

n
0= = 3 U i+ x4 Y S UF ).
i

r=1 j,

o (20.4.8)

This can be restated as the condition that U;' ™(x; — x, --x, — x) is

invariant under the symmetry generated by ¢, with the action of this

symmetry on the lower index contragredient to its action on the upper

indices, in the sense that the matrix ¢ is replaced with —tT. This is the

same relation that would be expected if the symmetry generated by J#
were not spontancously broken.

20.5 Spectral Function Sum Rules

Spectral function sum rules are constraints on the spectral functions of
various currents.” We will start here with a set of currents J# that are
arbitrary, except for being Lorentz four-vectors, and then later consider
mote special examples. To define their spectral functions, we use Lorentz
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invariance to write

> 8%p — pn){VACITHO)N) (VACITH(O)IN)* = (2n)~0(p")
N

x (" =20 /07 ) P (=p") + PP~ . (20.5.1)

in analogy with Eqs. (19.2.19) and (19.2.20) or Eq. (10.7.4). Taking the
Fourier transform and using the completeness of the states |N), this can
be written

(E) T3 Ovac = [ di

x [ oS0 — (60 + PR 12) 648 Au(xip®) . (2052)

where A, (x;u?) is the function defined in Eq. (5.2.7):

Afx: ) = (2—15; [Ep00%562 + e 2053)

Assuming the currents to have been chosen as Hermltlan operators it 1s
immediately apparent from Eq. (20.5.1) that p (,u ) and pac (,uz) are posi-
tive Hermitian matrices. Also, taking x* to be spacehke (for which A (x)
1s even) and using translatlon invariance and causality in Eq. (20.5.2), we
see that Pug }(M ) and p (,u ) are also symmetric.

Now, for x — 0 with x? > 0, the function A(x; x?) goes as

1 1
Bxii) = s + i {l (”‘ ;_/_) 2}4—0@9), (205.4)

where y 1s the Euler constant. The first few terms in the vacuum expecta-
tion value of the expansion of J§(x) J4(0) are thus

1 [ e 4%
{(JE(x) Jp(0)}vac — T3 [(Z;)z (igx ] fd ngs') (1}(# )/ 1 )
“mhe / 9 PO+ gy | (P50 + 10
+0(In x?) (20.5.5)

Hence if some linear combination > ap Cap{JH(x) J§(0))vac of the two-
point functions has a singularity as x — 0 which can be shown to be
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weaker than of order 1/x* we have

e [ @l (p500)+ Agudyid) =0, @056)
o
while if its singularity is also weaker than 1/x?, then
S e [ i o’y =0 (205.7)
8
and
> ca [ i Gl =0. (20.5.8)
af '

Eqs. (20.5.6), (20.5.7), and (20.5.8) are known respectively as the first,
second, and third spectral function sum rules.

Let us see how this works out in the case of greatest interest, where the
JE(x) are conserved currents in a theory like quantum chromodynamics.
The conservation of current tells us that (20.5.1) vanishes when contracted
with p,, so pg})(—pz) must be proportional to 8(p?), and therefore au-
tomatically satisfies the third spectral function sum rule (20.5.8) for any
Caft: With’pg?(—pz) oc 3(—p?), it can receive contributions only from the
terms | B;} in the sum over states in (20.5.1) consisting of a single massless
particle B, of zero spin, which in practice means a Goldstone boson. For
such one-particle states, Lorentz invariance gives

iFua P
(VACUZ(0)|B,) = —————. (20.5.9)
a (2r)*2/2p}
Using the relation 8(p® — [p|)/2p° = 6(p°)5(—p?), we see that
Pii(—p") = 8(—p) D FuaF (20.5.10)
il

In contrast, pi?(-pz) is non-vanishing only for —p? > 0.

To be more specific, consider a renormalizable asymptotically free gauge
theory with a number N of massless (or nearly massless) spin 1/2 fermions
belonging to the same representation of the gauge group. Quantum
chromodynamics fits this description, with N = 3 if we neglect the masses
of the u, d, and s quarks, and with N = 2 if only the # and d are taken
to be massless. As we have seen in Chapter 19, such a theory has an
SU(N) x SU(N) global symmetry” under which the left- and right-handed

* There is also a U(1) symmetry which is vectorial, in the sense that it acts the same
way on the left- and right-handed parts of the light fermion fields. This is just the
conservation of light quark number, and will not concern us here. The axial U(1)
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parts of the light fermion fields transform under the representations (N, 1)
and (1, N), respectively, where ‘N’ and ‘1" denote the defining and identity
representations of SU(N), respectively. The currents of the left- and
right-handed SU(N) symmetries are

Jia(x) = =iy (1 4+ y5)ap(x) ,  Tpalx) = —ip(x)y*(1 — y5)datp(x)

(20.5.11)
where the 4, form a complete set of Hermitian traceless matrices acting on
the ‘flavor’ index that distinguishes the N light quarks, as in Eq. (19.7.2) for
N = 3. These currents have dimensionality (in powers of mass) +3, so the
coefficient of an operator ¢ of dimensionality d(¢) in the expansion (20.3.6)
of the product of two currents is expected (apart from logarithms) to have
a singularity of order x~$+4®) as the separation x of their arguments
goes to zero. Thus, if the expansion of a linear combination of products
of currents contains the operator unity, then the corresponding linear
combination of spectral functions goes as x~®, and therefore in general
satisfies neither the first nor the second spectral function sum rule; if
the lowest-dimensional operator in the vacuum expectation value of this
expansion is a fermion bilinear with zero or one derivatives, then the
corresponding linear combination of spectral functions goes as x> or x2,
and therefore satisfies the first spectral function sum rule but generally
not the second; and if the lowest-dimensional operator in the vacuum
expectation value of this expansion is a fermion bilinear with two or
more derivatives or a fermion quadrilinear then the corresponding linear
combination of spectral functions is less singular than x=2, and therefore
satisfies both the first and second spectral function sum rules.

In order to tell which operators appear in the expansion of the product
of two currents, we need to classify the SU(N) x SU(N) representations
contained in the product, and to tell whether these operators have non-
vanishing vacuum expectation values, we have to ask which of them are
invariant under the subgroup of SU(N)x SU(N) that is not spontaneously
broken. To answer these questions, we note that the currents J¥ (x) and
Jh(X) transform under SU(N) x SU(N) respectively according to the
(4,1) and (1, 4) representations of SU(N) x SU(N), where 4 and 1 are
the adjoint and identity representations of SU(N).

Also, we shall assume that the subgroup of SU(N) x SU(N) that is
not spontaneously broken is the vectorial SU(N)y whose currents are
J{a(x) + Jg,(x), as is the case in quantum chromodynamics and (as we
saw in Section 19.9) a wide range of other theories. We also assume
that parity conservation is not spontaneously broken. These unbroken

symmetry of ‘the Lagrangian, which acts differently on the lefi- and right-handed parts
of the light fermion fields, is broken by the quantum effects discussed in Section 23.5.
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symmetries have the consequence that

P 16(1) = Plaa ks = S P02 + o 1)) (205.12)
and
P(Ll; Rb(# )= P%Lb(# ) = dap [PV)(#Z) _szll}(.uz)} ; (20.5.13)

where 5apr)(,u ) and Jgpp Al }(,uz) are the spectral functions defined by
(20.5.2) for the currents

Tpe = —i@y*hap , T4, = =iy ysdap (20.5.14)
with generators 4, and A,ys, respectively. Also
Frop = —Fpap = dapl, (20.5.15)

where Eq. (20.5.9) here reads
iFaab pf[;

(2P /2p%

PLa Lb(}u )= PRa Rb(# )= _pLa Rb(# )= —P% Lb(ﬁiz) = Fzﬁ(#z)aab
(20.5.17)

It will be convenient to consider separately the products of currents of
like and unlike chirality.

Like Chirality: The products J¥ (x)J},(0) and J,(x)J},(0) transform re-
spectively as the (4 x4, 1) and (1, A x A) representations of SU(N)xSU(N),
where A and 1 are the adjoint and identity representations, respectively.
For any group, 4 x A contains the identity representation, so the unit op-
erator appears in the expansions of these products, with equal coefficients
proportional to d,. Hence only the traceless parts of the operator product
can satisfy spectral function sum rules. But as we have seen, the spectral
functions have no traceless part, so the like-chirality spectral functions
cannot satisfy any sum rules.

Unlike Chirality: The products J{ (x)J},(0) and Jg,(x)J},(0) both
transform as the (A, A) representation of SU(N) x SU(N). The unit
operator (and operators like Fy,, F.”) are of course SU(N) x SU(N)
singlets, and therefore cannot appear in the expansion of these products.
Non-derivative fermion bilinears like @y transform according to the (N, N)
and (N, N) representations of SU(N) x SU(N), so they also cannot appear
in the expansions of the products of currents with unlike chirality. The only
gauge- and Lorentz-invariant fermion bilinears with a single derivative
involve the gauge-covariant derivative operator y#D, acting on y, which
the field equations tell us vanishes. Thus these spectral functions satisfy

(VAC|J4,(0)|By) = (20.5.16)

so that (20.5.10) reads
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both the first and second spectral function sum rules, which here read

fdu LAGEY ARSIV & (20.5.18)
and
f di? “) pf;)(uz)] =0. (20.5.19)

In the original work on spectral function sum rules,” the SU(2) x SU(2)
spectral functlons were assumed to be sharply peaked at Values of u that
for pV (u? ) could be assumed to be m, = 770 MeV, and for p D(42) was
taken to be at an unknown mass m4. That is,

PDudy ~glod —mdy,  pPud) =gt —ml).
Eqgs. (20.5.18) and (20.5.19) then read**
& _ 8 _p
2 2 Fﬂ
mp mA
and
g8 = gi-

Eliminating the unknown g4, this gives a formula

—1
1 1
2
P A

Originally in 1967 this result was used together with a formula® gp
2F; 2m2 (whose justification was unclear but which agreed with experimen-

tal measurements of the rate of the decay p — e™ + ¢7) to derive the
result

my = ﬁmp.

The status of a possible a; resonance with the right quantum numbers to
couple to the axial-vector current (that is, 1+ with T = 1 and C(a}) = +1)
at around a mass /2m, remained unclear for many years, but a resonance
with these quantum numbers is now reasonably well established at a mass
1230 MeV = 1.6m,,. It seems preferable today to take the ratio my/m, as
an input, using either the value /2 suggested by certain models’ or the
experimental value 1.6, and use it to predict g,.

** Taking the SU(2) generators A, to be the Pauli mairices, as in Eq. (19.7.2), we have
F=F, =184 MeV.
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Since 1967 not only g, but the whole vector spectral function pg)(‘uz)
of the SU(3) x SU(3) current in quantum chromodynamics has been cal-
culated with precision for a wide range of energies from the measured
cross section for the process e™ + e — y — hadrons, using the fact
that the electromagnetic current is a linear combination of SU(3) cur-
rents. The axial-vector spectral function p A)(,u ) of the SU(3) x SU(3)
currents can in principle be measured in the process ¥ + ¢ —hadrons,
since the charged components of the currents (20.5.14) are the same as
the hadron currents to which the leptons are coupled. However, although
antineutrino—electron scattering has been studied experimentally, the low
rate of these reactions precludes the use of colliding beams, so that the
electron target is essentially at rest. In order to reach typical hadronic
energies of, say, 3 GeV in the center-of-mass frame, it would be necessary
to have neutrino energies of (3GeV)?/2m, ~ 10 TeV in the laboratory
frame. Intense beams of neutrinos with energies this high will not be avail-
able for many years, if ever. Fortunately, it has become possible to study
the spectral functions in the process = — v + hadrons, but the hadron
energies here are strictly bounded by m, = 1.7 GeV. It is also possible
to use effectlve chiral Lagrangians to calculate the spectral functlons at
small ,u and to use quantum chromodynamics to calculate pV —p A)
large u?, where it is quite small. A careful 1993 analysis by Donoghue and
G010w1ch8 of all these inputs shows that the spectral function integrals
are indeed dominated by the p and a; resonances, and gives results that
are consistent with the first and second spectral function sum rules.

20.6 Deep Inelastic Scattering

The renormalization group coupled with the operator product expansion
found one of its most important applications in the analysis of deep
inelastic lepton—nucleon scattering. We will first review the early phen-
omenological models for these reactions, and then see how the operator
product expansion justifies these models and provides corrections to them.

Consider a process in which an electron of four-momentum k collides
with a nucleon N of four-momentum p, yielding a electron of four-
momentum k" and a general unobserved hadron state H, over which we
sum. To calculate the spin-averaged inclusive cross section, we shall need
to know the quantity

(my /pN )W (g, p) = 2254(pa p— ){HITHO)N)Y(H|J'(O)N)",

(20.6.1)
where J* is the electromagnetic current (divided here by a factor ¢) and
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q = k — Kk’ is the momentum transfer from the electrons to the hadrons.
Lorentz invariance tells us that W#*(¢, p) must be a linear combination of
pert, p'at, qtpY, gtq’, and n*, with coeflicients that can only depend on
the two independent scalar functions of g and p: g*> and v = —q - p/mn.
Current conservation requires that g, W* = g, W#*" =0, so W must take
the form”

W

W (a.p) = (q <

)Wl(" a%)

1 Pq P4 2

—(pt = g (pr — g

o (P =g ) (e W) (2062
Also, Eq. (20.6.1) shows that W#* = W', so W and W are real, and
WH is a positive matrix, so W; and W, are positive. The differential cross
section in the nucleon rest frame is

o = (i)
deV - d} MOTT
where dQ = sinfdfd¢ is the solid angle into which the electron is

scattered, and (do/dQ)moTT is the differential cross section for relativistic
elastic scattering by a point spinless particle

(W2 + 2w, tan’(0/2)) (20.6.3)

4 2
(d") == Cf’s4(9/ 2) (20.6.4)
dQ/vorr  4EZ sin®(0/2)
with E, = —k-p/my the incident electron energy in the nucleon rest frame.
One might expect that for fixed values of —p}, = —q? + 2myv + m3,

the differential cross section should fall off very rapidly as ¢> — o,
because it should be proportional to the square of the form-factor for
the transition from the nucleon to whatever particles or resonance have
mass near —p%. It was therefore somewhat of a surprise that, two
years after the 1966 opening of the Stanford Linear Accelerator Center,
a SLAC-MIT collaboration headed by Friedman, Kendall, and Taylor’
discovered that in fact v W5(g?, v) is roughly constant in g2 for fixed values
of w = 2myv/q* > 1. (To be specific, Wa(q?,v) for the proton was fitted
to the curve vWa(q% v) =~ 0.35 — 0.004w for E, = 10, 13.5, and 16 GeV,
and 0 = 6° and 10°. These experiments were insensitive to Wj, because
tan’(10°/2) = 7.6 x 1073.) Note that in this limit —p} — (0 — 1)g* — o,
which is why this is called ‘deep-inelastic’ scattering.

At about the same time Bjorken!® was using current algebra to argue
that Wy(q?,v) and Wi(g% v) satisfy scaling laws: for g° and v going to

* The same formalism can be used for other deep-inelastic lepton scattering processes,
such as v, + p — 4~ + H, except that since parity is not conserved in these processes
there is an additional term in W*'(g,p) proporlional to €7 p,g,. For simplicity, we
will limit ourselves here to deep-inelastic electron scattering,
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infinity together,
yWa(v,q°) = Fa(w),  Wi(v,q*) - Fi(w), (20.6.5)

where again @ = 2myv/q%. A more intuitive explanation was given a little
later by Feynman.!! He supposed that in deep-inelastic scattering on a
highly relativistic nucleon of momentum p, the nucleon behaves as if it
consists of ‘partons’ of various types labelled i, each with a probability
Z i(x)dx of having momentum between xp and (x + dx)p. Then for each i,

f dx Fix)=1. (20.6.6)

The condition that the nucleon has total momentum p yields the additional
sum rule

1
/ Y Fix)xdx=1. (20.6.7)
0
For elastic scattering of an electron (with m, neglected) from a parton of
four-momentum xp, we have xzm}"v = —(q + xp)* = —g*> ~2vmyx + xzmi,,

so v = q°/2myx. The inelastic cross section in this model is thus™

do d’o 5 f1 q 0 q°
- > [ (142 an? (-) 5 (v~
dQdv (dQ)MOTT;QI'/O S G 2m3, x* a2 Y 2myx
(20.6.8)
where Q; is the charge of the ith type of parton in units of e. (The

tan’(6/2) term here is appropriate for a ‘Dirac’ parton, with magnetic
moment ¢Q;/2myx.) Comparing this with Eq. (20.6.3) gives

: 1 1
Wi(v,q%) = ZQ:’Z/O dx Fi(x)0 (V — fn%;) = e ZQ;‘ZE"} (5) .

(20.6.9)
2, _ | 2 1 g g’ wy 2
Wi =3 50 [ axZixgh o (v p )= 3w,
] N
(20.6.10)

** This may be derived from the formulas (8.7.7) and (8.7.38) for Compton scattering
on a spin 1/2 particle of four-momentum p and mass m in a general Lorentz frame.
For this purpose, it is vseful to note that in the gauge vsed to derive these formulas,
for which the initial and final real polarization vectors ¢, and ¢, satisfy ¢* = ¢’ = 1,
erp=¢ -p=e-k=¢ k' =0, the polarization sum gives

Z (e ) e,)z _~ mi(k - k')? n 2mi(k - k")

” T &P EpE D)
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This agrees with the Bjorken scaling rules (20.6.5), with
1 5 1
= = 2gr | = 20.6.11
P(w)= 0320 16 (206.11)

and
Fi(w) = (0/2mn)Fa(w) . (20.6.12)

Eq. (20.6.12) was originally derived by Callan and Gross.!? It agrees with
experiment within about 10-15%.

On the assumption that the proton and neutron respectively consist of
two u and one d or one u and two d quarks, plus any number of neutral
partons, Egs. (20.6.11) and (20.6.6) yield the sum rule for W»

jvg] d p
/1 Fa(w)— ZQ,_{M - (20.6.13)

The integral receives a large contribution from large w, where F» is difficult
to measure. If we also assume that the total momentum of the nucleon is
equally shared among three quarks (and no neutral partons) then in place
of Eq. (20.6.7) we have the stronger relation [ %#(x)xdx = 1/3 for each
quark, which with Eq. (20.6.11) yields

e do o 1/3 p
/1 Py 55 ZQ: ‘{ 29 n

This integral 1s easier to measure, and turns out to disagree badly with
the sum rule, showing that a large fraction of the nucleon momentum is
carried by the neutral partons.

None of the above phenomenology depends on any specific field theory.
It was the operator product expansion that finally provided a way of ap-
plying an underlying field theory to deep-inelastic scattering. In particular,
the operator product expansion made it clear that one needed an asymp-
totically free field theory to explain the scaling assumptions (20.6.5) (and
to calculate the corrections to scaling). This asymptotically free theory
was ultimately provided by quantum chromodynamics.

To apply the operator product expansion to deep-inelastic scattering,
first Fourier transform Eq. (20.6.1). Using translation invariance and the
completeness of the hadron states |H), this gives

(o /PRIW(4,) = 55 42 [z NS @ MO L (206.14)

The asymptotic behavior of W*‘“ (g,p) as g — oo 18 therefore related to the
singularity of the operator product at x — 0,

Feynman diagram calculations of the coeflicient functions in operator
product expansions refer directly not to the expansion for matrix elements
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like those appearing in Eq. (20.6.14) for W#', but rather to matrix elements
of the two-point Greens function

1 -
(mN/p?\,)Tﬂ"(q,p) = m %/d‘lz e E(N|T {J'(z), JH(0)} IN) .

(20.6.15)
We can express this in terms of the structure functions for T#¥, defined
by the analog to Eq. (20.6.2):

P‘, v
TH(q,p) = _(% _ nﬂv) Tr(V,qz)

+m—1}2\{(p“ -2 e) (- T Ty, 0610

The connection between the T.(v,q%) and W,(v,q%) (with r = 1,2) is
provided!® by the dispersion relations’ for fixed ¢2:
2 _ 1 N 2
Tr(vsq ) = EWP‘(_vaq )+ EWr(v,q )

1 = r_f 2y g !l
VL[ g P = W)
21 S v —y

(20.6.17)

with the denominator in the integrand interpreted as a principal value
function. The functions W,(v,q?) vanish except for v > ¢/2my, so the
dispersion relations may be rewritten

1 1
T,(v.q") = s Wil(—v.4") + 5 W:(0.4°)
1 o0

1 1

+
vi+y  y—y

& WAy ) ( ) . (20.6.18)

21 Jg2/2my

We can categorize the operators that contribute to the operator product
expansion for T, according to the irreducible representation of the Lorentz
group to which they belong. The only Lorentz-covariant functions of
a single four-vector p* with p> = —m} fixed are proportional to the
symmetric tensors p#!.--pt so the only operators that can contribute
to the spin-averaged nucleon expectation value are symmetric traceless
tensors (%) *, the subscript i distinguishing any different operators with
this tensor structure. (For reasons that will become clear, we are using the
same label i to distinguish operators that we used in the parton model to

' For ¢* = 0, these may be derived exactly as in the derivation of the dispersion relation
(10.8.16) for forward photon scattering. The derivation for fixed g° # 0 is more
difficult.
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label types of partons,) These operators have matrix elements of the form
3 Z (NIOYPIN) = (my/pR)| p -+ p" — traces | (Ow),  (206.19)

where the (Ug) are constant coefficients. Such an operator makes a
contribution to T#"(q,p) proportional to s factors of the four-vector p,
and hence makes a contribution to Ty(v, g%) and T»(v, g%) proportional to
v and vS72%, respectively. (We are dropping terms involving p?, because
such terms will be suppressed by factors of m% /g% or m% /p- q.) If we
ignore logarithmic corrections, then in an asymptotically free theory the
2 dependence of the coefficients is of the forms (g?)(~#+6—#s)=9/2 and
(q*)H6-ds0—s+2/2 regpectively, where d(s,7) is the dimensionality of
the operator 0.1 Using v oc qzcu, we see that the contributions of an
operator (U to the structure functions are asymptotically of the forms

Ti vs(q2)(2—d(5,i)—5)/2 o ws(q2)(2—f(8-i))/2 (20.6.20)
and
Yot o v (@) dsN=972 oo gy3=) ()22 (20.6.21)
where (s, ) is the ‘twist’ of the operator 'y, defined as'4
(s, i) = d(s,i) — s . (20.6.22)

We see that the dominant terms in T and vT» for ¢> — oo with fixed @
are contributed by operators of minimum twist. Also, Eq. (20.6.18) shows
there are no terms in T,(v,q°) of odd order in v, so the only operators @
that can contribute here are those with even s.

The symmetric traceless tensors of rank s with minimum dimensionality
are the operators

(Ost) pyoo. = @2 /D Ppy(, Di -+ Diywg (20.6.23)
and
(O = (2728 Fy o Dy - Dy Fy 1y » (20.6.24)

where f labels quark flavors; D, is the gauge-covariant derivative; and
the brackets indicate a sum over permutations and subtraction of trace
terms for the enclosed spacetime indices. (The symbol < indicates half
the difference of the derivative acting to the right and left. We take
this difference of derivatives, because their sum would vanish in any

' The —4 in the exponents arises from the integral over z in Eq. (20.6.14), and the +6 in
these exponents is the dimensionality of the two electric current operators. The terms
—s/2 and —(s — 2)/2 serve (o compensate for the powers of ¢* already in v’ and v*~2,
respectively.
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matrix between states of equal four-momenta.) These operators have
dimensionality 3 + (s — 1) = 4 4+ (s — 2) = 2 + 5, so they all have twist
7 = 2. Thus an infinite number of operators contribute for g> — o, all
of which give contributions to T7 and vT, that depend on @ but only
logarithmically on ¢%. Asymptotic freedom thus confirms Bjorken scaling,
but only up to logarithmic corrections. Keeping only operators of twist
two, we see that (as anticipated in our notation) for each s there is indeed
one operator for each parton type, with i running over quark types f
(lumping quarks and antiquarks together) and also a value i = 0 for the
gluon.

Now let us consider the logarithmic corrections. The asymptotic behav-
ior of the coeflicient functions in an asymptotically free theory is governed
by Eq. (20.3.9). As discussed in Section 10.4, when we ignore electro-
magnetic radiative corrections no renormalization factors are needed for
the electromagnetic current, because these currents are conserved. Thus
the matrix ¢, in Eq. (20.3.9) vanishes. The matrix cq ¢+ has no elements
connecting operators of different Lorentz transformation type, so that in

the notation we are now using, cy gy = dswCir(s). Thus Eq. (20.3.9) takes
the form
N 8nle(s)/b
Ti(v,q*) = Y [(gﬁ/g%) ] {0g), (20.6.25)
sif )
o Snzc(s}/b
yTa(v,q) = Y 0" By [(gﬁ/g‘}) ].(@W-), (20.6.26)
sif i

where o/ and 4 are constants appearing in the coeflicient function for
the operator ¢/ in the operator product expansion of the product of two
electric currents, Z2 is a particular value of ¢ at which we choose to define
the coeflicient functions, b is the constant in the one-loop renormalization
group equation (20.3.8) for the strong coupling constant g,, and (Cy) is
the constant coeflicient in the matrix elements (20.6.19).

The operator product expansion coefficients are independent of the
particular process in question and unaffected by quark trapping, so we
can calculate the coefficients .o/ and #; by considering a fictitious simpler
process, the scattering of an electron by a free quark of flavor f. The
renormalized operators ;; may conveniently be defined so that the one-
gquark matrix elements of the operators (20.6.23) and (20.6.24) are given
by the tree approximation:

(—1)%

(f,6'1C51" 0"y = S (Ry ) p - pldpdype, (206.27)

(f,a'|0alf"a"y =0, (20.6.28)
Averaging Eq. (20.6.27) over ¢’ = ¢” and comparing the result with
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(20.6.19) vields

. ,_nﬂ Hiph2 .. pls — § r(_l)giT {(—_iﬁ-l_mf)n{m Hz2 ... uc}}
{Oss)y o0 PPt = O T o yuipt e pt s

so that (for even s)
(Usg)sr = by /my (20.6.29)
and
(Cs0)p = 0. (20.6.30)

With this definition of the operators /g, at a renormalization momen-
tum scale /2 which is large enough for the operator product expansion
functions to be calculated using the tree approximation, these functions
can be derived from the tree-approximation formulas for the electron-
quark scattering cross section, Retracing the parton-model derivations of
Eqs. (20.6.9) and (20.6.10), we see that W, for an electron scattering on a
quark of flavor f is given in the tree approximation by#

vWy s = (my/mp)Q36(w — 1), (20.6.31)
Wis = Q30(w — 1)/2m; . (20.6.32)
Inserting these results in the dispersion relations (20.6.18) yields, for w = 1,
Q% My 1
Tis= — 6.33
Lf 2rimy my @? — 1’ (20.6.33)
207 o2
—=f_ L
v = el (20.6.34)

results that may also be obtained directly from the Feynman graphs for
electron—quark scattering. Comparing the coefficients of " in Egs. (20.6.33)
and (20.6.34) with those in Eqs. (20.6.25) and (20.6.26) at the renormal-

ization point g = /2 and using Egs. (20.6.29) and (20.6.30), we find
that
i0? ' 2
dy= 2 ="V (20.6.35)
2n i1

with the gluon charge Qg of course taken as zero. To repeat, even though
these values have been derived for electron—quark scattering, «/,; and %
are factors in the operator product expansion of two electric currents, and
therefore do not depend on the state in which we calculate the expectation

* The factor (my/my) is inserted in Eq (20.6.31) because v 1s defined as —q - p/my
instead of —q-p/my, while it is W>/m?, rather than W, /m that appears in Eq. (20.6.2).
Eq. (20.6.32}) then follows from Eq. (206 10). The qudnh]y w may be written in a
mass-independent way, as @ = —2g - p/g*.
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value of this operator product. So we can use Eq. (20.6.35) in Egs. (20.6.25)
and (20.6.26), and find

8nle(s)/b
T~ o 0'@ (@) e, @063
5ij )
im _ 8nlc(s)/b
v Ta(v, g°) — TN "1} [(gﬁ/gf) } (Usj) . (20.6.37)
sif i

Now let us at last return to the structure functions W.(v,g%). We note
that the coefficient of @° = (2myv/g%)* in T(v,4%) is given by Eq. (20.6.18)
as

—2 q2 e r . —1—s —1—s U)q
E (2mN) '/t;z/sz dv'y Wr(v &q ] dw w Wr m 9q .

Comparing with Egs. (20.6.36) and (20.6.37), we find

f do o 1T W, (2 a ) 2ZQf {( g5/ gf)gﬂ%(wb]_(@sﬁ s

ij
(20.6.38)

na? 872e(s)/b
/ do o v W (261 ,q) —*mNZsz [(gé/gg) ],WSJ')'
ij

ij
(20.6.39)
The W, satisfying these equations may evidently be expressed in a manner
similar to the equations (20.6.9) and (20.6.10) of the parton model

oq

Wi (—- 2) — ZQ, Zi(1/w,q%) (20.6.40)

sz

cF 20.6.
VW2 (2mN,q) W ;Qlfl( /wsq)a ( 0 41)
where .#; is a parton distribution function, now defined by the moment
equations

/] dx x* 17 (x, ¢ =3 Z [(gq )gﬂ C{s)/b] ; (O . (20.6.42)

In partlcular we see that asymptotlc freedom implies not only a corrected
version of Bjorken scaling, but also the Callan—Gross relation (20.6. 12)
between W, and W>.

There is an elegant reformulation of the moment equations (20.6.42)
due to Altarelli and Parisi!® that has become widely used in studies
of deep-inelastic scattering. Note that Egs. (20.6.42) together with the
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renormalization group equation (20.3.8) imply the differential equations

1 1
@ g | XTIFilna) = g5 ) el [0 dx X" Fi(x.47)
i

(20.6.43)
These equations, together with the ‘initial’ condition at the renormalization
ooa2
point /

1
/ dx x*VF(x, 1) = Loy, (20.6.44)
0

have a unique solution, so they can be used instead of the moment
equations. Now, Eq. (20.6.43) is satisfied by the solution of the differential
¢cquation for #;:

d 1 4
qzd—"@ an? Zf 2Py (x) Fi(y.q4°)., (20.6.45)

where the matrix function Pj;(z) is subject to the conditions
1
/ 2 LP(z) dz = —dnlei(s) (20.6.46)
0

(The factor 472 is conventional.)

The matrix c;;(s) was calculated in quantum chromodynamics by Georgi
and Politzer'® and Gross and Wilczek.!” They assumed that there are N
flavors of quarks that are sufficiently light to be treated as massless, while
quarks of all other flavors are treated as very heavy and integrated out,
so that they can be ignored except for their effect on the strong coupling
constant. Their results in the basis provided by the operators (20.6.23)
and (20.6.24) are

1 1 1 1 1] N
Cools) = 32 {C1 lﬁ—s(s—l) T G+ 1)+ 2) +[Zr] '*”E"CZ} ’

=2

(20.6.47)
¢jols) = %CZ Liz +S(S+1§(S+2)] : (20.6.48)
cop(s) = Sizcg [Si o+ (S?; 1)] , (20.6.49)
e p(s) = 312C [1 = +1 +4Z ]@f,, (20.6.50)

where 0 and f denote the operators (20.6.24) and (20.6.23), respectively;
the constants C1 and C; are defined by Eqs. (17.5.33) and (17.5.34) (with
only a single quark flavor included in the trace in Eq. (17.5.34}); N 1s the
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number of quark flavors; and C; is defined (using the notation of Section
17.4) by
faty = C38% 1. (20.6.51)

In the realistic case of an SU(3) gauge group with quarks in its defining
representation 3, these numbers are

Ci=3, C,= 1, Cy= 1. (20.6.52)

fadh—

These rather complicated results become simpler when expressed 1n
term of the Altarelli-Parisi functions. It is straightforward to check that
Eq. (20.6.46) is satisfied if

4 { 14x*

Pro = O0¢s | = +26(1 —x)| , 20.6.53
1f' = Off {3 ((l—x)_,_) ( )] ( )

Po=xt—x+ ; , (20.6.54)

412
Py = 3 I:; — 24 x| . (20.6.55)
1—x X I1 N
(20.6.56)

where in an integral over x up to x = 1, 1/(1 —x)+ is defined by

fx) _ fx—=f1)
(1—x)+_ [—x

. (20.6.57)

For each s there is an obvious (N — 1)-fold degenerate cigenvalue of the
matrix ¢(s), equal to the coefficient of d7¢ in Eq. (20.6.50):

2

R 1
1— 4% - 20.6.5
s(s+1) + ,Z:% t]’ ( 8)

1
g2 O

¢(s, 1djoint) =

with eigenoperators given by all independent linear combinations of the
operators (20.6.23) with cocflicients ay satisfying ¥ ; a; = 0, which belong
to the adjoint representation of the unbroken global SU(N) symmetry
group of quantum chromodynamics with N quark flavors. In addition for
each s there are two eigenoperators belonging to the singlet representation
of SU(N), given by linear combinations of the operator (20.6.24) and
the sum over f of the operators (20.6.23). These eigenoperators and the
corresponding eigenvalues can be found by diagonalizing the 2 x 2 matrix:

cools) Cof (S)N

crols) c(s,adjoint) | - (20.6.59)

(8)singlet =
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For s = 2 this matrix takes the form

NC2/67£2 NC3/67£2
C(2)s.ir1glet = C2/37E2 C3/3:rc2

This has one zero eigenvalue, corresponding to the linear combination
of 0y and 3, (05‘}’ that is equal to the energy-momentum tensor, which
like J# is not renormalized. The other eigenvalue of the matrix (20.6.36)
is given by its trace, NCy/6n® + C3/3n3. Now, the minimum of the
eigenvalues of ¢;;(s) for a given s must be at least as large as the minimum
of the eigenvalues of ¢;{(s’) for any §' < s, because otherwise for sufficiently
large ¢ the integral (20.6.42) would eventually become larger for s than for
s', in contradiction with the fact that this integral is a strictly decreasing
function of s. Because the minimum eigenvalue for s = 2 is zero, we
can conclude that all of the other eigenvalues for s > 2 are positive. In
fact, they are all positive-definite, because there are no unrenormalized
operators for s > 2. Hence strict Bjorken scaling occurs only in the
extreme limit where g7 — 0, where only the contribution of the encrgy-
momentum tensor survives. The prediction of violations of strict Bjorken
scaling have been confirmed experimentally by exhaustive studies of deep-
inelastic electron—nucleon and muon—nucleon scattering.

(20.6.60)

20.7 Renormalons’

Since the beginning of quantum field theory theorists have wondered
whether the perturbation series for physical matrix elements converges,
and if it does not, then what can be done about it? Very early in the
modern period Dyson!® observed that the number of diagrams of nth
order typically grows as n!, which suggested that the perturbation series
has zero radius of convergence.

There is a well-known technique known as a Borel transformation!®
for improving the convergence of a power series whose nth order term
grows as n!, either to make the series converge, or at least to improve the
behavior of the series so that it can be used as an asymptotic ¢xpansion
for a larger range of coupling constants, For a given series

F(g) =Y fng" (20.7.1)

we consider the related series

B(z) =) faz"/n!. (20.7.2)

* This section lies somewhat out of the book’s main line of development, and may be
omitted in a first reading.
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If f, grows no faster than n! then B(z) will generally have at least a finite
radius of convergence. The question is, can we recover the original series
(20.7.1) from the resummed series (20.7.2)? Using the familiar formula

oG
/ exp(—z/g) 2" dz = nt g™
0

we see that, at least formally,
gF(g) = fo exp(—z/g) B(z)dz . (20.7.3)

Singularities of B(z) anywhere in the complex plane limit the radius of
convergence of the series (20.7.2), but this is not an insuperable problem
if’ these singularities are off the positive real axis. To calculate F(g) using
Eq. (20.7.3) we need B(z) only for real positive values of z less than or
of order g, which can be obtained from the power series (20.7.1) if the
singularities of B(z) in the complex plane are all at distances from the
origin much greater than g. Even if a few poles z, z5, etc. have moduli
of order g or less, we can calculate B(z) out to values of z of order g by
using the power series for (z — z1)(z — z3) - - - B(z), but for this purpose we
have to know where the poles are.

Singularities of B(z) on the positive real axis are much worse, for they
invalidate Eq. (20.7.3). The contour in this integral may be distorted to
avoid singularities on the positive real axis, but then we have an ambiguity:
do we distort the contour above or below the singularity?

This section will show that some of the singularities of the Borel
transform B(z) are associated with solutions of the classical field equations
known as instantons, while other singularities, known as renormalons, are
associated with terms in the operator product expansion. In quantum
chromodynamics 1t is the renormalons that obstruct the use of the Borel
transformation to sum the perturbation series.

It was Lipatov?® who in 1976 showed that some of the singularities
of the Borel transform B(z) are associated with the existence of classical
solutions of the field equations. Consider a function F(g) defined by a
Euclidean path integral:

F(g) = / [d¢] exp ([, g]) - (20.7.4)

(The use of Euclidean path integration is discussed in Appendix A of
Chapter 23.) The coefficients in the power series (20.7.1) are given by

fn= 21m /[dtb] }{dg g " lexp (I, g])
1
= omi / [d¢] f dg oxp (I[¢,g] — (n+1)Ing),  (207.5)
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where § denotes the integral counterclockwise over a closed curve in the
complex g plane surrounding the point g = 0. For very large n, it is
reasonable to suppose that the integral is dominated by the point ¢, g,
where the argument of the exponential in the last line of Eq. (20.7.5) is
stationary in both ¢ and g:

ol [, gnl
~1vhonl =0, 20.7.6
360) | omg, 0T
ol [¢n, g] _n+1 . (20.7.7)
38 lg—g, En '

For instance, suppose that I [¢,g] is the action for a massless scalar field

I.g] = —% / Bibdip d*x — % f & d*x (20.7.8)

the sum running over the Euclidean coordinate directions 1, 2, 3, 4. Then
the field equation (20.7.6) reads

Upn = §gndn - (20.7.9)
We will see that g, is negative, so the solution has
dulx) = (—gn) " u(x) , (20.7.10)
with x(x) the g-independent solution of the equation
Oy =—1x. (20.7.11)

The condition (20.7.7) tells us that

1 n+1
LY PN
50 [ 4 61 -

or in terms of the rescaled field (20.7.10)

_ 1 4. 4
g, = 24(n+1)/d x 1t (20.7.12)

At this stationary point the action (20.7.8) becomes

Hgmand = —5 [ndsndis— 5 [otatx = [ gtats
(

=—n—1. 20.7.13)
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Evaluating Eq. (20.7.5) at the stationary point then gives for n — o0™*

fn= gn_n—l exp (I(¢n, gn]) =(n+ 1)n+l (_‘2‘% / x4 d4x) —n—1

1 ity
znl|—— 4 gt T
n( 24[;( dx) | (20.7.14)
The leading singularity in B(z) is therefore a pole at z = z;, where
_ 1 4 g
z] = —ﬂ/x d*x . (20.7.15)

Because this is negative, it does not prevent us from carrying out the
integration in Eq. (20.7.3). To calculate the pole position (20.7.15), we
note that the field equation (20.7.11) has the solution

4./3a
1= iyl (20.7.16)
where r = (x;x;)!/2, and a is an arbitrary parameter. This solution of the
field equation 1s an elementary example of the ‘instanton’ solutions to be
discussed in Section 23.5. (These are called instantons because instead of
being concentrated along a worldline they are concentrated near a point
in spacetime — in this case, the origin.) Fortunately the pole position

does not depend on a:

PV L P 20.7.17
z) = na/o Ly ne. (20.7.17)
We see that the perturbation series for B(z) can be used in Eq. (20.7.3) if
g < 162 If g/16n? is of the order or greater than unity, we may still be
able to calculate B(z) from the perturbation series for (z + 16n2)B(z).
We will see in Section 23.5 that there are instanton solutions in non-
Abelian gauge theories like quantum chromodynamics, but these also
yield relatively harmiess singularities of B(z) on the negative real axis.
The real problem in quantum chromodynamics is with a different class
of singularities, known as renormalons.”! These were first discovered
through the realization?? that single 2n-th order diagrams, like that shown
in Figure 20.3, can make individual contributions that grow like n!, and
hence according to Eq. (20.7.2) may lead to additional singularities in B(z).
In this particular case the singularity is known as an infrared renormalon,

" Here the symbol ‘=" should be interprcted to mean ‘asymptotically equal up to factors
of constants and powers of n.” These factors arise from the factor \/12z#n in Stirling’s
formula for {n + 1)1, from the ratio of {n + 1}! and n!, and from the integral over
the fluctuations of g and ¢{x) around thc stationary point. Since we are not going
to calculate the factors from the last source, there is no point in keeping track of the
factors from the first two sources either,
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V\O«,\O’\’\O

Figure 20.3. One of a class of N-loop Feynman diagrams that grow as N'!. Solid
lines are fermions; wavy lines are gauge bosons,

as it arises from virtual momenta that are much smaller than those used to
define the running quantum chromodynamics coupling g,). Fortunately,
it 1s possible to use the operator product expansion to locate the infrared
renormalons, without having to look at individual Feynman diagrams.

For a simple but important example, consider the sum H;‘E(q] of all
vacuum diagrams in quantum chromodynamics with insertions of four-
vector currents J£ and J; carrying a four-momentum ¢ into and out of
the diagram. (I1#'(g) gives the hadronic contribution to the electroweak
vacuum polarization, and its imaginary part yields the cross section for
eT—¢~ and electron—antineutrino annihilation into hadrons.) As we saw
in Section 20.5, this receives contributions that go as ¢ (the Fourier
transform of x7%) from the operator 1, contributions that go as ¢~ from
the operator F&'F,,, contributions that go as ¢~* from four-fermion
operators, and so on. (For instance, the contribution of the operator
F[?" Fy,, arises from diagrams like Figure 20.3, with a momentum much
less than g flowing through the chain of bubbles.) Dimensional analysis
tells us that these momentum-dependent factors must be accompanied
with vacuum matrix elements proportional to A% A4, A® etc. But if
we calculate Feynman diagrams using a running coupling defined at a
scale u 3> A, where the coupling constants are small, then according to
Fq. (18.7.7)

12n
2= 2 20.7.1
A° = pfexp ((33—2nf)0c5(,u)) , (20.7.18)

where 5y is the number of quark flavors with mass much less than p.
Operators of dimension d > 0 would make a contribution in the operator
product expansion with the coupling-constant dependence

d 6nd
A” oC exp ((33 — 2nf)as(y)) . (20.7.19)
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In quantum chromodynamics, perturbation theory yields a series in powers
of «; = g?/4n rather than g, so we would write Eqs. (20.7.1) and (20.7.3)
in terms of o:

Fos) = fa0rf (20.7.20)

osF(os) = []m exp(—z/us) B(z) dz . (20.7.21)

The presence of terms in I1#" with coupling-constant dependence (20.7.19)
indicates that B(z) must have singularities (not necessarily poles) at

_ bnd
C(33=2n) "

These are on the positive real axis, and make the integral (20.7.21) am-
biguous. Thus Borel summation cannot be used to deal with low-energy
effects in quantum chromodynamics.

The fact that diagrams with small virtual momenta impede the use
of perturbation theory is of course nothing new. As we saw in Section
20.2, the whole point of the operator product expansion is to separate the
parts of Feynman diagrams where every line carries a large momentum,
which in asymptotically free theories can be calculated using perturbation
theory, from the contribution of the parts of Feynman diagrams through
which small momenta flow, which cannot be calculated perturbatively.

2 (20.7.22)

Appendix Momentum Flow: The General Case

In this appendix we shall consider the asymptotic behavior of an amplitude
in a general renormalizable quantum field theory when the momenta of
any set of two or more external lines become large, taking into account
operators containing arbitrary numbers of field factors and derivatives,
with dimensionality up to some limit N. To deal with this problem we
shall have to introduce a more compact notation than that of Sections
20.1 or 20.2. A letter £, /', etc. will denote a set of external lines i
of specified types entering or leaving a Feynman diagram or part of a
Feynman diagram. A letter k, &/, etc. will denote the set of four-momenta
k; of such lines, subject to the condition that their sum has some fixed
value p. The amplitude Tsz(k, k', p) is the sum of all graphs with a set £ of
incoming lines carrying momenta k and a set /' of outgoing lines carrying
momenta k’, including the final bare propagators for the set # but not #’.

As shown by the power-counting theorem?® quoted in Section 12.1, the
part of the region of integration where the momenta of order k flow only
through a subgraph with externa!l lines # and ¢’ makes a contribution to
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'y (k, k', p) of order k44" where d(¢,¢") is the dimensionality (in powers
of mass or momentum) of this subgraph:

di¢, (") =4— > (L+s)—> (2-2s). (20.A.1)
el " fef
(The last term in Eq. (20.A.1) arises from the propagators for the lines in
the set 7.) 1t will be convenient to rewrite Eq. (20.A.1) as

dit,£') =4 —4n(¢) — N(¢') + N(0), (20.A.2)

where n(/) i1s the number of lines in the set 7, and N(¢) is the total
dimensionality of the fields for these lines:

nf)=> 1, N/ =D (si+1). (20.A.3)
ief ief
Here s; is the ‘spin’ of a line of type i, in the sense used in Section 12.3:
the dimensionality of the field of type i is 1 + s;, and the bare propagator
of such a field goes as k=2+2%, (For scalars and gauge bosons, s; = 0; for
spin 1/2, 5, =1/2.).

By taking account of the asymptotic behavior associated with these
subgraphs, we wish to show that as k — oo (all components going to
infinity together, in generic directions), with k" and p fixed, the asymptotic
behavior of I',x(k,k',p) in each order of perturbation theory is of the
form

)
Tyolk, K p) = S US(K) Fo oK', p) + 0 (k4—4"(">+N(f )-N) . (20A4)
0

where the sum runs over operators @ with dimensionality N(@) < N; the
function U4 (k) is of order k*N)—4&)=N®) . and o(k*) denotes terms that
vanish faster (by at least one factor 1/k) than k4.

To isolate the contribution of operators of dimensionality < N, we shall
define an ‘N-irreducible’ amplitude I).(k,k’,p) as the sum of all graphs
for I'sp(k,k’, p) in which the lines in the set # cannot be disconnected from
the lines in the set #/ by cutting through any set ¢” of internal lines with
N(#") < N. Since the difference I' — IV consists of graphs that can be
disconnected in this way, it may be written as

(N)

Lrotkk p) = Ik p) = f Ak I, K", ) T (KK, D), (20.A.5)
bﬂr‘r

where Z”,\,” denotes the sum over sets £ of particle lines with N(#”) < N,
and [ dk” is the integral over the components of the four-momenta in the
set £, subject to the constraint that the sum of these momenta is p.

The asymptotic behavior of the kernel I}ga,,(k, k”,p) is much simpler
than that of I'y s« (k, k", p). For k — oo with k” and p fixed it is dominated
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by the part of the region of integration where every internal line carries a
momentum of order k, which gives an asymptotic behavior k%) because
the terms where only some subregion carries such large momenta would
have to be connected to the rest of the graph by a bridge ¢ of lines with
N{#") > N = N{(¢"), and this would be smaller as k — <o by at least
a factor kN)=N=1_ Thus differentiating 1/, (k,k”,p) with respect to any
component of k” or p reduces its asymptotic behavior to order k¢~
But differentiating d times lowers the asymptotic behavior to k<"~
only if d < N — N(£") + 1, because for higher derivatives we get a larger
contribution from the region of integration where the subgraph carrying
momenta of order k is connected to the rest of the graph by a bridge of
lines #” with total dimensionality greater than N, with the derivatives all
acting on lines carrying momenta of order k" or p. Therefore in order to
take into account the contribution of operators containing derivatives of
flelds, we may write the asymptotic behavior of IV as

f"f’” (k k”: p) Z 12‘;"’\1 (k) Pf”v (k’-’, p)+o (kd(f’{”}_N_FN('M)) > (20A6)
vidy+N{£EN

where P, (k”, p) are a complete set of homogencous polynomials of order
dy in the n(#”) momenta k” and p, and | g,ﬂv(k) are functions only of k, of
order k4444 as k — o,

We cannot immediately use Eq. (20.A.6) in Eq. (20.A.5), because the
integral over k” receives important contributions from the region where
some of the k" are of order k. To deal with this, we use mathematical
induction: we assume that Eq. (20.A.4) holds up to some given order in
perturbation theory, and use it on the right-hand side of Eq. (20.A.5) to
calculate the asymptotic behavior of T to the next order of perturbation
theory. We rewrite Eq. (20.A.5) in the form

Lok, K, p) =I5k, K, p)
R )
> [ 186K p [rmk” Kp) = 3 UL () P,
f”
) )
+3 " Fok'p) / A Ik K, UL () . (20A.7)
o z N (¢")<N

According to Eq. (20.A.4), the quantity in square brackets in the second
term on the right-hand side of Eq. (20.A.7) vanishes for k" — oo faster
than (k”)*—#+NE)=N g0 the product of this factor with a polynomial
Psy(k”) of order v N N(#") vanishes faster than (k)% M) and
therefore has a finite 111tegra1 over the 4(n(#”)—1) independent components



Appendix Momentum Flow: The General Case 291

of k”." Hence we may use Eq. (20.A.6) in this term, and find

Lotk k', p)— Y I k) Pry(K,p)
vidy+N{{" <N

(N)
TS DI DI S f dk” Por(k”,p)

2" vid, +N(¢"}<N

(N)
x |Tpptk”, k', p) — Z US (k") Fpp(K', p)
o
(N) (N) }
+3  Foplk, p)Z/dk” 12,k p)UL (K7), (20.A.8)
@ gw

the correction being smaller than the terms shown by a factor 1/k. (Of
course, the first term on the right-hand side of Eq. (20.A.8) is present only
if N(/') < N.)

Now, for each value of # and v with 4, + N(£) < N, there is an op-
erator (! with field factors corresponding to the lines in / and with d,
derivatives, such that in zeroth-order perturbation theory the vertex func-
tion, with incoming momentum p carried by the operator ¢ and outgoing
momenta k carried by external lines ¢, is the polynomial Py (k, p). Then
the corresponding complete vertex function for a renormalized operator
Or=%0Zoel is

Fostksp) =Y Zog {5;,:9,,;* Py, (k, p) + f dk’ Py, (k' ,pY T ,0(K K, p) } :

@f
(20.A.9)
where £p and vg label the types of fields and spacetime derivatives in the
operator (. We see then that Eq. (20.A.4) is satisfied, with

(V)

Ubk) = Z%,(k) [Z(a}@ — f ak” Ué‘-"(k”) Pm;(k”)}
mr

™)
+3 / A" Tk, k7Y U (k") . (20.A.10)
fﬂ

* This overlooks the possibility that even though power-counting indicates the conver-
gence of the integral in the second term on the right-hand side of Eq. (20.A.7) over the
region where all k” go to infinity together, for n{¢”) > 3 subintegrations may diverge.
For this reason the arguments given in this appendix do not constitute a proof of the
operator product expansion except for the simple case treated in Section 20.2, where
we consider the momenta of just two external lines to go to infinity, and we look for
the terms in the power series expansion associated with operators that are quadratic
in the ficlds.
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in which we now use the abbreviations
Liotk) =1,2,0,0k),  Petk) = Pryyplk) . (20.A.11)

(The p dependence of Ty, is dropped for the same reason as in Section
20.2: whether or not k" is comparable with k, p is negligible here compared
with k.) We will define the normalization constant Zg s so that at a
renormalization point k(y), p{u) the function Fg (k(u), p(n1)) has the same
value dy7, Po(k(p), p(pt)) that it would have in the absence of interactions:

812 Polk(p), pi)) = Fo (k) p(p)) = Zzw

X {5@,,; Py, (k(), p(u)) + f dk’ Pyyy, (K, (1)) Tz 0 (K k(12), P(ﬂ))} :
(20.A.12)

For I' = 0 this has a solution Z = 1 which is unique (because the poly-
nomials for a given set of lines are supposed to be linearly independent),
so by continuity Eq. (20.A.12) will have a unique solution for coupling
constants in some finite range. Eq. (20.A.10} therefore provides a recur-
sive definition of the coefficient functions U4(k) appearing in the general
operator product expansion (20.A.4).

Problems

1. Consider a theory of a fermion field v interacting with a scalar field
¢ with interactions of the form {py and ¢*. List the operators that
appear in the operator product expansion of {(x)y(0) with coefficient
functions that (judging from perturbation theory) are singular and
non-vanishing for x — 0. Describe how you would calculate these
coefficient functions to one-loop order.

2. Consider quantum chromodynamics with N massless quarks, and
define the spectral functions of the scalar and pseudoscalar quark
bilinears by

> (VAC|H(0)Ax1p(0)] VAC) (VAC|P(0)Agp(0) VAC)*
N
= (2m)720(p")p34(—p")
> " (VACp(0)ys42(0) VAC)(VAC|(0)ys g1 (0) VAC)*
N

= (21) 00" pgp(—p?) ,
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where 4, are a complete set of traceless Hermitian N x N matrices,
normalized so that Tr(A,Ag) = 28,5. What spectral function sum
rules are satisfied by linear combinations of piy (i) and pfy(*)?

. Derive Eq. (20.6.8) in the parton model from the formulas (8.7.7)

and (8.7.38) for Compton scattering.

List the gauge-invariant symmetric traceless tensors of twist four in
quantum chromodynamics.

. In the massless scalar field theory with interaction —g¢*/24 (with

g > 0), where in the complex plane would you expect the function
(20.7.3) to have renormalon singularities?
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21

Spontaneously Broken
Gauge Symmetries

The 1961 theorem! that broken symmetry implies massless spin zero
Goldstone bosons was seen at first as a serious obstacle to the search
for broken symmetries in nature. A few years later several authors noted
an exception to this theorem, already mentioned in Section 19.2: the
Goldstone bosons are absent where the broken symmetry is local, rather
than global.? Instead, these degrees of freedom show up as the helicity zero
states of the vector particles associated with the broken local symmetries,
which thereby acquire a mass. This phenomenon, now generally known
as the Higgs mechanism, was not at first applied in any sort of realistic
theory, perhaps because by the mid-1960s it had become clear that the pion
is a Goldstone boson of a spontaneously broken approximate symmetry,
and attention therefore shifted away from the effort to avoid Goldstone
bosons. But soon after, spontaneously broken local symmetries turned
out to provide the natural framework for understanding the weak and
electromagnetic interactions of the elementary particles.?

21.1 Unitarity Gauge

We saw in Chapter 19 that in a theory with a global symmetry group G that
is spontaneously broken to a subgroup H, there is a massless ‘Goldstone’
boson for every independent broken symmetry, in the sense that the
mass matrix M2, of real spinless fields ¢,(x) has a zero cigenvalue with
eigenvector 3, (t:}nmtm fOr each independent broken symmetry generator
to of G. (We are here considering the case where these Goldstone bosons
are included among the elementary spinless particles represented by scalar
or pseudoscalar fields ¢, appearing in the Lagrangian; the more general
case will be taken up in Section 21.4.) We also saw that we could rotate
away these Goldstone modes, by subjecting the fields to a G transformation

y (x)
Bu(x) =Y Vo (X)Pm(x) , (21.1.1)

295
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such that the new fields are orthogonal to the Goldstone directions”

0= Z &n(x)(toc)nmvm ) (21.1.2)

where v, is the vacuum expectation value, v, = {¢,(0)}vac. After rotating
the fields so that they satisfy Eq. (21.1.2), the Goldstone boson fields
then reemerged as the spacetime-dependent parameters in y(x). The point
of this procedure was that since the Lagrangian was invariant under the
transformation (21.1.1) with constant y(x), all dependence on y(x) dropped
out except where y(x) is acted on by derivatives.

On the other hand, if the Lagrangian is invariant not only under
constant G transformations but also under G transformations that depend
on spacetime position, then the transformation (21.1.1) is a true symmetry
of the theory, and all dependence on y(x) drops out of the Lagrangian, so
that we can simply replace ¢,(x) everywhere with ¢,(x). This is a choice
of gauge, fixed by imposing the condition (21.1.2) on ¢(x) rather than by
imposing conditions on the gauge fields themselves. (For instance, in the
electrodynamics of a charged scalar ficld ¢ = ¢ + i, we can choose a
gauge like Lorentz or Coulomb gauge by imposing conditions 3,4 = 0
or V-A = 0, but we can also choose a gauge by imposing a condition on ¢,
as for instance that ¢ be real, or in other words by rotating the two-vector
{Re¢,Im¢} into the 1-direction.) The gauge defined by Eq. (21.1.2) is
called unitarity gauge,® because in this gauge it will be obvious that the
theory does not have any degrees of freedom with negative probability,
like timelike gauge bosons. More generally, the unitarity gauge makes
manifest the menu of physical particles of the theory.

Eq. (21.1.2) shows that there are no Goldstone boson fields in unitarity
gauge. Since the theory is gange-invariant this means that there ate no
physical Goldstone bosons, whatever gange we choose. What about the
vector bosons? If the ¢, are elementary canonically normalized scalar
fields, the Lagrangian will contain a term

2
1 . N
_g’q(, = _i Z (Quqf)n —1 Z tzm Ay ,uq&m) » (21’1'3)
n ma

where t* runs over all the generators of the gauge group G. (From now
on we shall drop tildes, it being understood henceforth in this section that
we are already in unitarity gauge.) We are assuming that the symmetry G
is broken by the vacuum expectation value vy, of ¢, so in order to see the

" Here we arc working with a real reducibie or irreducibie representation of the symmetry
algebra, for which the matrices it, are real. The transition to a complex representation
is described below.
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nature of the particle spectrum, we define a shifted field ¢':
n=tn+ P, . (21.1.4)

(It is sometimes convenient to take v, in Eqgs. (21.1.2) and (21.1.4) as the
vacuum e¢xpectation value in the tree approximation. In order to generate
a useful perturbation theory it is only necessary that v, should agree with
the true vacuum expectation value in lowest order.) Expanding Eq. (21.1.3)
to second order in ¢’ and A, we have:

2
1 :
Z $QUAD = 5 (aud)ﬁi — 1 Ztﬁm Aauvm) . (21.1.5)
n mu
Using Eq. (21.1.2), we see that the ¢/~A cross term vanishes, yielding
1 1
Lyquap =35 3 0un0"dy— 5 D tapAuudf (21.1.6)
n {Xﬁ
where

nmd

Combining this with the quadratic terms in the Yang- Mills Lagrangian
—1 F,.y Fi, we see that the vector particles have a mass matrix . In our
notation the generators t%,, are proportional to gauge coupling constants,
so Eq. (21.1.7) yields vector boson masses that are also proportional to
these coupling constants.

Let’s take a look at some of the algebraic properties of Hiﬁ- Since t3,
is imaginary and antisymmetric (and hence Hermitian) the matrix uéﬁ is
real, symmetric, and positive. Also, if a certain real linear combination of
generators > Cqly is unbroken, then

> calta)nmtm =0, (21.1.8)
oL
in which case Eq. (21.1.7) shows that, as noted by Kibble,?
3 uigep=0. (21.1.9)
B

That is, we still have a massless gauge boson for every unbroken gauge
symmetry. The converse is also true; from Eq. (21.1.7) we see that for
arbitrary real constants c,

2
Y wigcacp = (Z Ca- icf;mum) >0, (21.1.10)
afl H am

and this can vanish only if ¢, satisfies Eq. (21.1.8).
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In particular, if there is just one unbroken symmetry 3, ¢,t,, then the
general gauge field can be written

Al = A + -+ | (21.1.11)
where “ - * denotes a linear combination of the gauge fields of definite non-

zero mass, and ¢, is the coefficient of t, in the single unbroken generator
q,

g=) cata, (21.1.12)
o

so that the field 4A# will appear with zero coefficient in the mass term
—1 08 uﬁﬁAgA#ﬁ. In order for the coefficient of —3(9,4, — 8,4,)* in the
kinetic gauge Lagrangian —3 3, (6uAay — 0yAsy)? 10 have the canonical
value 1, the ¢, must also be normalized

Ya=1. (21.1.13)

Note that g is the charge to which A# is coupled, in the sense that
Yt Al =qAF 4+, (21.1.14)
4

where -~ again denotes terms involving massive gauge fields. We shall
use these general results in studying the electroweak theory in Section
21.3.

These results have been detived here for scalar fields that form a real
representation of the gauge group, but they can be straightforwardly
converted to a form appropriate for complex reptesentations. We saw in
Section 19.6 that a complex scalar field y(x) that transforms according to
a representation of the gauge group with Hermitian generators 7, may
be written as a set of real fields

Plx) = ( Eﬁ:g; ) , (2L.L15)

which furnish a real representation of the gauge group with generators

o ( —ImT* —ReT*
o Re7* —ImT*

Inserting Eqgs. (21.1.15) and (21.1.16} in Eq. (21.1.7) gives the vector boson
mass matrix (21.1.7) as

Juiﬁ = Re ((X)%ACs TOﬁ Tﬁ (X)VAC) = % (<X)?'\’IAC’ {Ta, Tﬂ }(X}VAC) .
(21.1.17)

(21.1.16)

Now let’s take a closer look at the vector field propagator. Including
the quadratic term in the Yang-Mills Lagrangian, the part of the total
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Lagrangian that is quadratic in 4 is

— 1D @An — 0uAw) — 1Yyl And]
o4

aff
= 3 ZAaaV@’m,ﬁa(5)#1,9’l + total derivatives,  (21.1.18)
aff
where
Doy y2(@) = bag 120 — 8382] — 1y (21.1.19)

Suppose for simplicity that all gauge symmetries are broken, so that ugﬁ
has no zero eigenvalues. According to the general rules described in
Section 9.4, the gauge-field propagator in momentum space is

B pall) = —( @ o palik) = |0 + 2 Oz + 1 hok)] . (21.1.20)
Because of the k, k; term, the propagator has an asymptotic behavior
A(k) ~ O(k®), which does not allow us to use the usual power-counting
arguments to prove renormalizability. Fortunately, as we shall see in the
next section, there is another gauge in which renormalizability is obvious,
at the price of obscuring the particle content of the theory.

¥ & ok

It is important to note that although Goldstone bosons suddenly reap-
pear in the physical spectrum in the limit of zero gauge couplings, physical
matrix clements are perfectly continuous in this limit. This is because
in unitarity gauge the gauge bosons do not entirely decouple for zero
gauge couplings. Consider the matrix element for a scattering process
A+ B — C+ D, where A and C belong to some representation of the
gauge algebra, and B and D belong to some different representation
of the gauge algebra. The S-matrix element for this process receives a
contribution from vector boson exchange

Scppp = i27)*6*(pa + ps — pc — pp)(CIUNLIAY Agy g1k DI TN |B)
£ (21.1.21)

where kK = ps — pc = pp — pp, and Jy) is the current to which the
gauge bosons are coupled, with the subscript N to remind us that in
this gauge we omit the Goldstone boson pole term in this current. This
current is proportional to gauge coupling constants, so the only terms in
Eq. (21.1.21) that survive in the limit of zero gauge couplings are the ones
involving the matrix u~2, which becomes singular in this limit. Hence for
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zero gauge couplings, the S-matrix element is
1

Sco,po = i2m)*8*(pa + pe — pc — oYkl g (CHNGIA) |5

{DiJn3|B) -

(21.1.22)
The gauge coupling constants in the currents are cancelled by the gauge
coupling constants in the matrix z2,

Now let us compare this result with the contribution of Goldstone
boson exchange. For vanishing gauge couplings there is a set of Goldstone
bosons B, associated with generator t, (assuming for simplicity that all
gauge symmetries are spontaneously broken) with the kinematic term
in the Lagrangian given by — 16,$«0%¢p >, ZanZpn, Where Z,, is the
component of the Goldstone boson B, in the spinless field ¢y, defined
by Eq. (19.2.39). In order that the Goldstone boson fields be canonically
normalized, we must therefore have

> ZunZgy = byg - (21.1.23)
n

According to Eq. (19.2.49), the Goldstone boson B, couples to the currents
JNE with a coupling constant F;ﬁl, where Fyp is the coupling of the
Goldstone boson associated with generator t, to the current Jyp defined
by Eq. (19.2.38). Thus the exchange of Goldstone bosons would give a
scattering matrix element

. e Lo
Scpap = i(27)*6%(pa+ pp — pc — Po)kvkaFop Fip (CLING1A) 75 (DIINgIB) -
(21.1.24)
But Egs. (19.2.40), (21.1.7), and (21.1.23) give the vector boson mass matrix
as

uiﬁ = ZF“?ZYHF,G(SZ&R = Fuy Fgy , (21.1.25)
M

so in the limit of vanishing gauge boson coupling, the gauge boson
exchange matrix element (21.1.22) is the same as the Goldstone boson
exchange matrix element (21.1.24), This argument can be reversed; the
requirement of continuity at zero gauge coupling can be used to derive
a formula for the gauge boson masses even in the case where all other
couplings are strong.

21.2 Renormalizable £-Gauges

In 1971 't Hooft? showed that path integrals in spontaneously broken
gauge theories can be calculated in a gauge in which the vector boson
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propagators vanish for momentum k& — oo as k=2, so that these theories
satisfy the power-counting test for renormalizability described in Section
12.2. Here we shall describe a larger class of renormalizable gauges,
parameterized by an arbitrary constani ¢, that was introduced a little
later by Fujikawa, Lee, and Sanda.’

In general gauges the kinematic term (21.1.3) in the Lagrangian for the
scalar fields of a theory contains a cross term

i Z au‘f); tﬁmAacﬂvm )
Hmx
where v, is the vacuum expectation value of ¢,, and ¢} is the shifted
field defined by Eq. (21.1.4). In unitarity gauge this term vanished as a
consequence of the gauge condition (21.1.2). We will adopt a different
approach here, similar to that of Sections 15.5 and 15.6. A functional B[f]
is introduced into the path integral, with

B[f] = exp (2:65 f d“foafa) : (21.2.1)

This is equivalent to adding a gauge-fixing term in the Lagrangian

1
g)gfz_ffafa- (21.2.2)

Instead of taking f, = 0,4% as in Section 15.5, we shall now take the
gauge-fixing function as

fa - ay Aé‘ — ié(ros)nmd);vm 1 (21'2'3)

which is designed so that the above cross term in (21.1.3) is cancelled by
the cross term in Eq. (21.2.2). Unitarity gauge is now a special case; for
¢ — oo, the gauge-fixing functional (21.2.1) is infinitely sharply peaked at
a ¢’ that satisfies the unitarity gauge condition (21.1.2). Another special
case 1s provided by the limit ¢ — 0; here the gauge-fixing functional
is peaked at a gauge field that satisfies the Landau gauge condition
0, Al = 0.

We also include in the Lagrangian a quartic polynomial —P(¢), subject
to the gauge-invariance condition

aP(¢)
O

We must of course also include in the Lagrangian a gauge-field term

(ra)nmf.bm =0. (21.2.4)

1
La=—7 2 FiFuw (21.2.5)
o
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The total Lagrangian density of gauge fields and scalars is then
.,99‘4,(1, E,g)A+g¢+,§f;'gf

H 1 1
~ 73 ZF&"” v T 3 Z(tm(f))n(rﬁ(f))nAgAﬁﬂ - E Z(aﬂAg) (0vAY)

noff

_% Z 6#(;5;5'”(;5; -+ -g— Z(tav)n(tav)m(ﬁ;lqb;n

anm

—P($) + 1D 8utp(ta)mmbrAL + total derivatives . (21.2.6)
anm
As we saw in Section 15.6, the introduction of a gauge-fixing functional
B[f] requires also the introduction of a ghost field w,(x), with Lagrangian
depending on the gauge-transformation properties of f,. Under a general
gauge transformation (with an arbitrary function €,(x})

SAE == CapyepA,t + ey, (21.2.7)
B
Sbn =1 exlta)omPm , (21.2.8)
e d
we have
0fs=D0ex— Y CoppOulepAy’y + & > (tat)nep(tpdln - (21.2.9)
fiv ng

According to the general results of Section 15.6, this yields a ghost
Lagrangian

PLo=0wy |00y~ Cupy8 gAY+ & (ta0)wp(tpd)n| - (21.2.10)
by np

Finally, if the theory involves spin i fermions there will also be a
general renormalizable term

Ly =—p(@ — idt?) + mo + Tadn)y , (21.2.11)

where 1) is the matrix representation of the generators of the gauge group
for the fermions (including coupling-constant factors), and m and I',, are
constant matrices (in general, linear combinations of terms proportional
to Dirac matrices 1 and ys) satisfying the gauge-invariance conditions

{r&w), v4mo] =0, (21.2.12)
m

(The factor y4 = iy arises from the definition § = Ty, It is relevant
only if £¥) involves terms proporiional to ys.) The general theorem proved
in Sections 15.5 and 15.6 guarantees that the S-matrix calculated from a
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Lagrangian given by the sum of Eqs. (21.2.6), (21.2.10), and (21.2.11) is
independent of the choice of the parameter £ appearing in the gauge-fixing
function (21.2.3), and so for any ¢ will give the same results as the choice
¢ = oo corresponding to unitarity gauge.

To derive the propagators for all these fields, we need the part of the
Lagrangian that is quadratic in fields:

! rqv
EQUAD = - Z Z (6.”/405" - alAm ) (aluAau — avAa“)
1 1 .
- 5_ ZuiﬁAg‘Aﬁﬂ = 2z 2005 (BuAL)

~ Z #d)n aﬂq&n Z m¢;1¢:n
— P( ﬁ-l— myyp — 8y, oy — & Z ,uiﬁ(u;cuﬁ
o
+ total derivatives, (21.2.14)

where uﬁﬂ is the vector boson mass matrix (21.1.7):

g =— 3 (VPO , (21.2.15)

n

and M, and m are new scalar and fermion mass matrices:

*P(¢) ¢
Mr%m = Y Z(tav)n(rav)m )
3udbm|,, 2 2

m=m0+2r,,u,,.
H

(21.2.16)

We see from Eq. (21.2.14) that the ghosts have gauge-dependent masses,
equal to /¢ times the corresponding vector boson masses.

These expressions give the particle masses in the zeroth order of per-
turbation theory. To this order, the vacuum expeciation value v, is just
the location of the minimum of the polynomial ‘potential’ P(¢):

OP(9)
=0. 21.2.17
e | (212.17)

Also, as we saw in Section 19.2, it follows from Eqs. (21.2.4) and (21.2.17)
that

2P
Z aqbnacbm

for all «. It follows then thai in place of the Goldstone modes w1th mass
zero, the scalar boson mass-squared matrix in Eq. (21.2.16) has eigenvalues

( V) =0 (21.2.18)
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equal o /£ times the non-zero vector boson masses, That is, if 4174 has
an eigenvector ¢p with eigenvalue 42, then >_p Cptgy is an eigenvector of
M? with an eigenvatue £u2:

; M,%m (; cﬁtﬁv)

The other eigenvectors of M,fm are then orthogonal to alf of these, and
hence to all t,v, so these eigenvectors and the corresponding eigenvalues
are just the same as for the matrix (a2P(¢)/a¢na¢m)¢zv. We see that for
the unitarity gauge value ¢ — oo, the Goldstone bosons are so heavy that
they drop out of the theory, while the other boson masses are as usual.
The propagators are calcutated by the usual rules: if the free-particle
part of the Lagrangian takes the form (after integration by parts)
~tT2(8)¢ for a complex field ¢ or —3(T (8 for a real field ¢, then the
propagator of this field is Z~!(ik). This gives the propagators:

= 52 #gBCﬁ(taU)n = 6#2 (Z C{xf,xv) - (212]9)
af o

m n

. 1 (L= &)k, k,
A Aalu,ﬁv(k) = [m (ﬂ‘uv W)Jaﬂ . (21220)
¢ Amm(k) = (k2 + M)t + &S (ta0)n(tp0)m(k2) (K2 + i

wp
(21.2.21)
v AR =[=i k4 m] 2 4 m?), (21.2.22)
@ Agglky = (kK 4 Ep?) ) (21.2.23)

The poles in Eq. (21.2.20) at unphysical mass squares proportional to & are
cancelled by the poles at the same masses in Eq. (21.2.21). Note that now
for finite ¢ all propagators have the same asymplotic behaviors as in the
unbroken symmetry case, as required for renormalizability. In particular,
the k.k, term in the vector boson propagator no longer presents any
problem for renormalizability, because it is accompanied with an extra
factor (k? + p2Z)~!, We can even drop this term by choosing Feynman
gauge, with £ = 1. It is only in the unitarity gauge case where £ — oo that
this factor fails to give the propagator the asymptotic behavior needed for
renormalizability.

Even with well-behaved propagators, it is still necessary to show that
the ultraviolet divergences in these theories are constrained by the broken
gauge symmetries in such a way that every infinity can be cancelled by the
renormalization of a field or a parameter in the Lagrangian. This can be
done by the same techniques as in Sections 17.2 and 17.3, but treating the
vacuum expectation values of the spinless fields as external fields rather
than fixed quantities that break the symmetries.>?
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21.3 The Electroweak Theory

The most important application of spontaneously broken gauge theories
has been 1o the theory of weak and electromagnetic interactions.® Weak
interactions at low energies are well described by an effective Lagrangian
given by a sum of products of vector (including axial-vector) currents, as
in Eq. (19.4.22). This suggests that these interactions may like electro-
magnetism be described by some sort of gauge theory. In order to insure
the separate conservation of electronic-type and muonic-type leptons and
baryons (or quarks) we may guess that the known electronic-type and
muonic-type lepions and the quarks all form separate representations of
the gauge group. With this assumption, there are only a few possibilities
for the structure of the gauge group.

Let’s first consider the electronic-type lepton fields. As far as we know,
these consist only of the left- and right-handed parts of the electron field
e:

e = (1 +7vs)e, er = (1 —ys)e, (21.3.1)
and a purely left-handed electron-neutrino field v,y :
YSVel. = Vel - (21.3.2)

The fields in any representation of the gauge group must all have the same
Lorentz-transformation properties, so the representations of the gauge
group here divide” into a left-handed doublet (v,;, ;) and a right-handed
singlet eg. The largest possible gauge group is then

SUR)L x U1}, x U(L)g ,
under which the fields transform as

o ( 1: ) =i [§'E+€LYL -I-GRIR] ( 1:; ) , (21.3.3)

where the generators are

= fuenf(4 3.0 2. (3 ). oo
woe(tess (o ) (213.5)
tr oc (1 — ys) | (21.3.6)

" If we allow gauge couplings that change electron-type lepton number, then it is possible
to include the left-handed field & along with v, and e, in a representation of the
gauge group. This was the basis for an early SO(3) variant® of the electroweak theory,
which has since been ruled out by experiment,
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with g a constant to be chosen later. It will be convenient instead of ¢,
and tg to consider the generators

=0 (5] e
(52 (51 - (5] e

where g’ and g” are constants like g to be chosen later. The generator y
appears along with ¢3 in a linear combination that plays a special role in
physics; it is the electric charge

and

0 0 e e

== =—f; — —y. 2139
Also, n, is the electron-type lepton number. We want to include both
charge-changing weak interactions (like beta decay) and electromagnetism
in our theory, so we will assume that there are gauge fields A* and B*
coupled to t and y. In addition, we may or may not want to include a
gauge field coupled to the one remaining independent linear combination
of t; and tg, which can be taken as the electron-type lepton number
(21.3.8). There are very stringent limits” on the long-range forces that
would be produced by a massless gauge field coupled to ., so in order
to include in our theory a gauge field coupled to n, with a strength g”
comparable to the weak and electromagnetic interactions, we would have
to assume that this gauge symmetry is spontaneously broken."* However,
there is no experimental evidence for the weak interaction that would
be produced by such a gauge coupling (and plenty of evidence by now
against it) so we shall simply exclude n, from the generators of the gauge
group. The gauge group is then®

G = SUQ) x U(1) (21.3.10)

with generators 7,y given by Egs. (21.3.4) and (21.3.7) respectively. The
coupling constants g and g’ are to be adjusted so that the gauge fields 4#
and B# coupled to these generators are canonically normalized. The most
general gauge-invariant and renormalizable Lagrangian that tnvolves just

“* Note that this is possible without violating the global conservation law of electronic
lepton conscrvation, We would have to assume that the Lagrangian is invariant under
both a global phase (ransformation acting only on electron-type lepton ficlds, and
also a local phase transformation that acts on electron-type lepton ficlds as well as on
some scalar field that does not interact with leptons. The vacuum expectation value
of this scalar would break the local symmetry, giving the gauge boson coupled to n,
a mass, without breaking the global symmetry.
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these gauge fields and electronic leptons is then

- - - -+ 2
Lym+Le=— 10,4y — 0,4, + gA, x A,)" ~ 1(8.B,—2,B,)

B —id -t —i By (21.3.11)
(We here use the fact that the structure constants of SU(2), and U(1) are
Cijx = —igeij and zero, respectively.)

Of course, of the four gauge fields coupled to 7 and y, only one
linear combination, the electromagnetic field 4¥, is actually massless. We
therefore must assume that SU(2);. x U(1) is spontaneously broken to a
subgroup U(1)m, with generator given by the charge (21.3.7). The details
of the symmetry-breaking mechanism will be considered a little laier.
However, whatever this mechanism may be, we know that the canonically
normalized vector fields corresponding to particles of spin one and definite
mass consist of one field of charge +-e with mass my :

1
Wh = 7 (A +iAY), (21.3.12)

another of charge —e and the same mass:

. 1
W = 75(A, —idf), (21.3.13)
and two electrically neutral fields of mass mz and zero respectively, given
by orthonormal linear combinations of 4 and B#:

Z# =cos A} +sinf B* (21.3.14)
AF = —sin 4% + cos§ B¥ (21.3.15)
or equivalently
Af =cos0Z* —sinf 4, (21.3.16)
B* =sin0Z" + cosf A" . (21.3.17)

According to the general result (21.1.11)~(21.1.12), the generator of the
unbroken symmeiry, which is here electromagnetic gauge invariance, is
given by a linear combination of generators in which the coefficients are
the same as the coefficients of the corresponding massless field in the
expansion of the canonically normalized gauge fields coupled to these
generators. Inspecting Eqgs. (21.3.16) and (21.3.17) shows that

g=—sinft;+cosly. (21.3.18)
Comparing this with Eq. (21.3.9) gives then
g =—e/sind, g =—e/cosl. (21.3.19)
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The complete lepton—gauge boson coupling can be expressed in terms of
the couplings g and g’:

i, = —m {ZA:} ( " )

— _( Ve ) [\}j WAt —itar) + % W (i + itar)

e

+ Z (t3;,cos @ + ysin0) -|-A —t37.8inf + y cos B ]

102)
o (152)0) 3 o ()9
e () e (7).

+g's 2 (;?’5) c—e(ede). (21.3.20)

NI#%'W

2

To complete the theory, we musi now make some assumption about
the mechanism of symmetry breaking. We want this mechanism to give
masses not only to the W* and Z° but to the electron as well. Now, the
only way that this is possibie in a renormallzable weakly-coupled theory
is to have a scalar field coupled without derivatives to /g and ¢ (and
also 7, and ¢ ). Then SU(2). x U(1) invariance requires that the scalar
be an SU(2). doublet like ¢;, but with a shifted value of y and hence of
g. We thus assume a “Yukawa’' coupling

¢+
Fpe = —G, ( ) ( % ) ex + He., (21.3.21)
where (¢T, ¢%) is a doublet, on which the SU(2) x U(1) generators are
represented by the matrices:

i =& {(‘1) é)(? —0"),((1) _?)}, (213.22)

3O = _ g2 ( (1) ) ) , (21.3.23)
so that the charge matrix is
O LN T 10
= a =2y (0 0) . (21.3.24)

It is possible that there are other scalar multiplets in the theory, but for
the moment let’s suppose that this is the only one.

We must add a gauge-invariant term involving scalar and gauge fields
to the Lagrangian. The most general form consistent with SU(2) x U(1)
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gauge invariance, Lorentz invariance, and renormalizability is:
1 P 2 A
#s=— 5@, —id, 1 —iB, y | - T ble— (0T o), (21.3.25)

where A > 0, and
_+_
b= ( i‘o ) . (21.3.26)

For i < 0, there is a tree-approximation vacuum expectation vajue at the
stationary point of the Lagrangian

(@) (@) =0 = 12|/ (21.3.27)

We can always perform an SU(2) x U(l) gauge transformation to a
unitarity gauge, in which ¢* = 0 and ¢° is Hermitian, with a positive
vacuum eXpectation value. (This is why we normalized the complex
doublet ¢ so that an unconventional factor § appears in the kinetic term
in Eq. (21.3.25); Re ¢° is the only physical scalar field, and Eq. (21.3.25)
makes this a canonically normatized field.) In unitarity gauge the vacuum
expectation values of the components of ¢ are

(pt) =0, (D =v>0. (21.3.28)

The scalar Lagrangian (21.3.25) then yields a vector meson mass term

3 |79+ By = =3[ (84,0 B m) (O]

(21.3.29)

We see that as expected, the photon mass is zero, while the WT and Z°

have the masses
vlg| _tV/et+g?

=Ty "z=T

Also, from Eqs. (21.3.21) and (21.3.28) we see that the electron is given a
lowest-order mass

(21.3.30)

me = Gob . (21.3.31)

It is difficult to study reactions among electron-type leptons alone,
though by now there are data on scattering processes like ¥, +¢~ — V. +e".
For high precision data we have to consider reactions that also involve
at least involve muonic-type leptons, such as the well-studied process of
muon decay, gt — et 4 v, 4 ¥,. It is trivial to extend the above model
to include muon-type leptons — just add to the Lagrangian terms £y
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and %, like the last terms in Eqs. (21.3.11} and (21.3.21), with the fields
¢ and v, replaced with the muon and muon-neutrino fields x4~ and v,
and with G, replaced with G, = G.(m,/m,). Inspection of (21.3.20) and
the corresponding term with e and v, replaced with i and v, shows that
W exchange between low energy, e-type and p-type leptons produces the
effective interaction

(%)2 % (@1(14;?5)%) (%W (#) ,u) +He (21332

This may be compared with the interaction of the effective ‘V — 4’ theory
which is known to give a good description of muon decay

% (éy‘* (147s) Ve) (ﬂm (1 +ys) #) + H.c. (21.3.33)

Here Gr is the conventional Fermi coupling constant, known from the
muon decay rate to have the value Gr = 1.16639(2) x 107> GeV 2. Com-
paring these two expressions, we find

g2 /miy = 42 Gy . (21.3.34)
This allows an immediate determination of the vacuum expectation value
v, given by Eq. (21.3.30) as

2my 1

g 2v4GY?

Also, Eq. (21.3.31) shows that G, has the very small value

0511 MeV

©T 247GeV
From Eq. (21.3.30) we see that mz > my. We cannot use Eq. (21.3.30) to
determine the actual values of mz and my without knowing something

about g and g’. Using Eqs. (21.3.30} and (21.3.19), we can express mz and
my in terms of the electroweak mixing angle ¢:

e 37.3GeV

V= = 247GeV . (21.3.35)

=207 x 107, (21.3.36)

= Ssin0] T |sin0]
_ ev 746 GeV
MZ = sin0f|cosf]  |sin20]

These are the original results obtained in Ref. 3. Of course, there are
radiative corrections of all sorts, most of which depend on details of the
theory that have not yet been specified in this section. But there is one
particularly large radiative correction that can be readily calculated with-
out further information. The above values for my and mz were calculated
using the conventionally defined electronic charge for e. However, as
explained in Section 18.2, this is not precisely the appropriate value to use
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in calculations of processes at energies E >> m,, we should instead use the
electric charge ¢, defined at a sliding scale u comparable to the energies of
interest. For u of the order of 90 GeV the effective fine structure constant
eﬁ/47r. is about 1/129 (and quite insensitive to the precise value of p), so
the above values for my and my should be multiplied with /137/129,
giving

gy = 2o GV (21.3.37)
| sin |
769 GeV
_ 769 Gev 13,
in20) (21.3.38)

Whatever the value of 8, these masses are too large for there to have
been any hope of detecting the W or Z in the 1960s or early 1970s. Exper-
imental evidence for the electroweak theory had to come instead from the
discovery of the new class of weak interactions predicted by the theory, the
neutral current processes produced by Z° exchange.® The first observation
of a neutral current process was the 1973 bubble chamber detection of
the purely leptonic process of v,—e~ elastic scattering.!® Although these
processes are easy to deal with theoretically, the frequency of events is
relatively low, because the cross section is proportional to the square of
the center-of-mass energy.” It was years before the purely leptonic neutral
current reactions could be used to give a reasonably precise value for the
parameter sin’ 6. By 1994, the study of purely leptonic neutral current
processes like v, +e~ — v, + €~ and ¥, + e~ — ¥, + ¢~ had yielded the
value 0.222 + 0.011, which would give my = 81.5 GeV and my = 92.5
GeV.

Even before the discovery of neutral currents, the electroweak theory had
been extended to the weak and electromagnetic interactions of hadrons
with each other and with leptons. By the mid-1960s, it had become
understood that weak interaction processes in which charge is exchanged
between leptons and hadrons are well described at low energy by the
effective Lagrangian

Gr 1 _ i
E[em(l+y5)ve+w,1(l+y5)v#]J + He., (21.3.39)

where J% is an hadronic current. Within the quark model, the commutation
and conservation properties of J* allowed it to be identified with the quark

' The cross section is proportional to GZ, so in order to have the dimensions of encrgy 2,
it must also be proportional to some energy squared. Where the center-of-mass energy
is much larger than the electron mass, it is the only energy that can appear in this
formula.
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current
J* = ay* (1 +y5)d cos 0, + ay*(1 + ps)s sin 6, . (21.3.40)

Here u,d,s are the fields of the up, down, and strange quarks, and ¢, is
another angle, known as the Cabibbo angle.!! Experiments on processes
like O - N#* et v, and Kt — n¥ + et + v, confirm that Gr has
very nearly the same value as that measured in the purely leptonic process
ut — ¥+ et + v, and give for 0, the value!? sinf, = 0.220 + 0.003. We
naturally conclude that the quarks provide another SU(2) x U(1) doublet

1 +ys u
’@_( 2 )[dcos@c+ssin(}c ’ (21.3.41)

as well as right-handed singlets, with y values adjusted to give the gquark
charges 2e/3 and —e/3. By itself this would lead to a serious difficulty.
The Z° boson interacts with the quark neutral current

> 2yMaapcost + ysin8)2 =" yF(13psecl + g tan0)2, (21.3.42)
2 2

with the sum running over all quark doublets 2 like (21.3.41). The charge
matrix ¢ is diagonal in quark flavors, but if (21.3.41) were the only
quark doublet then the term involving the matrix t3; would contain cross
terms proportional to $y%(1 + ys)d and dy*(1 + ys)s, leading to effective
Z exchange interactions like s +d & d +5 and s +d o ut + y~ with
the strength of ordinary first-order weak interactions. Such effects would
lead to rates for processes like K°-K9 oscillations and K% — pt 4 py—
many orders of magnitude greater than observed. Also, even without
neutral current terms in the Lagrangian, the one-loop diagrams involving
the interaction (21.3.39) with the charged current (21.3.40) would lead to
an effective interaction s + d — d -+ 5 which is smaller than an ordinary
first-order weak interaction only by a factor of order «/2x, leading to a
rate for K9-K0 oscillations that is still much too large. In order to avoid
this last difficulty, it was proposed!® that there is another term in J*; in
modern notation,

eyH(L + ys) [—d sin0, + scos0,] , (21.3.43)

where ¢ is a fourth quark, like # with charge 2¢/3. Adding (21.3.43) to
(21.3.40), the charged current may be written

J* = (frcos O, — ¢sin G)y’l(l + ps)d + (asin 8, + ¢cos 0)yH(1 + y5)s .

The only reason that the interactions of the W with this current do not
conserve strangeness is that the ¢ and u have different masses, leading to
transitions between ucos . — ¢ sinf and usin 6. 4+ ¢ cos 0,. But this means
that the loop diagrams for the effective interaction s -+ d — d-+3 are
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suppressed by additional factors (since m, < m.) of m2/m3,, bringing the
rate for K°-K?° oscillations into agreement with experiment.

It was subsequently noted!* that this also solves the problem of the
strangeness changing Z' interactions. In the context of the SU(2) x U(1)
gauge theory the combination —dy sin . + sz cos 0, cannot be a singlet,
but must be part of another doublet

1 +ys C
( 2 )[—dsin0c+scos(}f - (21.3.44)

Including this doublet in the weak neutral current (21.3.42), the strangeness
non-conserving terms proportional to 5y4(1 +ys5)d and dy#*(1 + ys)s cancel,
removing the problem of excessive Z exchange contributions to processes
like K%-KO oscillations and K® — ut + p~. Particles containing the ¢
quark in a ¢ bound state were discovered!® in 1974, and indicated a
mass m. ~ 1.5 GeV.'" This completed two generations of quarks and
leptons: a {#,d) quark doublet mixed with a (c,s) quark doublet, together
with two lepton doublets (ve,e) and (v, p).

The first sign of a third generation was the discovery of a third charged
lepton,'® the 7. Later a fifth quark type, the b, was discovered,!” with
charge —e/3 and a mass of about 4.5 GeV. A sixth, the ¢ with charge
2e/3, then became theoretically necessary, and after a long interval it too
was discovered,'® with a mass quoted in 1995 as 181 + 12 GeV.”® Today
the hadronic current J* in (21.3.39) is expressed as

u
J=1c¢
)

where V is an incompletely known 3 x 3 unitary matrix, known as the
Kobayashi-Maskawa matrix?® In the SU(2} x U(1) gauge theory, this
means that there are three quark doublets:

d
Y 1+ ys)V [ s} \ (21.3.45)
b

Lbysy | u
( 2 ) | Vidd + Viss + Vigh ] ’ (21.3.46)
14+ps\ [ c
( 2 ) L VCdd + VCSS + V('bb :| ? (21.347]
1+ ¥s [ t ]
. 1.3.48
( 2 ) i Vigd + Viss + Vb (2 34 )

T We do not observe quarks in isolation, so their masses are not precisely defined.
The mass of the ¢ quark quoted here is roughly half the mass of the J—p particle,
interpreted as a ¢ ¢ bound state. The b and ¢ quarks are so heavy that their masses
can be taken from the masses of the hadrons containing them with little ambiguity.
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It is important to recognize that this is just what we should naturally
expect on general grounds for three quark doublets. The most general
renormalizable (SU(3) x SU(2) x U(1))-invariant interactions of the scalar
doublets ¢, with the gquarks must in general take the form

() (#)o

ijn

~S"H} ( L ) ( _ﬁ)? )D1R+H.C., (21.3.49)

ifn

where U; and D; with i = 1, 2, 3 are three independent quark fields of
charge 2e/3 and —e/3, respectively, L and R denote the left- and right-
handed parts of the quark fields, and G}; and H; are unknown constants.
The vacuum expectation values of the neutral scalars then produce a
quark mass term

Fm==> UrmjUjr— ZD_ingDjRﬂ—H.c., (21.3.50)
i )

where

ZG (pvac ZH (O ac - (21.3.51)

The matrices mY and ml.j are not constrained in any way, and in particular
may be complex and non-diagonal, in which case parity- and flavor-non-
conserving terms appear in %,. But we can introduce new quark fields
Up = AXUr, U} = AYUy, D = ARDg, D} = APD;, where the As are
3 x 3 matrices constrained only by the condition that they must be unitary
in order to preserve the form of the kinematic term (19.4.1). Then the
mass term (21.3.50) takes the same form when rewritten in terms of the
primed quark fields, but with the matrices mY and m? replaced with

mU" = AYmUATT m? = APmP AR . (21.3.52)

Now it is a general theorem that for any matrix m, it is always possible to
choose unitary matrices A and B such that AmB is real and diagonal. (Use
the polar decomposition theorem to write m = H U, where H is Hermitian
and U is unitary, and choose A = S and B = U'S, where § is the unitary
matrix that diagonalizes H.) We can therefore choose the As so that mY’
and m?’ are real and diagonal, in which case the quark fields u, c, ¢, d, s,
and b are to be identified with the components of U + Uy and D} -+ Dy.
The weak doublets are now written as

U—1r7ry.
ou=( sty )
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but we can just as well take the doublets as linear combinations AYQy that
have charge 2e/3 quarks of definite mass u, ¢, ¢ as their top component,
in which case these doublets take the form (21.3.46)(21.3.48), with

V=AYV4P"T (21.3.53)

Within 90% confidence limits, the best present (1995) values for the
absolute values of the elements of the Kobayashi-Maskawa matrix are20?

0.9745 t0 0.9757 0.219t00.224  0.002 to 0.005
0248100224  0.9736 to 0.9750 0.036 to 0.046 ,
0.004 t0 0014  0.034t0 0046  0.9989 to0 0.9993

with rows labelled u, ¢, and ¢, and columns labelled d, s, and b.

If there were only two quark doublets formed from w, d, ¢, and s quarks,
it would be possible to choose the phases of the quark fields so that all Vij
are real,t so that the V matrix is orthogonal, and the doublets (21.3.46) and
(21.3.47) (with b omitted) take the form (21.3.41) and (21.3.44), respectively.
In this case the gauge interactions would automatically conserve T and
CP. The great importance of the third generation is that it is no longer
always possible to choose quark phases so that the V matrix is real, and
therefore the gauge interactions can violate T and CP conservation. But
for unknown reasons the elements V,,, V., V.4, and Vs that connect the
third generation with the first two are all quite small, so the physics of
the first two generations is hardly alfected by the presence of the third,
which explains in a more-or-less natural way why the Cabibbo assumption
(21.3.40) works so well and why the violation of T and CP conservation
is so weak. T and CP conservation can also be violated by scalar boson
interactions if there are two or more scalar doublets:?%” here the violation
of T and CP conservation is expected to be weak because the scalar
doublets couple weakly to light quarks. It is still unknown which of
these mechanisms is responsible for the observed violation of T and CP
conservation in K3 decay, discussed in Section 3.3.

Neutral current processes involving hadrons, such as neutrino—nucleon
deep-inelastic scattering, were discovered in 1973,2! shortly after the de-
tection of the purely leptonic process vy -+ e — v, + e Because of the
much greater mass of the target particle here, it became possible before
long to observe large numbers of events, and use them to confirm the
electroweak theory and measure its parameters. Additional information
on lepton—hadron neutral current interactions came from the observation
of parity violation in atomic physics. By 1983 all direct measurements of

* Adjust the phases of d and s so that Vy and V,, are real. Unitarity then requires that
V. and Vi have the same phase, which can be eliminating by adjusting the phase
of .




316 21 Spontaneously Broken Gauge Symmetries

sin? @ had become consistent, and gave a combined value sin’@ = 0.23,
yielding the predictions my = 80.1 GeV and mz = 91.4GeV. Then in
1983 the W was discovered, with the Z following soon after.”? Their
measured masses are now (in 1995)

my = 80410+ 0.180 GeV?>, my = 91.1887 -+ 0.0022 GeV?*,

in satisfactory agreement with the predictions of the electroweak theory.

The very great accuracy of the measurement of the Z mass, which
has been achieved by tuning the energy of e~ collisions to the Z
resonance at LEP (CERN’s Large Electron Positron collider) and the
SLC (Stanford Linear Collider), has changed the way that electroweak
data is analyzed. Instead of comparing predictions of W and Z masses
with observed values, the Z mass is taken as an experimental input, along
with the Fermi coupling constant Gr = 1.16639(2) x 1075 GeV~? taken
from the rate of muon decay (including radiative corrections to order «),
and the fine structure constant a(mz) = (128.87 + 0.12)~!, extrapolated
from low energy measurements as described in Section 18.2. In this way
sin @ becomes a derived quantity; if defined by Eq. (21.3.38), it takes
the value sin®@ = 0.2312 + 0.003. With these inputs, the electroweak
theory can be used to make predictions of other quantities like my with
sufficient precision that it becomes necessary to take clectroweak radiative
corrections into account.?’ In one-loop order these radiative corrections
involve the masses of the t quark and scalar (‘Higgs’) boson, and thus
can be used to estimate these masses. For instance, before the top quark
was discovered the agreement between theory and experiment set bounds
on these radiative corrections which implied a top quark mass in the
range 130-200 GeV,%® in agreement with the value subsequently found
experimentally. The W mass is predicted (in 1994) to be 80.29 GeV, with
an uncertainty of +0.02 GeV from uncertainties in the inputs mz, Gr, and
a{mz), and an uncertainty of +0.11 GeV from the range of possible values
of m, and mpges. One 1995 study?’ concludes that mpiges < 225 GeV.
The precise measurement of my expected at the LEP 2 electron—positron
collider at CERN will allow a useful estimate of muggs.

¥ ¥ ¥

The most general renormalizable Lagrangian with the field content
and SU(3) x SU(2) x U(1) gauge symmetries of the electroweak theory
automatically respects baryon and lepton conservation. This is obviously
true for the gauge interactions and bare mass terms, because the quarks,
antiquarks, leptons, and antileptons all belong to distinct representations
of SU(3) x SU(2) x U(1). With scalars all belonging to SU(3) neutral
SU(2) doublets with U{1) quantum number +1/2, the only renormalizable
interactions of scalars with fermions and/or antifermions are with quark—
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antiquark and lepton-antilepton pairs, which of course conserve baryon
and lepton number. (In much the same way, one can see that the
charged hadronic currents with which leptons interact are necessarily
linear combinations of the currents associated with the spontaneously
broken SU(3) x SU(3) symmetry described in Section 19.7, as assumed
without knowing the explanation in the original work on this broken
symmetry.)

These results depend critically on the assumption that the standard
model is renormalizable. But as we have repeatedly emphasized, the
renormalizable Lagrangian of the standard model is expected to be accom-
panied with non-renormalizable terms of dimensionality d > 4, suppressed
by 4 — d powers of some very large mass M. The leading corrections to
the predictions of the renormalizable standard model come from terms
with the smallest possible dimensionality greater than four.

The only Lorentz-invariant terms of dimensionality five that can be
constructed out of the fermion and other fields of the standard model
are at most bilinear in fermion fields and also contain either two scalars,
or one scalar and one gauge-invariant derivative, or no scalars and two
gauge-invariant derivatives (including their commutator, a field strength
tensor). Color SU(3) invariance requires that the fermion fields in such
an interaction appear in either a quark-antiquark bilinear or a pair of
lepton and/or antilepton fields, all of which operators conserve baryon
number. There are a great number of such terms, but to violate lepton
number conservation they must involve a product of two lepton fields or
of their conjugates. The left-handed lepton doublets (7 vi) and right-
handed charged lepton singlets /¢; (with i = ¢, g, ot 7) have U(1) quantum
numbers 1/2 and +1, respectively, while the scalar doublet (or doublets)
(¢+,¢°) have U(1) quantum number —1/2, so we can construct U(1)-
invariant interactions of dimensionality five out of two left-handed lepton
doublets and two scalar doublets. With only a single type of scalar doublet,
there is just one such term that satisfies $U(2) and Lorentz invariance:2’4

> filldt —vEON LT —vig?), (21.3.54)
if

where i and j are lepton flavor indices, and ¢ denotes the charge conjugate
field. At energies below the electroweak breaking scale, this yields an
effective interaction

> fiivivi (%) (21.3.55)
i

We expect f;; to be of order 1/M, perhaps multiplied with small coupling
constants, so this gives lepton number non-conserving neutrino masses
at most of order?”? (300 GeV)?/M. We shall see in Section 21.5 that M
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is expected to be of order 101°-10® GeV, so we would expect neutrino
masses in the range 107*-107! eV, or less if suppressed by small coupling
constants. Such masses are too small for direct measurement, but there is
no reason for the neutrino mass matrix to be diagonal, so neutrino masses
might be detected in oscillations of one neutrino type into another over
long flight paths.

A similar analysis shows that there are interactions of dimensionality
six that violate both baryon and lepton number conservation, involving
three quark fields and one lepton field.?’¢ Such interactions would have
coupling constants of order M—2, and would lead to processes like proton
decay, with rates proportional to M 4.

21.4 Dynamically Broken Local Symmetries”

Our discussion of spontaneously broken local symmetries has so far
been entirely within the context of perturbation theory, To some extent,
this limitation is inevitable. Whereas for spontaneously broken global
symmetries it is possible to prove exact theorems about the existence and
interactions of massless Goldstone bosons, the spontaneous breakdown
of a local symmetry does not lead to any such precise consequences. Even
the existence of massive vector bosons is not really a general theorem;
for sufficiently strong gauge coupling these particles decay sc rapidly that
they lose their identity as distinct resonances of definite spin j = 1.

On the other hand, if the gauge couplings like e or g or g’ are sufficiently
small then the theory with a spontaneously broken local symmetry must
be very close to one with a spontaneously broken global symmetry, about
which exact theorems can be proved. It is therefore possible to derive
useful approximate results for such gauge theories, even if the other non-
gauge couplings are very strong. One example is provided by the standard
SU(2) x U(1) electroweak theory with a large scalar self-coupling A (and
hence a large scalar mass; see Eq. (21.3.27)). A more intriguing possibility
is that the breakdown of electroweak symmetry is due to strong forces
associated with some new gauge group acting on a set of new fermions. We
will here consider the results that can be obtained for all such theories,
without reference to the speciflic mechanism for spontaneous symmetry
breaking.?

We assume that in the limit of zero gauge couplings, our theory is
invariant under some group G of global symmetries, spontaneously broken

* This section lies somewhat out of the book’s main line of development, and may be
omitted in a first reading.
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to a subgroup H. As discussed in Section 19.5, in this case the theory can
be written in terms of a set of Goldstone boson fields &, plus other matter
fields §, whose G-transformation properties are such that the Lagrangian
is G-invariant if it is H-invariant and constructed solely from @ and
covariant derivatives D,,, D, etc., given by Egs. (19.6.14), (19.6.30), etc.

We now ‘turn on’ the gauge couplings. The gauge group % is of course
required to be a subgroup ¥ = G of the group G of all symmetries
of the theory, and when G is spontanecusly broken to H, % must be
spontaneously broken to a subgroup 3, equal to the intersection of %
with H. The generators .7 , of the gauge group ¥ may be expressed as
linear combinations of the generators T4 of the full group G:

Ta=)Y euTy, (21.4.1)
A

with coefficients e,4, the gauge couplings, that are taken very small. The
index A runs over the labels i, a of the unbroken symmetry generators ¢; and
the broken symmetry generators x,. (We are here taking the generators T4
to be conventionally normalized; that is, they are represented by matrices
with elements of order umity. In particular, in contrast to the 7 ,, the
structure constants of the x, and ¢; do not include factors of coupling
constants.)

In the underlying theory in which G invariance is linearly realized, we
introduce the coupling of gauge fields 7, to other fields v by replacing
ordinary derivatives with gauge-covariant derivatives

(QJ — i Z faﬂxu) P = (6“ — EZ TAAAH) v, (21.4.2)
b A
where

Agp =Y eaqd sy . (21.4.3)

The resulting theory is then invariant under formal local transformations,
under which the fields transform according to

Yo gy, (21.4.4)

> Tidgy—g (Z Ty AA,u) g™ —i(0.)8” (21.4.5)
A A

where g(x) is an arbitrary spacetime-dependent element of the group G.
This is a purely formal invariance, because the gauge couplings in general
actually break G, as shown by the fact that the transformation (21.4.5)
does not in general preserve the form of the linear combination (21.4.3).
Nevertheless, we can temporarily forget about Eq. (21.4.3), treating A%
as an unconstrained classical external field, and analyze the structure
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of the Lagrangian for the matter fields and their interaction with the
gauge fields by requiring that it be invariant under local transformations
(21.4.4), (21.4.5). In this way we will insure not only that the Lagrangian
is invariant under the true local symmetry subgroup ¥ (and for e,y — 0
under the larger global symmetry group G}, but also that the currents, the
variational derivatives of the matter action with respect to .«/¥, will have
the correct transformation under the broken global symmetry group G.
Later we will restrict A/, to the form (21.4.3), and treat the field </# as a
quantum field, supplying a suitable kinematic term in the Lagrangian for
this field.

In order to explore the implications of the spontaneous breakdown of
the invariance group G to its subgroup H, we will proceed as we did in
Section 19.6. First, replace y and A with new fields ¢, A:

=76y, (21.4.6)
Ay =3 Dap(y71&)) A} (21.4.7)
B

where (&) is the standard G transformation that eliminates the Goldstone
boson degrees of freedom in y, and D(g) is the representation of G
furnished by the gauge fields:

gTag™' =) Dpalg) Ts. (21.4.8)
B

These Goldstone degrees of freedom reappear in the spacetime-dependent
parameters £, on which y(£) depends. By the same calculations as in
Section 19.6, for local as well as global transformations the transformation
rule (21.4.4) translates into the transformations

& =), (21.49)
p P =hé )P, (21.4.10)

where h and f are defined by
gv(&) =y(f (& gDhi<, ), (21.4.11)

with # in the unbroken subgroup H. We also need to work out the
transformation rule for 44. Recall that, according to Eq. (21.4.5), under
these local transformations the linear combinations of gauge fields in
Eq. (21.4.2) transform as

S Tydg, — Y Tady, =g |> Tada,—ig'0ug| g7 .
A A A

Multiplying on the left and right by y~!(&’) and y(&') respectively, and
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using Eqs. (21.4.7), (21.4.8), and (21.4.11), we can write this as

i Tadly, =h(g) |idY Tada, + y“l(é)[g"laﬂg]y(é)] W& ).
A A

(21.4.12)
To see how to cancel the inhomogeneous g~1d,g term, we note that by
differentiating Eq. (21.4.11} and multiplying on the left with its inverse,
we have

Y THEN(EY = h(E gy HE g o8l (eI, g)
+ WE Dy N EENE(E, g) + hi(E,g)h E,g).  (21.4.13)

So to cancel the inhomogeneous term, we must subtract Eq. (21.4.12) from
Eq. (21.4.13):

7 HENB(EY—i Y Tad'y,
A
= h(¢, g) [v‘l(é)ﬁw(é) —i) T4Aq| B g)
A

~ [au(E )] W7 8) (21.4.14)
We therefore define new gauge-covariant quantities 2 and € by

Y i Dapxa+ Y iGiti =y THEO(EY =1 Y Tadu, (21.4.15)
a i A

with transformation properties

Doy — Dy, Ei— &1y (21.4.16)
where
Y Dyxa = h(E.g) (Z @‘auxa) h e g, (21.4.17)
a a

Z é‘p;Hti = h’(és g) (Z (’?i#tf) h_l(is g) + 1(@#11(5, g))h—l(é, g} N
(21.4.18)

just as in Eqs. (19.6.26) and (19.6.27). We can use & to construct fully
covariant derivatives of matter fields

D=0, + i) L€y (21.4.19)
]

as well as higher derivatives like 2,2,, etc. Because of the inhomoge-
neous term in Eq. (21.4.12), we cannot freely introduce 44, or covariant
derivatives like (21.4.19) of A,, into the Lagrangian. However, it is
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gasy to construct a ‘curl’ that transforms covariantly under both local ¥
transformations and global G transformations. It is

Faw=> Dup (}’ﬁl(fl) (5MABv — &4, — > CecpAcuApy
B D

(21.4.20)
This transforms under formal local G transformations as
FA#" - FA;W = Z D 4B (h(é, g]) FBMV . (21.4.21)
B

The Lagrangian is therefore invariant under formal local G transformations
if it is constructed as an arbitrary function of P, D, D,P, FAM, and
higher covariant derivatives, that satisfies global H invariance.

Now let us return to reality, and treat 4% as a quantum field of the
restricted form (21.4.3). Egs. (21.4.15) and (21.4.20) now become

N i Dayxa+ Y ibiyts
a i

=y 0p(E) =i Y TaDap(y™ (£))eun L sy (21.4.22)

ABa
and
Fap =3 Dan(v7())exn Fago (21.4.23)
Bu
where
Fpu = Opd gy — Ov gy — Y Cppod sy (21.4.24)

yé

with %, 5 the structure constant of the gauge group, related to the structure
constant of G by

Z Cgcp é,c€5p = Z Chys €pB (21.4.25)
CD 5

We include in the Lagrangian as the kinematic term for this field the usual
Yang-Mills term

1
Yo =—7 Y FuwFd (21.4.26)

o

in which, by linear transformations of the .o/, and correspondingly of
the e,4, we have adjusted the coefficient of F,,, %" 1o be just du.
The linear term in &, is just 0,9/ — 0,.% 4, so Eq. (21.4.26) has the
effect of making ./, a canonically normalized vector field. The effective
Lagrangian density is therefore to be taken as a function of §, 2,9, and
Dy that is invariant under global H transformations, plus possible terms
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that conserve 4 but not G, with coeflicients proportional to two or more
factors of the e,4.

Now let us see what sort of perturbation theory we can construct out
of these ingredients. We know that the gauge bosons become massless
in the limit ey — 0, where they decouple from the matter fields that
experience the spontancous symmetry breakdown. Let us therefore ten-
tatively anticipate that their mass for small e,4 is of order eM, where
e is a typical value of eyy (the generators T4 being normalized to have
structure constants of order unity) and M is an energy scale typical of the
dynamics that leads to spontaneous symmetry breaking. We shall consider
here a general Feynman diagram involving gauge and Goldstone bosons
of energy or momentum Q < eM, and with all particles of higher energy
or momentum and all heavier matter particles buried in corrections to the
coupling constants in an effective field theory. Our perturbation theory
will be an expansion in powers of e and Q/M. Following the same analysis
as in Sections 19.4-6, the total number of powers of ¢ and/or Q/M in
any such diagram is

v=Y Vidi+e—2)+2L+2, (21.4.27)
i

where V; is the number of vertices of type i; d; and e; are the number
of derivatives and factors of e,4, respecttvely, in an interaction of type i;
and~ L is the number of loops. With the constraint (21.4.3), a field A4,
or A4, contributes one factor of e. Inspection of Eq. (21.4.15) shows that
each Goldstone boson covariant derivative 2, contributes +1 to d; + ¢,
and inspection of Egs. (21.4.19) and (21.4.15) shows that each additional
covariant derivative of 2, contributes another +1 to d; + ¢;. All allowed
terms in the Lagrangian have d; + e; > 2, so the dominant contributions
are those from tree graphs (L = 0) constructed entirely from interactions
with d; - e; = 2. The only such interactions are the Goldstone boson
kinematic term

Z FL 90, 9" (21.4.28)

the Yang-Mills term (21.4.26), and possible symmetry-breaking non-
derivative terms of second order in the e, 4.

To see the physical significance of the field &,, note that the linear term
in Py, is

(Day)LIN = Oyla — Z ua A uy - (21.4.29)

As shown in the appendix to this chapter, we may always choose a
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‘unitarity gauge’ in which, for all o,

Y Fa bueay =0, (21.4.30)

which makes the cross term in Eq. (21.4.28) vanish. To clarify the sig-
nificance of this condition, note that in the special case where all broken
symmetries are gauge symmetries, any x, can be written as a linear
combination of gauge generators and unbroken generators

Xg = Z caoc-ﬁ—rx -+ aniti ’
o i
= Z Casx (Z ExbXp + Z em‘ff) + Z Cail;
o a i i

and therefore

ana:eocb = ‘5ab -
o

Contracting Eq. (21.4.30) with ¢,p, we see then that &, = 0; there are no
Goldstone bosons at all in this gauge. More generally, Eq. (21.4.30) lcaves
us with just those Goldstone bosons that do not correspond to gauge
symmetries. Some of these are associated with elements of G that are
broken by the gauge interactions, and therefore have masses of second
order in gauge couplings; these are called pseudo-Goldstone bosons.

With & chosen to satisfy the unitarity gauge condition (21.4.30), the
quadratic part of the Lagrangian (21.4.28) is simply

(Z¢)quap = Z FL0u8a0" 8 — 13 it y,  (214.31)
“f
where
fag = Z 2 €aaCpb - (21.4.32)

This has two important 1mpllcat10ns. First, we note that £, may be
expressed in terms of a canonically orthonormalized field n,, as

ZF R (21.4.33)

where Fyp is the positive square root of the positive matrix F2,. This
shows that F,! are the factors analogous to F! that accompany the
emission and absorption of low energy Goldstone bosons. Second, since
/4, has been defined to be a canonically normalized vector field, Eq.
(21.4.31) shows that x2, is the square of the vector boson mass matrix.
Eq. (21.4.32) is a universal formula for the vector boson mass matrix,
valid to second order in the gauge couplings but to all orders in all other
interactions. By using Eq. (21.4.1) in Eq. (21.1.7), it is easy to see that our
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previous result Eq. (21.1. 7) is a special case of Eq. (21.4.32), with
ab = Z(xa)nm(xb)nlvmvl

nml

Eq. (21.4.32) may also be understood on the basis of the continuity
arguments outlined (in a somewhat different notation} at the end of
Section 21.1. It guarantees that the effects of gauge boson exchange that
survive in the limit of zero gauge coupling are the same as the effects that
would have been produced by Goldstone boson exchange if there were no
gauge coupling.

In general, we cannot calculate the F 3}; matrix, but we do know that it
must be invariant under the unbroken subgroup H, in the sense that

> [Cibngr + CicaFiy| =0.
d
This condition allows us to put useful constraints on the gauge boson
masses (21.4.32).

As an example, consider the case of the electroweak gauge group
SU(2) x U(1), spontaneously broken to the U(1) of electromagnetism.
The three broken symmetry generators x, can be taken as the three
generators of SU(2) (called £, t2, t3 in Section 21.3), without the coupling
constant factor g, and the one unbroken symmetry generator ¢t can be
taken as the charge g, without the factor e. That is, the x, and ¢ are
represented on the lepton doublets by the matrices

=doem{(93)(0 300 )}
)

The gauge generators are then given by

T=g%, T,=glxs—1). (21.4.34)

That is, the non-zero coefficients e,, of x, in the gauge generator 7, are
€] =€ =¢33=¢, ey3 =g
Also, since t subjects the three-vector X to a rotation around the three-
axis, this unbroken symmetry requires the matrix F2, to have the non-zero
components
2 _ g2 — g2 2 g2
Fip=rp=rz, Fp=Fy.

According to Eq. (21.4.32), the mass squared matrix of the gauge bosons
then has the non-vanishing elements

2 2 2 22 2 22
wy =pn = g F¢, Uiy =g Fy,
2 r

w3, =gg Fy, w, =g Fy
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Its eigenvalues are
my =g’ Fe,  my=(g+g)F}, mi=0. (21.4.35)

To go further, we need a relation between F¢ and Fy. This is provided
if the theory is invariant in the limit g = g’ = 0 under a global symmetry
group G larger than SU{(2) x U(l), which breaks spontancously to a
subgroup H, that includes three-dimensional rotations under which %
rotates as a three-vector. Such an unbroken symmetry would require F2
to be proportional to d,, and hence

Fc =Fy.

Any such symmetry is known as a ‘custodial’ symmetry. It has the
consequence that mz /my is given in terms of the gauge coupling constants
by the successful formula discussed in Section 21.3

mz/mw = \/1+g’2/g2=1/sin6. (21436)

For instance, in the absence of the gauge couplings, the Lagrangian
(21.3.28) for the scalar doublet ¢ in the simplest version of the SU(2)x U(1)
electroweak theory may be written

1 e u?. A 2
(y¢)g=g’={) = _5 a;:qbna d)n - _2“ qbn‘;bn - Z(anqbn) ’
where

$1=Imp*, ¢2=Rept, ¢s=Im¢’, ¢4=Re¢".

This is automatically invariant under an ‘accidental’ SO(4) = SU(2) x
SU(2) global symmetry group, which is spontaneously broken by the
vacuum expectation value of Re¢® down to an approximate unbroken
SO(3) custodial subgroup.?” The result (21.4.36) applies even if there is
more than one scalar doublet, because even though in this case the mass
and interaction terms in the scalar Lagrangian will not in general respect
the custodial symmetry, it is only the kinematic term that enters in the
derivation, and this always has the full SO(4) symmetry.

Custodial symmetries can be found in other theories. Consider for in-
stance a theory with no scalar fields, but with new extra-strong vector
gauge interactions,® called technicolor interactions, that act on a new
SU(2) x U(1) doublet (U,, D,) of ‘techniquarks’ U, and D,, with r a tech-
nicolor index. As long as the left- and right-handed parts of both U,
and D, all transform in the same way under the technicolor gauge group,
the Lagrangian will be invariant in the limit of vanishing electroweak
couplings under the group SU(2) x SU(2) of independent § U(2) transfor-
mations on the left- and right-handed techniquark doublets. According to
the arguments described in Section 19.9, the subgroup SU(2)y consisting
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of simultaneous § U(2) transformations on both the left- and right-handed
techniquark doublets will not be spontaneously broken. It is reasonable
to suppose that the technicolor interactions will produce a spontaneous
breakdown of SU(2) x SU(2) to SU(2)y. just as color interactions led
to a spontaneous breakdown of the chiral SU(2) x SU(2) symmetry of
quantum chromodynamics (for vanishing u and d quark masses) to its
isospin subgroup. Under the unbroken SU(2)y symmetry the electroweak
generator X or  rotates as a three-vector, leading again to the relation
Fc = Fy, and the consequent successful prediction of the relation between
the W and Z masses.

The technicolor idea is attractive, because it provides a natural mech-
anism for breaking the electroweak symmetry at a characteristic scale
which is very much smaller than what is often supposed to be the fun-
damental scale of physics, generally assumed (as in string theories) to be
of the order of the Planck mass, or about 10'® GeV. It is only necessary
to suppose that just below the fundamental scale there is an unbroken
gauge group consisting of the SU(3) x SU(2) x U(1) of the strong and
electroweak interactions, plus a technicolor gauge group, all with compa-
rable small coupling constants. If the technicolor gauge interactions are
asymptotically free the technicolor coupling like the QCD color coupling
will increase slowly with decreasing energy, becoming strong at an energy
much less than the fundamental scale. This energy where the technicolor
coupling becomes strong would set the scale for the parameters Fyy, that
appear in our formula, Eq. (21.4.32), for the gauge boson masses, and
would therefore presumably be of the order of 300 GeV. Since the increase
of coupling with decreasing energy is logarithmic, a moderate difference
in the beta-functions for technicolor and color can easily give rise to the
three orders of magnitude difference between the energy scales where color
and technicolor forces become strong.

Unfortunately, although technicolor provides a very attractive picture
of the spontaneous breaking of SU(2) x U(1), it does not by itself offer a
mechanism for giving masses to the quarks and leptons. For this reason it
has been suggested to add additional ‘extended technicolor’ gauge interac-
tions with transformations that link quarks and techniguarks.3! Such the-
ories have potential problems with flavor-changing neutral current weak
interactions, and though these problems may be surmounted, the added
complications reduce their attractiveness. The question of elementary
weakly coupled scalars versus dynamical symmetry breaking remains open.

21.5 Electroweak-Strong Unification

We saw in Section 15.2 that a gauge theory will have an independent
coupling constant for each simple or U(1) subgroup of the gauge group.
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Thus the electroweak theory which is based on the gauge group §U(2) x
U(1), has two independent couplings, g and g’. In order to reduce the
number of free parameters it was suggested’® that the SU(2) x U(1)
gauge group might be embedded in a simple SU(3) gauge group, which
would give g’ = g/./3, but this has been ruled out experimentally. After
the advent of quantum chromodynamics, theorists confronted a gauge
group SU(3) x SU(2) x U(1}, which has three independent gauge coupling
constants: the coupling g; of quantum chromodynamics, and the couplings
g and g’ of the electroweak interactions. To reduce these to just a single
free parameter, it was proposed to embed SU(3) x SU(2) x U(1) in various
simple Lie groups:* SU(4) x SU(4),33 SU(5),** or SO(10).35 Such models
are often known as grand-unified theories.

Fortunately, the consequences of these and a large class of other models
for the ratios of the SU(3} x SU(2} x U(1) coupling constants are inde-
pendent of the details of the individual models.*® This class of models
is characterized by the fact that the observed generations of quarks and
leptons are the only fermions in the models, or at least the only fermions
that are not neutral under SU(3) x SU(2) x U(1).

As shown in Section 15.2, for any simple compact Lie group there is a
conventional choice of generators T, with totally antisymmetric structure
constants, which in each reducible or irreducible representation D satisfy
the normalization condition:

Tr{T, Ty} = Npdyg . (21.5.1)

We are assuming that all left-handed fermions form n, generations:

(), G, (),

-

€R HUR TR ;
(2), (), ()
dL s/ bL ’
R R iR ;
dg SR br

The SU(3) generator 1ig,A3; has eigenvalues: + lg, for the red quark
doublets and the white antiquark singlets; — ig; for the white quark
doublets and the red antiquark singlets; and zero for all other left-handed

* The group SU(4) x SU(4) is made simple by inclusion of a discrete symmetry operator
that interchanges the two SU(4)s.
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fermions; so its square has the trace
Tr( igeds)? = dng X ( 1gs)* + dng x (— 1g5)* = 2n,g2 . (21.5.2)

The SU(2) generator t3 has eigenvalues: 1g for the red, white, and blue
quarks of charge ? and the neutrinos; — ig for the red, white, and blue
quarks of charge — | and the charged leptons; and zero for all other

fermions, so its square has the trace
Tr (1) = [3ng + ng) x [( 3g) + (— 1g)*) = 2mg? . (21.53)

Finally, the U(1) generator y = {3 — ¢ has eigenvalues: lg’ for neutrinos
and charged leptons; —g’ for charged antileptons; — !g’ for quarks; 2g’
for antiquarks of charge — %; and — ig’ for antiquarks of charge + 3, so
its square has the trace

Try? = gl 38 + ngl—g') + 6ng(— 18)° + 3ng(3g)° + 3ng(— 1g')"
— Wpg?, (21.5.4)

Eq. (21.5.1) requires the traces (21.5.2)-(21.5.4) to be all equal, so in this
class of models the embedding of SU(3) x SU(2} x U(1l) in a simple Lie
group imposes the coupling constant relations

g =g = 38" (21.5.5)

Now, Eq. (21.5.5) is in gross disagreement with the observed values
of the coupling constants. The ratio g'2/g? = 5 implies an clectroweak
mixing angle with sin? @ = g2 /(g*+g'%) = 2, while the experimental value
is sin”@ = 0.231. Even worse, the strong coupling gf is of course much
larger than g2 or g’

The solution® to this problem is that coupling-constant relations like
Eq. (21.5.5) apply only to the couplings measured at an energy scale
comparable to the typical mass®’” M of the gauge bosons that become
massive in the spontancous breakdown of the simple gauge group to
SU(3) x SU(2) x U(1). If the energy E at which the couplings is measured
is very much less than M, then there will be large radiative corrections
proportional to In(M /E).

As emphasized in Chapter 19, there are no large logarithms in the
relation between couplings measured at nearby energies g and p — du,
so by integrating this relation from M down to E we can calculate the
couplings at energies E < M without encountering large logarithms. For
this to be done it is only necessary that the couplings should stay small
over this whole range. For the SU(3) x SU(2) x U(1) couplings with n,
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fermion generations, Eq. (18.7.2} gives**

g =54 (1 5. 21:56)
st =580 (1 o (2157)
ﬂd—~ig’(ﬂ) _g:g) (—%) (21.5.8)
The solutions of these equations are
= o e (1 Tm(). e

1 1 1 /22 dng M
= — ~ -z — 21.5.10
2200 g2 8n2(3 3)'“(u)’ (21.5.10)
1 1 1 IZOng M
= - — —. 5.1
22 g2M) 8% ( 9 )1“ ( p ) (21.3.11)
Also, Eq. (21.5.5) should be interpreted to mean that
gi(M) =g’ (M) = g (M). (21.5.12)

We can therefore climinate the couplings (21.5.12) and the number of
generations by subtracting Eq. (21.5.10) from Eq. (21.5.9):

1 1 11 M
= (—) 21.5.13
gip)  giw)  24m> T \ ( )
and by subtracting 3/5 of Eq. (21.5.11) from Eq. (21.5.10):
1 3 i1 M
— = — In (ﬂ) ) 21.5.14
giw)  Sgwy  12m2  \ g ( )
Taking the ratio of these two equations gives a formula for sin?f =
g% /(g* +¢"):

_ 1 5&(mgz)
= 4y 2 3.
sin c + 9¢2(miz) (21.5.15)

** The second term in the brackets in Egs. (21.5.6) and (21.5.7) is given by Eqgs. (18.7.2) and
(18.7.3) as —ny /6, where ny arc the numbers of fermions in the defining representation
of the respective SU(N) gauge groups. But this was calculated under the assumption
that left- and right-handed fermions are in the same representation of the gauge group.
If we count only left-handed fermions (and antifermions), then the second term in
the brackets in Eqgs. (21.5.6) and (21.5.7) should be —n;/12. For SU(3) there arc
two left-handed quark triplets and two lelt-handed antiquark triplets per generation,
so ny = 4n,, while for SU(2) there are three left-handed quark doublets and one
left-handed lepton doublet per generation, so again ny = 4dn,. For U(1), the beta-
function is g'/24xn> times the sum of the squares of the U(1) charges for left-handed
fermions and antifermions (compare Eq. (18.2.38)), which according to Eq. (21.5.4) is
(8'/2477) % (10n,8%/3).
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In this formula we have set u equal to the typical energy of the processes
used to measure sin’ 0, that is, u ~ mz. This has the advantage that we will
be using the renormalization group equations (21.5.6)—(21.5.8) only above
mgz, where they are not strongly affected by the spontaneous breakdown
of SU(2) x U(1). Egs. (21.5.13) and (21.5.14) can also be combined to give
a formula for the unification scale M:

MY 4n? 8e2(mz)

mz 3gi(mz)

where again, to avoid the effects of electroweak symmetry breaking on the
renormalization group equations, we have taken u as of order mz.

We saw in Section 18.2 that the value of e(u) at u = my is given
by e(mz)?/4n = (12887 + 0.12)~!. This is the charge defined in the
conventional (Gell-Mann-Low) manner, in terms of the vacuum po-
larization. For purposes of comparison with g, g, and g, it is bet-
ter to use the coupling defined (as in Section 18.6) by modified min-
imum subtraction: e(my)*/4n = (127.9 + 0.1)"'. The greatest uncer-
tainty in Eqs. (21.5.13) and (21.5.14) is in the value of gi(mz). As
discussed in Section 18.7, extrapolation of g; from lower energy data
gives g2(mz)/4m = 0.118 + 0.006, while direct measurement from the
rate of Z® decay into hadrons gives g2(my)/4n = 0.120 =+ 0.0025. For
gi(mz)/4n = 0.118 and e(mz)?/4n = 1/128, Eqs. (21.5.15) and (21.5.16)
give sin” 8 = 0.203 and M = 1.1 x 10'* GeV.

As mentioned in Section 21.3, there 15 no reason to cxpect that
baryon and lepton number should be conserved by the suppressed non-
renormalizable terms in the effective Lagrangian that describes physics at
ordinary energies, so we may expect the presence of an (SU(3) x SU(2) x
U(1))-conserving four fermion (three quarks and a lepton) interaction,
with a coefficient that on dimensional grounds would be of order M2
The proton lifetime was first estimated on this basis, and found to be of
order 10°? years.’® Such baryon- and lepton-non-conserving four-fermion
interactions are produced in models like those of Refs. 33-35 from the ex-
change of gauge bosons with masses of order M. More generally, once the
standard model explained why baryon- and lepton-non-conserving pro-
cesses are naturally suppressed, there ceased to be any reason to believe
that either baryon or lepton number are exactly conserved.

We have seen that the prediction (21.5.15) comes quite close to the
measured value 0.23 of sin 8, but the accuracy of the measurements and
calculations has become good enough to make clear that they are not in
precise agreement. The extra particles in supersymmetric theories appear
to remove this discrepancy, and lead to a value of M ~ 2 x 10!% GeV,
about an order of magnitude larger.’¢® It is very interesting that this M is
not so very diflerent from the energy 10'® GeV at which the gravitational
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interactions become strong. The larger value of M also has the effect of
increasing the proton lifetime, which is proportional to M*.

21.6  Superconductivity”

Superconductivity is quite different from the elementary particle phenom-
ena that chiefly concern us in this book, but it is worth some consideration
here, both as the earliest realistic example of a spontaneously broken gauge
symmetry, and also as an exceptionally enlightening example of the power
of effective field theories and of the use of topological arguments in field
theory.

A superconductor is simply a material in which electromagnetic gauge
invariance is spontaneously broken.”™ Detailed dynamical theories are
needed to explain why and at what temperatures this symmetry breaking
occurs, but they are not needed to derive the most striking aspects of
superconductivity: exclusion of magnetic fields, flux quantization, zero
resistivity, and alternating currents at a gap between superconductors
held at different voltages. As we shall see here, these consequences of
broken gauge invariance can be worked out, in a manner somewhat like
our treatment of soft pions, solely on the basis of general properties of
the Goldstone mode.>

The action for any system will be invariant under gauge transformations,
which in cgs units take the form

Au(x) = Au(x) + B,A(X), (21.6.1)
Pa(x) = exp (1A /1) pa(x) (21.6.2)

where A(x) is arbitrary, and g, is the electric charge destroyed by field
ypu.  All charges are assumed to be integral multiples of the e¢lectron
charge —e, so this group is compact: the phases A and A + 2zk/e are
regarded as identical. This symmetry group is assumed to be broken
in a superconductor by non-vanishing expectation values of operators
carrying charge —2e (such as products of two electron fields), so there

* This section lies somewhat out of the book’s main line of development, and may be
omitted 1n a first reading.

" This is not the way that most experts have historically thought about superconduc-
tivity. Early phenomenological theories were known to violate electromagnetic gauge
invariance, but this was regarded as more annoying than enlightening. Broken sym-
metry is never mentioned in the seminal paper by Bardecn, Cooper, and Schrieffer’’
that first gave us a microscopic theory of superconductivity, Anderson® subsequently
stressed the importani role of broken symmetry in superconductors, butl even today
most textbooks explain superconduclivity in terms of detailed dynamical models, with
broken symmetry rarely mentioned,
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is an unbroken Z» subgroup, consisting of gauge transformations with
A =0and A = r#/e.

We introduce a Goldstone boson field ¢(x) by writing all charged fields
as

n(x) = exp (igab(x)/7 ) Pn(x) (21.6.3)

The field ¢(x) parameterizes the coset space U(1)/Z,, and so is given the
gauge transformation property

B(x) = P(x) + A(x) . (21.6.4)

Because ¢(x) parameterizes U(1)/Z> rather than U(1), we must identify
d(x) and ¢(x) + nh/e. All the {,(x) are gauge-invariant, and so when
integrated out leave the Lagrangian as a gauge-invariant functional of
¢ and A* alone. It follows that the Lagrangian for the Goldstone and
electromagnetic fields may be written as

L=—4 / dx Fuy F* + Ly [A, — 0, (21.6.5)

where Ly is an imperfectly known functional. The electric current and
charge density here are

dLs
== 21.6.6
L
JOx) = — ‘50 s __ 0L . (21.6.7)
0 A%(x) deh(x)
The equations of motion for the Goldstone boson field are then
a (5Lq 5LS :V- 5Ls (21.6.8)

3t8s(x)  O(x) SA(x) ’

which in light of Egs. (21.6.6) and (21.6.7) is equivalent to the conservation
law of electric charge
v+ Zp_o. (21.6.9)
ot
Now let us see how this formalism explains the remarkable properties
of superconductors. About I, we will only need to assume that the system
is stable in the absence of Goldstone or external electromagnetic fields,
so that the energy is at least at a local minimum at 4, = .4, with
non-vanishing sccond derivatives with respect to 4, — d,¢.
One immediate consequence is that, deep in a large superconductor
where boundary conditions are unimportant, the electromagnetic field is
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a pure gauge:
Ay=08,, (21.6.10)

so that in particular the magnetic field must vanish. This is known as
the Meissner effect. 1t is possible to be a little more quantitative about
what we mean by ‘deep in a large superconductor.” Since the energy is
a minimum when Eq. (21.6.10) is satisfied, for small values of |A — Vo
it must be of order |A — V¢|>L?/4%, where A is some length depending
on the nature of the material, and L? is the superconductor volume. If a
magnetic field of order B penetrated the superconductor, then we would
have |A — V| of order BL, so the energy cost in allowing the magnetic
field into the superconductor would be of order B>L3/42. On the other
hand, the energy cost in expelling a magnetic field B from a volume L?
is of order B’L3. Hence a weak magnetic field will be expelled from a
superconductor if B2L?/42 > B2L3, or in other words if L > A For this
reason 4 is known as the penetration depth of the superconductor,

The same energetic considerations tell us that for any superconducting
material, there is a critical magnetic field, above which superconductivity
is extinguished. The existence of superconductivity at zero magnetic field
means that the material in its normal state has an energy per unit volume
which is higher than that in the superconducting state, say by an amount
A. When a superconductor with linear dimensions much larger than 1 is
placed in a magnetic field B, the magnetic field is expelled from most of the
material, at an energy cost per volume of B?/2. Hence it is energetically
favorable for the material to be in the superconducting state if and only
if the magnetic field is below a critical value

B, = \2A. (21.6.11)

(This is for uniform superconductors. As we shall see below, for cer-
tain kinds of superconductor it is possible to maintain superconductivity
throughout most of the material for magnetic fields in a finite range above
B. by the formation of narrow vortex lines with normal metal at their
cores.) A magnetic field B < B, will penetrate a superconductor to a depth
4, but this does not extinguish superconductivity in this layer; indeed, as
shown by the field equation V x B = J, it is in this surface layer of the
superconductor that electric currents can flow.

Now consider a thick superconducting wire, with thickness much larger
than 4, bent into a closed ring. We can draw a closed contour % running
deep inside the wire, along which |A — V| must vanish. This does not
mean that either A or ¢ vanishes on this contour, but we do know that
in going around the ring ¢ must return to an equivalent value, and can
therefore only change by an amount nrnh/e, with n a positive or negative
integer or zero. It follows then by Stokes’s theorem that the magnetic flux
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through the area & surrounded by ¥ is subject to the flux quantization
rule

/B-dS=5£A-dx=?£ch-dx=ﬂh. (21.6.12)
o JE & 4

The electric current that maintains the magnetic flux (21.6.12) flows in
a layer of thickness A just below the surface of the superconducting wire.
The quantization of flux shows that this current cannot decay smoothly,
but only in jumps at which the flux (21.6.12) drops by multiples of nh/e,
so there can be no ordinary electrical resistance in the superconductor.
The absence of resistance in a superconductor can be shown in a more
general context than closed rings, by considering time-dependent effects
in superconductors. Note that Eq. (21.6.7) can be interpreted as the
statement that —J is the canonical conjugate to ¢. The Hamiltonian H,
is thus to be regarded as a functional of ¢ and JO rather than ¢ and ¢,
with the time dependence of ¢ given by the Hamiltonian equation
. dH;
P = S
Now, the ‘voltage’ V(x) at any point is just the change in energy density
per change in the charge density at that point, so Eq. (21.6.13) gives the
time dependence of the Goldstone boson field as

h(x) = —V(x). (21.6.14)
It follows that a picce of superconducting wire that carries a steady
current, with time-independent fields, must have zero voltage difference
between its ends, because otherwise ¢(x) would have a time-dependent
gradient. A zero voltage difference at finite current is what we mean by
zZero resistance.

Now consider a gap between two pieces of superconducting material.
In the absence of any gradients along the surface of the gap, or any vector
potential, gauge invariance requires L, to depend only on the difference
A¢ between the Goldstone boson fields in the two superconductors:

Ljunction = Y F(A$) , (21.6.15)

(21.6.13)

where o7 is the area of the junction. Furthermore, we can shift ¢ in either
superconductor by any integer multiple of nh/e without physical effect,
so the function F must be periodic’

F(Ag) = F(Ad -+ nhnje) . (21.6.16)

T This function was calculated by Josephson,® who found it to be proportional to
cos(2eAq /h), but this is an approximate result, while the periodicity is exact.
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A current flows through such a gap, which can be calculated by considering
the junction in the presence of a vector potential A. Gauge invariance
then tells us that in place of A¢, the function F must depend on

AA¢=/dx-(V¢—A),

the integral being taken over a line joining the two superconductors.
Eq. (21.6.6) then shows that the current density is

8 Liuncti
J — Tunciion — _ﬁFf A
where @ is the unit vector perpendicular to the gap. We can now take
away the vector potential, and find the current

J = —AF'(Ad). (21.6.17)

If we now suppose that the two superconductors are maintained at uniform
voltages, with a voltage difference AV, then. according to Eq. (21.6.14),
the difference in the Goldstone boson fields will have the time dependence

A¢p = —tAV + constant . (21.6.18)

Using this in Eq. (21.6.17) and recalling Eq. (21.6.16), we see that the
current osciliates at a frequency

v =e|AV|/nh . (21.6.19)

This is the ac Josephson effect®* Tt is possible to measure frequencies
and voltages with great accuracy, so this effect provides a very accurate
method of measuring the constant e/h.

As pointed out at the end of Section 19.6, the description of a system
with broken symmetry in terms of Goldstone modes alone becomes in-
adequate when a system is brought close to the point where the broken
symmetry becomes unbroken. Under these circumstances the Goldstone
mode is accompanied with other modes that have nearly zero frequency
in the long-wavelength limit, which together with the Goldstone mode
forms a linear representation, usually irreducible, of the symmetry group,
known as the order parameter. It is plausible to assume that a uni-
form superconductor in slowly varying external fields is described by a
local order parameter, because any non-locality would be characterized
by microscopic distance scales (such as the mean electron—electron spac-
ing) that are much smaller than the scales of distances over which the
clectromagnetic and Goldstone boson fields are assumed to be varying.
For superconductivity there is no doubt about the nature of this order
parameter. The only non-trivial irreducible linear representation of the
group U(1) is a real two-vector y,, or equivalently a Goldstone mode ¢



21.6 Superconductivity 337

and modulus field p, with

W1 + 2 = pexp (2ie¢/h) =1y, (21.6.20)

The coeflicient of i¢h in the exponential must be 2e/# in order that a gauge
transformation with A = nk/e (and with no smaller A) should leave v,
invariant. For a nearly uniform time-independent system close to the
symmetry-breaking transition, the order parameter is small and slowly
varying in space, and so the Lagrangian in an external vector potential A
may be approximated (from now on using natural units with % = 1) by

Ly~ d3x—1(V — 2i A)z Ly’ — 1 2
5 = ARA lelpymAYPm ) + s PaPy zg(TJ’ann) ,

(21.6.21)
where ¢ is the Hermitian U(1) generator

(0 =i
=(7 )

and g must be taken positive to give a bounded Hamiltonian. This is

the Ginzburg—Landau theory of superconductivity.#! It has been derived

by Gor’kov*® from the microscopic theory of superconductivity presented

below, in the case of a short-range potential and a temperature close to

the critical temperature at which the material loses its superconductivity.
In terms of p and ¢, Eq. (21.6.21) becomes

2 2

L~ f #x (2007 (Vo —A) + o’ — gt 1(Vp) ] . 2L622)
The field equations are then

V x B =4c’p*(Vp— A), (21.6.23)

Vip=—mp+gp} + 4 (Vo — A . (21.6.24)

The U(1) symmetry is broken if these field equations are satisfied for

p # 0, which in a field-free homogeneous material will be the case if

m*> > 0, in which case p takes the value (p) = m/ /g. The penetration

depth A was defined earlier as the inverse square root of the coefficient of
— (V¢ — A), so here

A= 1 = \/g } (21.6.25)
4¢2(p)2 2em

This is the distance that according to Eq. (21.6.23) characterizes variations
in the magnetic ficld. On the other hand, variations in the modulus p are
characterized by a distance scale known as the correlation length, given
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according to Eq. (21.6.24) by'T
E=1/my2. (21.6.26)

Also, the superconducting state with p = (p) has an energy per unit
volume that is less than that of the normal state with p = 0 by an amount

A= im*(p)* — Ypy =m*/ag . (21.6.27)

3

Eliminating the parameters m and g from Eqgs. (21.6.25)—(21.6.27), we find
one important approximate relation among the observable quaatities 4, &,
and A:
1
A= Re2i2E2

The modular field becomes important in the dynamics of superconduct-
ing vortex lines. These arise when a superconductor of a certain type is
placed in a magnetic field that is strong enough so that it is energetically
favorable for tubes of magnetic flux known as vortex lines to penctrate
the material ** (The conditions for the appearance of vortex lines are dis-
cussed below.) By drawing a closed curve € around the tube at a distance
much larger than the penetration depth, where the magnetic field vanishes,
and repeating the argument contained in Eq. (21.6.12), we see that the
magnetic flux through the area ./ surrounded by ¥ must be equal to the
change of ¢ around the curve, and hence equal to an integer multiple of
the flux quantum = /e, just as for the flux through a thick superconducting
ring. Where this flux is not zero, there must be a line within each tube
along which electromagnetic gauge invariance is not broken. To see this,
note that if we shrink the curve ¢ into the region of high magnetic field
it becomes no longer true that V¢p = A, but the change of ¢ around the
curve must remain an integer multiple of n/e, and so by continuity cannot
change. Thus we must eventually encounter a line (conceivably of finite
thickness) along which p vanishes, so that ¢ becomes ill-defined. (This is
an elementary example of the sort of topological reasoning we shall use
in Chapter 23.) Near this line we must take both p and ¢ into account as
dynamical variables.

The quantization of magnetic flux shows that a superconducting vortex
lin¢ of minimum flux n/e is stable. A vortex line of higher flux cannot
simply disappear, but magnetic flux quantization alone does not prevent
it from breaking up into vortex lines of smaller flux. Bogomol'nyi*** has
shown that vortex lines of flux an/e with n > 1 are unstable against
breakup into n vortex lines of flux = /e if and only if 4 > &.

(21.6.28)

" The factor \P is included along with m becausc at p = {p) the derivative of the
function —m“p + gp® in Eq. (21.6.24) is 2m°.
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For this and other reasons it is convenient to divide superconducting
materials into two classes: type I superconductors (most pure metals, except
niobium) have ¢ > A, while type II superconductors (nmobium and most
alloys) have 1 > ¢. The corresponding distinction in the electroweak
standard model is between theories where the scalar mass (analogous to
1/£) is less than or greater than the W and Z masses (analogous to 1/4).

From the definitions of the correlation length £ and penetration depth
A, it follows that the modular parameter will rise from zero at the central
line of a vortex to its equilibrium value (p) in a distance of the order of
the correlation length &£, while the magnetic field will decay with distance
from the central line in a distance of the order of the penetration depth
A. Hence a vortex solution in a type I superconductor with & > 4 would
consist of a thin inner cylinder of nearly normal metal, within which the
magnetic field drops to zero, surrounded by a much thicker outer cylinder
within which the modular parameter rises to its asymptotic value (p}. In
contrast, a vortex in a type II superconductor with A > & consists of a
thin inner cylinder of constant magnetic field, within which the modular
parameter rises to its asymptotic value (p), surrounded by a much thicker
outer cylinder of superconducting material within which the magnetic
field falls to zero. Vortex solutions exist for both types of superconductor
and for any magnetic field, but as we shall now see, it is only in type II
superconductors and in a finite range of magnetic ficlds that vortex lines
arc energetically favored.

Because each vortex line has a cross-sectional area of order n&2 within
which the material is in its normal state or nearly so, the extra energy per
volume required to create these vortex lines is of order N EA, where A
is the number of vortex lines per area. This vortex density is limited by the
condition that A" < 1 /72, since otherwise the cylinders of normal metal
would overlap, and the material would be considered to be in its normal
state. The magnetic field must be expelled from a fraction 1 — A 'zi? of
the material if .4~ < 1/742, and from the whole material if 4" > 1/742, so
the energy per volume of the vortex state, relative to the superconducting
state in the absence of magnetic fields, 1s

1 — A 1A N < 1 mi?

0 N = /i’ (21.6.29)

Wy ~ /A + 1B* x {

(Numerical factors like ! and n are kept here to remind the reader of
the origin of these expressions, but should not be taken literally.) For
comparison, the energy per volume of the normal metal ¢xceeds that in the
superconducting state by Wy = +A, and the energy per volume required
to expel all magnetic fields from a superconductor is Ws = B?/2. We can
decide which state is present at a given magnetic field by checking which

of Wg, Wy, or Wy is smallest.
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In type I superconductors we must distinguish between magnetic fields
less or greater than the critical field B, = \/2A. Recalling that 4" <
1/n&% and here ¢ > A, we also have 4" < 1/n/2. Hence for B < B.
Eqg. (21.6.29) gives Wy > 1B? + #'n(&? — A2)A > Ws, so there can be
no vortex lines. Also, for such fields Wy > Ws, so the material is
superconducting. On the other hand, for B > B, Eq. (21.6.29) implies
that Wy > A[l + A#'n(&2 — A2)] > Wy, so here again there are no vortex
lines. Also for such fields Wy > Wy, so the matenal is in its normal
state.

In type Il superconductors we need to distinguish between magnetic
fields in three ranges: B < B, B, < B < B, and B > B,», where B,
and B, are a pair of critical fields, of order

Bclz\/ﬁf/i, Bczﬁml/é.

As we have seen, for type II superconductors the only stable vortex lines
are those with the minimum flux* # /e, so in a magnetic field B we should
put the number of vortices per area .4 in Eq. (21.6.9) equal to eB/n.
For B < B, we can use Eq. (21.6.8) to show that eB/n < 1/mi%. The
coefficient of the vortex density in Eq. (21.6.29) is therefore the positive
quantity n&?A — 1B%4%, so here Wy > W, and there are no vortex lines
for B < B.1. Also, for such fields Wy > Ws, so the material is entirely
superconducting. For B > B, Eq. (21.6.28) shows that the vortex density
A" = eB/r is greater than 1/n4?, 50 in the vortex state the magnetic field
completely penctrates the superconductor, and the energy per volume is
given by Eqgs. (21.6.29) and (21.6.28) as

Wy ~ A nEA = eBEIA ~ (B/Bo)Wy ~ (B.1/B)Ws .

Hence for B,y < B < B, we have Wy < Wy and W, < W, so the
material is in its vortex state. For B > B we still have Wy < Wy but
now Wy < Wy, so the vortices disappear and all superconductivity is
extinguished. The ability of type II superconductors with A 3 £ to carry
magnetic fields much higher than the critical value B, = /A deduced

* The derivation of flux quantization given above for an isolated vortex line is not fully
applicable here. As we shall see, the separation of thc vortex lines for B > B, is
less than the penetration depth A, so it is not possible (o find a contour % on which
A — V¢ = 0 by simply drawing a circle around the vorlex line at a distance from
the vortex much greater than A. Instead, it is necessary to appeal to considerations
of continuity. (M. Tinkham, private communication.) Suppose we draw an arbitrary
continuous curve between the centers of any two vortex lines. As shown below, on
this curve the vector A — V¢ will be very large close to either vortex, but pointing to
opposite sides of the curve. Thus there is at least one point on each such curve where
A —V¢$ = 0. Because A — V¢ is gange-invariant, it must be conlinuous, so there is a
closed contour % around each vorlex line where A — V¢ = 0.
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earlier is important in technological applications of superconductivity,
including magnets in high energy accelerators.

The Ginzburg—Landau theory holds only where the material is near
the transition between its normal and superconducting states, so let us
apply it near the center of a vortex line, whete p drops to zero. Close
to the center of a vortex line we can ignore its curvature, and assume
cylindrical symmetry. The field A — V¢ is taken to have only an azimuthal
component:

(a- v¢>)9 = A(r), (21.6.30)
so that the magnetic field has only an axial component:
B, = (v x (A — vq)))z = A'(r)+ A()/r . (21.6.31)

while p is a function only of ». The structure of the vortex line 1s thus
governed by the pair of coupled differential equations:

pA(r)A(r)
Ap)? 7
pi(r)
(p)?

When r is small compared with both the correlation length £ and the
penetration depth 4 we can neglect the terms in Eqs. (21.6.32) and (21.6.33)
proportional to 1/£2 and 1/42, and find the simplified equations

A"+ r A ) —r2A() = (21.6.32)

p'0) =)+ 5 (otr) -

) = 42 p(r)A%(r) . (21.6.33)

A"+ A jr—A/rr =0, (21.6.34)
o'+ Jr=4e’A%p . (21.6.35)
Eq. (21.6.34) has the general solution
Br C
= 4+ — 21.6.
Alr) = = + 35—, (21.6.36)

where B is a constant that according to Eq. (21.6.31) 1s the magnetic field
along the vortex line, and C is a real constant that is so far arbitrary.
Using this in Eq. (21.6.35) shows that for r — 0, the solution for p(r) is a
linear combination of /¢! and r~I¢I, The order parameter p exp(2ie¢) must
be a smooth function of position, so we can conclude that |C| is a positive
integer /, with p oc v’ and ¢ = +£¢/2e+ constant for r — 0. Note
that this solution for ¢ is consistent with Eq. (21.6.36) with C = +¢; the
azimuthal component of V¢ approaches +#/2er, while analyticity requires
the azimuthal component of A to vanish as »r — 0. By a non-singular
gauge transformation we can arrange that ¢ = +/¢/2e everywhere, so
by the same reasoning as in Eq. (21.6.12) the magnetic flux carried by a
single vortex line in a superconductor much larger than the penetration
depth is 47 /e. We sce not only that, as expected, the order parameter
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vanishes at the center of the vortex line, but that it vanishes with a power
of r equal to the magnitude of the magnetic flux in units of = /e.

This solution for ¢ obeys the ‘quantization’ condition that ¢(27) — ¢(0)
Is an integral multiple of 7 /e, which implies the quantization of magnetic
flux. In the theory of Goldstone boson and electromagnetic ficlds based on
Eq. (21.6.5) this condition on ¢ has to be imposed by hand on the solution
of the field equations, while the Ginzburg-Landau equations ‘know’ about
this condition, because these equations are based on an appropriate choice
of order parameter.

¥ ¥ %

Although the most dramatic properties of superconductors can be de-
rived directly from the assumption that electromagnetic gauge invariance
is spontaneously broken, a microscopic theory of superconductivity is
needed to understand how and when this occurs. The derivation of the
microscopic superconductivity theory of Bardeen, Cooper, and Schrieffer?”
has been recast*# in the language of effective field theory, using power-
counting methods similar to those that we have used here in Sections
19.5 and 21.4. For this purpose, suppose we integrate out the degrees
of freedom associated with the ions in a superconductor ¥ leaving only
an effective interaction among electrons. For simplicity, we shall work at
zero temperature, and at first assume no external field, so that the La-
grangian is invariant under translations and the time reversal operation
T. We shall also assume spin-independent forces, so that the Lagrangian
is invariant under SU(2) transformations that act on spin indices alone,
but we shall not need to assume invariance under rotations acting on
momenta. Electrons are then characterized by a momentum p and spin
index s = £ }, and are described by annihilation and creation operators

24

a(p, s, t) and a'(p,s,t), with a Lagrangian of form
¢
L=-Y [dpd(pst)|—i-+E ,
s fd pa(ps, )[ vl (P)IQ(P S,1)

+ Z /d';pl d3p2 d3p3 d3P4 VS‘1 525‘154([)1? pz: p37 p4)

51 57 83 84
X al(pr,s1,t)a (P2, 52, ) a(p3, 53, ) A(Pa» 54, 1)3° (P1 + P2 — P3 — Pa)
o (21.6.37)

# Strictly speaking, it is not possible to integrate out all degrees of freedom except
¢clectrons, because the phonon is a Goldstone boson whose frequency vanishes for
very large wavelengths, like a massiess particle in relativistic theories. However those
effects of phonon inleractions that cannot be represented as effective clectron—electron
interactions are suppressed by inverse factors of the ion masses.
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where ‘- represents terms with six or more creation and annihilation
operators, and E(p) is the electron energy minus the chemical potential.
For free electrons, E(p) = p° /2m, — Ey where Eg is the energy of electrons
at the Fermi surface. Interactions will inevitably change this function,
but it is natural to expect that since E(p) vanishes for free electrons at
momenta p on the sphere |p| = /2m.Ey, in the presence of interactions it
will still vanish on some closed Fermi surface &:

E(py=0 for p on &#. (21.6.38)

For reasons that will become apparent, we shall integrate out all electrons
except those within a thin shell of thickness x around the Fermi surface.?
(Later we will be able to remove the cut-off ¥ by introducing a renormal-
ized electron—e¢lectron potential.) The remaining degrees of freedom are
then electrons with momenta of the form

p=k+iik), (21.6.39)
where k is on the Fermi surface 7, n(k) is the unit vector normal to the
surface at k, and 0 < ¢/ < x. For such momenta,

E(p) = vp(k)/, (21.6.40)

where

o (k) = fik) - (V,,E(p)) (21.6.41)

p=k
The electron propagator in wave numberfrequency space is then

1
» —vp(K) + i€’

(21.6.42)

Now let us consider how a general connected matrix element scales
with k as k — 0. We have an integral over frequencies for every loop,
and a propagator for every internal line, so the integral of the product of
propagators over all frequencies will have an / dependence /2!, where L
is the number of loops and I is the number of internal lines. To count the
number of / integrals, it is important to note that for generic momenta
the delta-function in the interaction term in Eq. (21.6.37} constrains the
ks, not the /s. (For instance, if momentum conservation constrains the
momenta p; and p2 of two electron lines to have total momentum P = Q,
then the integral over p; runs over the intersection of two closed shells of
thickness x, one centered on P and the other on zero. The intersection
of these shells is a closed ring of thickness x, so we have to integrate

? For forces that are not spin-independent, there are two Fermi surfaces, one for cach
eigenvalue of the matrix E¢(p), and we integrate over all electrons in each spin
cigenstate except those within a thin shell around the corresponding Fermi surface.
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over one k-component which gives position around the ring, and two /s
which give position within the cross section of the ring.) Thus there are I
integrals over /s, and since the integrand goes as #“~1, the matrix element
will vary as

M o kb, (21.6.43)

The number of loops is related to the number of internal lines and the
numbers V; of vertices of type i by the familiar relation

L=1-) Vi+1. (21.6.44)
i

Also, the number of internal lines is related to the numbers of vertices
and the number E of external lines by another familiar relation

A+E= nVi, (21.6.45)
i

where n; is the number of electron operators in the interaction of type i.
Eliminating I from Eqs. (21.6.44) and (21.6.45) gives

L=1—-1E+ 1) Vini—2). (21.6.46)
i

Terms in the action with n; = 2 just serve to change the function E(p),
and hence to shift the Fermi surface. True interactions have n; > 2, and
s0 it appears from Eqs. (21.6.43) and (21.6.46) that they yield terms in the
matrix element that make relatively negligible contributions for k — 0.
In the language of Section 18.5, this would mean that all interactions
are irrelevant operators. This is why electrons near the Fermi surface in
normal metals behave pretty much like free particles.

There is, however, an exception to this conclusion. If a pair of electron
lines disappears into the vacuum, then translation invariance requires the
momenta of these two lines to be equal in magnitude and opposite in
direction, so if one momentum is near the Fermi surface, then the other
1 also. (Time reversal invariance requires that E(p) is even in p, so even
though the Fermi surface is generally not spherical, it is still true that if
E(p) = 0 then E(—p) = 0.) The integral over the momentum p of one
of these lines is then over a shell of thickness k, or in other words over
two ks and one /. For each interaction involving two such lines, we have
one rather than two integrals over /s, so that instead of reducing the
order of magnitude of the matrix element by a factor k as indicated in
Eqs. (21.6.43) and (21.6.46), such an interaction has no effect on the order
of magnitude of the matrix element, In other words, interactions involving
four electron operators become marginal rather than irrelevant if they act
between electron lines that eventually disappear into the vacuum.
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To see the consequences of this exception, it is convenient to use a trick,
known as the Hubbard-Stratonovich transformation,® that was mentioned
briefly in Section 10.7. We are now going to include slowly varying external
electromagnetic fields, so it will be convenient to work in coordinate space.
Gauge invariance tells us that the Lagrangian (21.6.37) then becomes

L= Z/d3x wl(x,1) [ — icfr — Ao(x,t) + E( — iV + A(X, t))] ps(X, 1)

3 3 3 3
+ Y /d x1d xad x3d° x4 Vi 5, 535,(X15 X2, X3, X4)

4] 82 53 83
x lp.;‘f-] (Xla t) IPIE (xza t) w&j (x3: t) 1P:;4 (X4: t) » (21647)
where
wo(x, 1) = (2m)? / &p explip - X)a(p,s, 1) . (21.6.48)

We are now dropping terms with more than four electron operators,
because they are all irrelevant. To this Lagrangian we add the term

AL = - /da'x:l d"’xgd x3d3x4 Z Viisasasa(X1 X2, X3, Xg)

518282584
[TLSI(XQ: X1, t) - ‘PIL(XI, t} 1}-’52(’(25 t):|
x [T§3S4(X3: X4, t) - ng(X,% I} w54(x4; t):l (216‘49)

and do path integrals over the new ‘pair’ field W(x, s, X/, &/, t) as well as the
electron field 1. This is allowed because AL is quadratic in the pair field,
with a field-independent coefficient of the second-order term, so, according
to the appendix of Chapter 9, the integration over Wsy(X, X/, ) in path
integrals just has the effect of setting Wy (x, X, t) equal to the stationary
point W, ¢ (x, X, t} = (X, t)py (X', t) of the Lagrangian, at which AL = 0.
This additional term is chosen so that the terms in L+ AL that are quartic
in electron fields cancel, leaving only terms quadratic in these fields:

L+ AL
= —Z/dqx lps(x,t){ t?& — Ap(x, r)+E(—1'V+A(x,£))}1p5(x,t)
1

3 3
7 / d X1 d xzd X';d X4 V’slﬁ‘g 53 m(xls X2, X3, X4)
§1 525354

x !wsl(xl t) IPSQ (Xz, t) lPS3b4 (X?, x49 t) + lP,sqs] (x27 xla t)’!’s; (X3> t) q754(X4, t)

3381

- LPT (x29 Xy, t) lIJ.‘;}.‘M_(X% X4, t)] . (2]650)
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Now to the point. We have shown that the interaction V is irrelevant
except where it acts on a pair of electron lines that disappear into the
vacuum. When we calculate the quantum effective action I'[¥] in the
presence of an external, slowly varying pair field W, (x, X/, t), this means
that we drop all diagrams except those that become disconnected when
we slice through any internal ¥ line. But the general definition of the
quantum effective action requires that we drop all diagrams that do
become disconnected when we slice through any internal line. 7herefore
we must not include any internal W lines at all. Because the electron field
enters quadratically in Eq. (21.6.50), the only graphs that survive when
we integrate out the electron field are a one-vertex graph arising from the
last term in the square brackets in Eq. (21.6.50), plus a one-loop graph
given, by the same reasoning as in Section 16.2, by the logarithm of the
determinant of the coefficient of the terms quadratic in electron fields:

1
F[\P] = Z Z fdt ]d3XI d3x2 d3x3 d3x4 VS| 8183 .‘ig(xla X2, Xi, X4)

51 82 5184
x LIJI25|(X2: Xl: I) \P6354(X3: X4., t)

—;ln Det ( ;’r —iT ) + constant . (21.6.51)

where 4 and B are the ‘matrices’:

¢
Ax’s’r’,xsr = 55’5{ - ié} — Ao(x, t) + E( — iV 4+ A(x, f)) }53(75 — X)(S(tr — 1),

(21.6.52)
Bx’s’r’,xsr = _As’s(xfs X, t)a(t’ - t) s (21653)

and A is the gap function:
1
Acs(X, %, 1) =537 f Py Y Voo (X, %Y. 5) Pes(X, %, 1) . (21.6.54)

(Here and below, we ignore an additive constant in I' arising from the
modes that have been integrated out.) This is one problem in which
the effective action can be calculated without any assumption about the
smallness of the interaction in the Lagrangian.

In order to simplify our further discussion, let us now specialize to the
case of a spin-singlet pair field

Vo (xX,x, ) =—-P_.(x,x, ) =¥(X, x, 1), (21.6.55)

where subscripts + and — stand for spin indices +1/2 and —1/2,
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respectively.f® Using invariance under rotations of spin indices, the com-
ponents of the potential needed here are then

Vieer(,%, ) = Vo (X, %, ) = Vo (X, %, ) + Vo4 (X, X, 1)
=2V(X, x, 1). (21.6.56)

Then Eq. (21.6.54) gives
A (X, %, 1) = —A_ (X, X, ) = AKX, x, 1), (21.6.57)
Ay(xX,x, )=A__(x',x, 1) =0. (21.6.58)

The quantum effective action (21.6.51) is now

I'[Y] = [dt fd3x1 d*xydx3 d3x4 VX1, x2, X3, X4)

X q"T(XQ, X1, 1) W(X3, X4, 1)

—iln Det ( ;;; ~ jT ) (21.6.59)
where
S s = { _ ia% — Ao(X,1) + E( — iV + A(x, r)) }53(xf —x)3(t — 1),
(21.6.60)
Bovx = —AX, x, 1) 6(' — 1), (21.6.61)
and
AX, x, t) = f Pydy VX x,y, )P, ¥, 1) . (21.6.62)

Let's first use these results to consider the translationally invariant case,
with no external electromagnetic fields. Then the pair and gap fields can
be expressed as Fourier transforms

WX, x) = ] &p g (p) (21.6.63)
A(X', %) = (27) 3 / Pp PEAp) (21.6.64)
and the electron—electron potential appears here in the form
/d3x1 AP x> d3xy d¥ xy P 1732 ip(x5—x) V(xq,X2,X3,X4)

=94 V(p,p), (21.6.65)

%% In liquid He® the non-vanishing components of the pair field form a spin triplet, with
components ¥, =¥, ,, ¥ = ﬁ‘{q_ = ﬁ‘l’,+, Y, =9__
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where ¥4 is the spacetime volume

v, = f ix [ dr 1. (21.6.66)

By going over to wave number—frequency space, the ‘matrices’ (21.6.60)
and (21.6.61) become diagonal, and the calculation of the determinant
becomes trivial. The effective potential V'[¥] (not to be confused with
the electron-electron potential) was defined in Section 16.1 as minus the
effective action per spacetime volume:

VI¥Y] =—-1T¥]/¥4
__ f Ppdp W (p )V (0, p)¥(p)

! 3 |A@)I®
+ oo fdco #p In (1 T BT ie) (21.6.67)

with
A =— [ Vo) ¥0). (21668

(The ie term can be inferred from the Feynman rules for the electron
loop graphs, and as shown in Section 9.2, it ultimately arises from the
conditions on the electron field at + — Fo0.) Wick rotating, integrating
over o, and expressing ¥ in terms of A, this becomes

Vial=- / Epdy @)V . p)AP)
_(21]:)3 f Cp[\EX®) + 1@ — E@)] . (21.669)

As we saw in Section 16.1. the field equations are just the condition that
the effective action is stationary, which in our case yields the famous gap
equation for the equilibrium gap function Ag(p):

_ o V[A]
OA*(P) | a=aq

=—[fﬁVNEMMm%—

Aa(p)
207 \JEAp) + 180()P

or, in a more familiar form,
1 / &y Vie.p)Ao(p)
22wy’ VEX®) + [Ao(p)

All along, all integrals over momenta have been implicitly understood
to be limited to momenta of the form (21.6.39) within a thin shell of

Ao(p) = — (21.6.70)
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thickness x around the Fermi surface. The effective potential (21.6.69) is
thus

VIA] = —2 f Pk KA K)V (K, K)AK)

(27{)3f f [\ 2 03E) + DK — Zopk)] . (21671)

The effective potential is now to be understood as a functional only of the
gap function A on the Fermi surface.

Since x is arbitrary, the potential V(k’, k) must be given a x-dependence
such that V[A] is x-independent. Most applications* of renormalization
group methods to superconductivity have followed the Wilson approach
outlined in Section 12.4, deriving a differential equation for the dependence
of V(k',k) on x, and studying the behavior of its solutions for x — 0.
For the sake of flexibility it is useful to note that one can just as well
adopt the approach of Gell-Mann and Low, and introduce a renormalized
electron—electron potential#*

5°V[A]

—1p,! _
Vi e ky=— 5A*(K'YSA(K)

, (21.6.72)
Adk)=Adk)* =4

where p is a sliding renormalization scale, like that introduced in Section
18.2. By expressing the original electron—electron potential in terms of Va,
Eq. (21.6.71) becomes

VIA] = — [ Pk P A KWK K)AK)

f dff d*k [ 202 (k) + |A(K))2 — Zop(k)

B Ak)? 12| AK)[2
2¢203(k) + )12 T A(L20d (k) + p?)?

] . (21.6.73)

The integral over £ now converges if we take the cutoll x to infinity, and
yields

VIA] = [ Pk KA KV (K, K)AK)

2(%@3 /5,, Pk %}AF(:‘_]ZF [111 ('—‘9%) _ 1} . (216.74)

The condition that '[A] be stationary at A = Ay yields the gap equation
in the more useful form

1
Ao(k) = 5

+

k' V,(k,K)og' (K)Ag(K') In ('AL;‘)') . (21.675)
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Using this in Eq. (21.6.74) shows that the energy density of the supercon-
ducting state is less than that of the normal state by an amount

Ag(k)}?

A=V(0 2k D0 21.6.76

(0) = ViAo) = f 2(27)%up(k) (21.6.76)
Of course the i dependence of the electron-electron potential V, must

be chosen to satisfy a renormalization group equation that insures that the

effective potential (21.6.74) is independent of the arbitrary renormalization

scale p:

§%(K — k)

d —1y.t _
v (k’k)__z(zn)3uF(k)

#a o
or, equivalently,
d
— V. (k' k)=
H’ dﬂ. ,(l( > ) 2 2
This can be usefully rewritten in terms of the Hermitian kernel
1

K' VK K o (K V(K" k) . (21.6.77)

K, (K, k) = et vr 2K ) op A (k) V(KL K) (21.6.78)
as
dK K? 21
b g Ke =K (21.6.79)

The eigenvectors u,(k) of K, (k. k') are then independent of p, while
the eigenvalues take the form 1/In(A,/u), where the A, are integration
constants, like the A of quantum chromodynamics. The potential therefore
takes the form
tin(k) 15 (k')

(A /)
where we have chosen the eigenvectors to be orthonormal, so that the
completeness relation takes the form

> un(kyu (k') = 6*(k — k') . (21.6.81)

Vu(k' k) = 2021 0} (k) oy 2 (') (21.6.80)

The effective potential (21.6.74) may then be written as

21s A* (k") u, (k') A(k) (k) |AK)[Y
D Dy ST (500 1}2'
(21.6.82)

For a material with local rotational invariance the Fermi surface is a
sphere and the eigenvectors u,(k) are spherical harmonic functions of the
coordinates on this sphere, but Eq. (21.6.82) holds without any assumption
of rotational invariance.

VIAl= 33
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We can now use this formalism to get an idea of when superconductivity
occurs. The logarithm in Eq. (21.6.82) is large and negative for very small
A, and large and positive for very large A, so as the overall scale of A
increases from zero to infinity, V' [A] drops from zero to negative values
and then rises to infinity. It therefore always has a minimum at a non-
vanishing value of A for any electron-¢lectron potential. But this result
1s subject to an important qualification. When we take the cut-off x
to infinity, the integral in Eq. (21.6.73) is effectively cut off at # of order
|A|/vr, while the Fermi surface has a radius of order &k, where 8nk;"; /32n)}
equals the electron number density. Since we have been assuming that
the electrons taken into account here are in a thin shell around the Fermi
surface, this derivation is only valid if |A| < wp, where wp is the Debye
frequency krvp. In particular, in the case of rotational invariance and a
direction-independent gap function, the effective potential reaches a local
minimum for a gap function of the order of Ay wave, S0 the symmetry is
spontaneously broken as long as Agyave <€ wp. Another way of stating
this result is that for s-wave superconductivity, the s-wave projection of
the electron—¢lectron potential (21.6.80) must be attractive if renormalized
at a scale u = wp. But it does not matter how strong this renormalized
attractive potential is.

This feature of superconductivity, that a Goldstone boson forms for an
attractive potential however weak the potential may be, is a consequence
of the existence of a Fermi surface, which enhances long-range effects.
In quantum field theories without elementary spinless fields like those
of Section 21.5, we would not normally expect a spontancous symmetry
breakdown in empty space unless the interactions are sufficiently strong.

Now let us return to the case of an external electromagnetic field. As
usual, we can introduce the Goldstone boson field ¢(x,t) by writing each
charged field of the theory, which here is just the gap field A(x,x’,t)
or equivalently the pair field W(x,x',t), as a gauge transformation with
gauge parameter ¢(x,t) acting on the corresponding gauge-invariant field,
distinguished with a tilde:

P(x,X',t) = exp ( — i(x, t))fif(x, X', t)exp ( — (¥, r)) . (21.6.83)

The effective action is then given by using Eq. (21.6.83) in Eq. (21.6.59).
By a gauge transformation, we can then remove the ¢ dependence in
Eq. (21.6.83), provided we replace A,(x) in Eq. (21.6.60) with A,(x) —
du(x). When the material is not only superconducting but far from
the transition between normal and superconducting states, we may also
integrate out the gauge-invariant degrees of freedom associated with
P(x,x',t), which simply means that we replace it with its equilibrium
value Wy(x,x',t). The part of the effective action that depends on the
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Goldstone and external electromagnetic fields is then

. o B . o 0

I, A) =Ta=gl4] —i In Det[ B _T } + i In Det [ 0 T |

(21.6.84)
where now
é .

A oy gt = |—i o + eAp(x,t) — ed(X,t) + E( — iV 4+ eA(x, t) — eVe(x, t))]
x 83(x' —x)8(t' — 1), (21.6.85)
@x’r’,xr = AO(XI - x)&(t’ - t) - (21686)

Quantitative properties of the superconductor such as the penetration
depth can be read off* from the expansion of Eq. (21.6.84) in powers of
Ap(x,t) — p(x,t) and A(X,t) — Vo(x,1).

Appendix  General Unitarity Gauge

In this appendix we shall show that in general spontaneously broken
gauge theories it is always possible to adopt a ‘unitarity’ gauge in which
the Goldstone boson fields satisfy Eq. (21.4.30):

> Filaean =0. (21.A.1)
b

Using the exponential parameterization for all groups, we note first that
any element of G, in at least a finite neighborhood of the identity, may be
put in the form

g = exp (——iz wafa) exp (iz qbaxa) exp (iz m) ., (21.A2)
o o i
with ¢, subject to the linear constraint that for all

Z o Pa€ab = (21.A.3)

This is easy to see when g is infinitesimally close to the identity. Any such
g may be written

g=14+iY $xa+iy i, (21.A.4)
a i

with ¢2 and p? infinitesimal. Equivalently,

g=14iY axa+iy piti—iy 0.7, (21.A.5)
i i o
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where 0, is an arbitrary infinitesimal, and

Qba(g) = ¢’2 + Z Baec{a , (21A6)
pi(0) = 1 + Z Oxeys . (21.A7)

For any given ¢, we can choose 8, to minimize the positive quantity

Z S ®a(0)ep(0) . (21.A.8)

At this minimum, the quantity (21.A.8) is stationary with respect to
variations of 8, s0 ¢,(0) satisfies Eq. (21.A.3). For ¢, y, and 0 infinitesimal,
Eq. (21.A.5) is the same as Eq. (21.A.2), so we see that the set of all gs
of the form (21.A.2) (with ¢, satisfying Eq. (21.A.3)) includes all gs
infinitesimally close to the identity. It follows then from continuity that
the same is true of all gs in at least some finite neighborhood of the
identity.
Next, consider the particular group element

y(€) =exp ( > éaxa) (21.A.9)

and write it in the form (21.A.2):

£) = exp (—izﬁ'a(é)- ) 7 ($(S)) exp( Z#z )t:) ,  (2LA.10)

with ¢,(&) subject to Eq. (21.A.3). This just says that the gauge transfor-
mation exp (i Y. 0.(5)T a) transforms &, into

£a = Pa(l). (21.A.11)

Now dropping the prime, we have thus succeeded in constructing a gauge
in which ¢, satisfies Eq. (21.A.1), as was to be shown.

Problems

1. Calculate the effective ghost Lagrangian in a ‘generalized unitarity
gauge,” with B[f] given as usual by Eq. (15.5.22), but now where
Jau(x) = 1pn(x)(tx)um{@dm(0)) vac, with ¢, real scalar fields, and ¢,
imaginary antisymmetric matrices representing the Lie algebra of
the gauge group. What is the ghost propagator? Is this part of the
Lagrangian renormalizable?

2. What would be the effect in the SU(2) x U(1) electroweak theory if
the gauge symmetry were broken by the vacuum expectation value
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of a field ¢ belonging to a real triplet é = (¢+, ¢°, ¢7) instead of
the usual complex doublet (¢°, ¢™)?

. Consider the standard electroweak theory, with a single scalar doub-

let. In one-loop order, calculate the effect of Z° and neutral scalar
exchange on the anomalous magnetic moment of the muon.

What is the lowest-order magnetic moment of the W+ and Z°
particles in the standard electroweak theory?

. What would be the effect of the discovery of a fourth generation

of quarks and leptons on the predictions of the unified theories of
strong and electroweak interactions discussed in Section 21.57

. Suppose that several fields with incommensurate values of the

electric charge had nonvanishing vacuum expectation values in a
superconductor. What effect would this have on the properties of
superconductors discussed in Section 21.67
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22

Anomalies

There are subtleties in the implications of symmetries in quantum field
theory that have no counterpart in classical theories. Even in renormaliz-
able theories, the infinities in quantum field theory require that some sort
of regulator or cut-off be used in actual calculations. The regulator may
violate symmetries of the theory, and even when this regulator is removed
at the end of the calculation it may leave traces of this symmetry violation.
This problem first emerged in trying to understand the decay rate of the
neutral pion, in the form of an anomaly that violates a global symmetry
of the strong interactions. Anomalies can also violate gauge symmetries,
but in this case the theory becomes inconsistent, so that the condition
of anomaly cancellation may be used as a constraint on physical gauge
theories. The importance of anomalies will become even more apparent
in the next chapter, where we shall study the non-perturbative effects of
anomalies in the presence of topologically non-trivial field configurations.

22.1 The n° Decay Problem

By the mid-1960s the picture of the pion as a Goldstone boson associated
with a spontaneously broken SU(2) ® SU(2) symmetry of the strong
interactions had scored a number of successes, outlined here in Chapter
19. However, this picture also had a few outstanding failures. The most
disturbing had to do with the rate of the dominant decay mode of the
neutral pion, z° — 2y. It was the solution of this problem that led to the
discovery of symmetry-breaking anomalies.

After integrating out all heavy and trapped particles, we would expect
the effective Lagrangian for n° — 2y to be given by the unique gauge-
and Lorentz-invariant term with no more than two derivatives:

Py = gnle P Fy Fyy (22.1.1)

where g is an unknown constant with the dimensions [mass]~!. The
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methods of Section 3.4 can then be used to calculate the rate for 7% — 2y

3.2
T(z" = 2y) = ’"’f . (22.1.2)

One might naively expect g to be of order

62

= 8nlF,
where F, ~ 190 MeV is used as a typical strong interaction mass scale,
and a factor 1/87° is inserted because the graphs responsible for 70 — 2y
would have to include at least one loop. For instance, in 1949, using
the pre-QCD theory of pions and nucleons with interaction Lagrangian
iG.n7 - N2fysN, Steinberger! calculated that the contribution to g from
triangle graphs with a single proton loop is

2 GoN

- SZanN )

g (22.1.3)

ga (22.1.4)

This is numerically not very different from Eg. (22.1.3), because the
Goldberger-Treiman relation (see Section 19.4) gives G,y = 2Zmng4/Fr.

This estimate of the amplitude for 7% — 2y leaves out the special
constraints imposed by the SU(2) ® SU(2) symmetry. The electromag-
netic interaction violates most of this symmetry, but at least formally i1t
has no effect on the U(1) x U(1) subgroup generated by the electrically
neutral generators of SU(2) ® SU(2). Acting on quarks, the infinitesimal
pseudoscalar element of this subgroup has the effect:

ou = ieysu , dd = —ieysd , (22.1.5)

so that the electric current 1s invariant:
2 1-
o [gﬁy”u — gdy*”d} =0, (22.1.6)

(This argument was made by Sutherland? and Veltman® before the advent
of quantum chromodynamics, with the proton and neutron in place of
the u and d quarks.) Because the #° is the Goldstone boson associated
with this symmetry, a non-derivative interaction like (22.1.1) can arise
only from the breaking of this symmetry by quark masses, and so must
be proportional to m2 oc m, +my. With this in mind, we would expect the
constant g to be suppressed®? by an extra factor m2/ mffvz

2 2
e m
g (M) (22.1.7)
SniF, (mi,)

(In place of my we might have used the chiral-symmetry-breaking scale
2nF, = 1200 MeV discussed in Section 19.3, with little change in our
results). There are also chiral-invariant effective 7y interactions involving
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the derivative of the n° field. Lorentz invariance requires that these involve
at least two additional derivatives. Using the homogeneous Maxwell
equation ,F,; — 0,F,; = —0;F,, and integrating by parts, we see that
there is only one independent chiral-invariant coupling with just two extra
derivatives, given by inserting a d’Alembertian acting on the =° field in
Eq. (22.1.1). On the pion mass shell this is just the same as an interaction
(22.1.1) with an extra factor m2, leading to the same estimate (22.1.7). It
was sometimes said that chiral symmetry would forbid the decay =® — 27,
but it is more accurate to say that chiral symmetry would make the rate
for this process go as m! instead of m for m; — 0.

The difficulty is that the observed rate for n° — 2y is much larger than
would be expected from Eq. (22.1.7), and is in fact much closer to what
would be inferred from the naive result Eq. (22.1.3). To be specific, from
Eqgs. (22.1.7) and (22.1.2) we would expect a decay rate
m7cx2

I’ -2y~ ———
43 F2mb,

=19 x 108 71, (22.1.8)

while using Eq. (22.1.3) in place of Eq. (22.1.7) would give

m3 o

[(z° - 2y) ~ ywy
n

=4.4 x 101057 . (22.1.9)

The observed rate is I'(n® — 2p) = (1.19 + 0.08) x 10'® s~1, which is in
satisfactory agreement with the naive rough estimate (22.1.9), and almost
three orders of magnitude larger than the ‘improved’ result (22.1.8)! One
is forced to the conclusion that something anomalous here is invalidating
the chiral symmetry that led us to introduce the additional factor m2 /m%,
in g. Similar problems arise in trying to understand the rates of some
other processes, such as #° — y + 7.

In 1969 the source of this anomaly was traced by Bell and Jackiw* to
the violation of chiral symmetry by the regulator that is needed in order to
derive consequences of the conservation of the neutral axial vector current
for one-loop Feynman diagrams. Their result was confirmed, generalized,
and extended to higher orders by Adler’. It was subsequently realized in
1979 by Fujikawa® that in the path-integral formulation of field theory
the chiral-symmetry-breaking anomaly enters only in the measure used
to define the path integral over fermion fields. As we shall see in the
next section, this approach makes it simple to ¢valuate the amplitude for
7% — 2y produced by this anomaly to all orders of perturbation theory.
After that, we shall return to the direct calculation of anomalies in more
general theories, and discuss various applications.
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222 Transformation of the Measure: The Abelian Anomaly

We now turn to a calculation of anomalies of the sort relevant to n° de-
cay. For this purpose we adopt Fujikawa’s interpretation® of the anomaly
as a symptom of the impossibility of defining a suitably invariant mea-
sure for integrations over fermionic field variables. Fujikawa’s analysis
of this problem was based on the use of path integrals in Euclidean
space, and on an expansion of the fermionic variables of integration in
eigenfunctions of the gauge-invariant Dirac operator, which is Hermitian
in four-dimensional Euclidean space. Here we shall first present a less
rigorous derivation, based on the familiar path intcgrals in Minkowski
space, which will allow us to obtain the correct answer with a minimum
of work. The Euclidean approach will be taken up briefly at the end of
this section, and used to derive a famous index theorem.

We will start by evaluating the anomaly in the transformation of the
measure under an arbitrary local matrix transformation y(x) — U(x)p(x)
of a column p,(x) of massless complex spin 1/2 fermion ficlds that
interact non-chirally with a set of gauge fields 4%(x) (such as the u and
d quark fields interacting with the electromagnetic vector potential A#{x)
in the problem of calculating the rate for z® — 2y). These are fermionic
variables, so the measure is transformed not with the determinant of the
transformation matrix, but with its inverse:

[dy][dip] — (Det % Det %) [dylldi], (22.2.1)

where
Unym = UX)amd (x = ¥) , (22.2.2)
Usnym = [aU(X) palwmd*(x — ) (22.2.3)

and y4 = ip° is the matrix used to define P = yTys. The indices n, m run
over flavor labels and Dirac spin indices.

The reader may wonder at this point why we bother to include factors
of p4 in Eq. (22.2.3), since they just amount to a unitary transformation
that should not affect the determinants. The answer is that in order for
calculations to be meaningful we will find it necessary to regulate the
sum over fermion modes in calculating propagators and determinants,
and we shall find that the y4 factors do affect the regulated determinants.
Whether or not we include the y4 factors thus depends on the method
of regularization that is used to make these hand-waving manipulations
meaningful. We include the factors of y4 because we wish to regulate in
such a way as to preserve Lorentz invariance, and in the cases of interest
here it is y4 U(x)t 74 rather than U(x)" that transforms as a scalar.

First, let us consider the case where U(x) is a unitary non-chiral trans-
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formation
U(x) = expliz{x)t] , (22.24)

with ¢ an ordinary Hermitian matrix (not involving ys, but not necessarily
traceless) and o{x) an arbitrary real function of x. In this case # is
pseudounitary:

AU =1, (22.2.5)

so the measure is invariant under this sort of transformation. In particular,
the symmetry under the gauge group itsclf, where ¢ is one of the non-chiral
generators 1, is not spoiled by any anomalies.

Next, consider a local chiral transformation, with

U(x) = expliysa(x)t] , (22.2.6)

with ¢ again an ordinary Hermitian matrix and a{x) again an arbitrary
real function of x. In this case % is pseudo-Hermitian:

U=, (22.2.7)

The measure is not invariant under the chiral transformation; rather, we
have

[dy]ldip] — (Det %) [dyw][dip] . (22.2.8)

Now let us specialize to the case of an infinitesimal local chiral trans-
formation. Taking a(x) to be infinitesimal in Eq. (22.2.6), we have here

[% — ey = i0()[ys tlam 5H(x — y) . (22.2.9)

Using the identity DetM = expTrln M and the limiting formula In{1 +
x) — x for x — 0, the measure now has the transformation property

[dy]ldp] — exp {i/d“x oc(x).saf(x)} [dy]ldi], (22.2.10)

where </ is the anomaly function:
S(x) = —2Tr {yst} 8%(x — x), (22.2.11)

with ‘Tr" here denoting a trace over both Dirac and species indices. The
measure [dy][dip] appears in the path integral weighted with a factor
exp{i [ d*x #(x)}, so the factor exp {i [ d*x cx(x)&é’(x)} in the transforma-
tion rule (22.2.10) for the measure has the same effect as if the Lagrangian
density .#(x) were not invariant under these transformations, but instead
Z(x) - £L(x)+ a(x)o/(x). Hence when we use an effective Lagrangian
with the fermions integrated out, to take account of the anomaly we must
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be sure to include a non-invariant term so that
Pei(x) = Len(x) + a(x)H(X) - (22.2.12)

It now remains to calculate the anomaly function #/(x).

At first sight it does not look like we can get any definite result for
the anomaly. The delta-function is infinite, but the trace vanishes. To do
better, we must introduce a regulator to make 8%(x — x) meaningful. We
can do this in a gauge-invariant manner by inserting a differential operator
f(— P2/M?) acting on the delta-function before taking its argument to
Ze10:

ad(x) = —2[Tr {pst f(— Py MO} ' —p)] (22.2.13)
Here D, is the Dirac differential operator in the presence of the gauge
field A%(x):

(D) = 5y — itaAuy() (22.2.14)

Also, M is some large mass, eventually to be taken to infinity, and f{(s) is
a smooth function, subject only to the condition” that as s goes from O to
o0, f(s) must drop smoothly from ! to 0:

o) =1, floo) =0, (22.2.15)
sfl(s)=0 at s=0 and s=00. (22.2.16)

Note that we do not take the regulator function to be a function of ¢,
because we want to preserve gauge invariance, and we do not take it
to be a function of D¥D,, because we need it to regulate not only the
determinant but also the fermion propagator D",

To evaluate the expression (22.2.13), we use the Fourier representation
of the delta-function, and write the anomaly function as

a(x)=-2 | (—% [Tr {51 7= Bym?)} 0]

y=x

<o [ S fsn(-uwen )}

(A derivative with respect to x gives zero when acting on the extreme
right in the second expression, but not when acting on Aay(x).) Rescaling
the momentum k* by a factor M, this is

d*k

A (x) = —2M* ame T {vst f(— i K+ yx/M]Z)} . (2217

* For instance, we might take f(s) = ¢~ as done originally by Fujikawa, or f(s) =
1/(1+s).
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The argument of the cut-off function may be written

. er ) _ ik~ Dy (%)2
- = =kF—— =] . 22218
{‘ Y M M (222.18)
Eq. (22.2.17) reccives contributions in the limit M — oo only from terms
in the expansion of f(—[i k+ Py/M]?) that have no more than four
factors of 1/M, and also only from terms that contain at least four Dirac
gamma matrices, because otherwise the trace over Dirac indices vanishes.
This leaves us with only the terms of second order in [2:
d4k . 4
A(x) = — Wf (k) Tr {yst 1),(} , (22.2.19)
which are now independent of the regulator mass M.

To evaluate the integral over k, we perform the same sort of rotation of
the k% contour of integration as in evaluating Feynman diagrams, so that
in effect k° is replaced with ik?*, with k* running from —oo to 4-co. (This
is a step that can really only be justified by working with Euclidean path
integrals from the beginning.) The integral is then in effect

o0
f K Fk) = i / 2556 dic () (22.2.20)
0
By repeated integration by parts using Eq. (22.2.16) and then Eq. (22.2.15),
this is
oo jea]
/ Ak £ (k?) = in2 f dss f(s) = —in’ / dsfi(s) = in®.  (22221)
0 0
To calculate the trace, we write

0= LD D)} v} + LD DD [ ]
=Di— Lt F& [yun] (22.2.22)

The only term in [} that contributes to the trace over Dirac indices is the
one involving a product of four Dirac matrices, which gives

tro {ps [V 1] [):p,yﬂ]} =161¢€4pq , (22.2.23)

where ‘trp’ denotes a trace over Dirac indices only, and as usual €uvpa 18
the totally antisymmetric tensor with %23 = 1.1, Using Eqs. (22.2.21)-
(22.2.23) in Eq. (22.2.19) then gives the anomaly function as

1
o (x) = T F"(x) FE"(x)tr {ta gt} (22.2.24)

with ‘tr' here denoting a trace only over indices labelling the various
fermion species. In the special case in which ¢ is the unit matrix, the
quantity (22.2.24) is known as the Chern—Pontryagin density.

This result can be expressed in terms of the current associated with the
anomalous symmetry. If we assume for simplicity that the action itself
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is invariant under the symmetry transformation p{x) — y(x) -+ itysop(x)
with constant infinitesimal parameter «, then as discussed in Section
7.3, the change in the action when we make such a transformation
with a spacetime-dependent parameter o(x) may be written as 6] =
[ d*x J¥(x)0,a(x), where JE(x) is the current that becomes conserved
when the field operators satisfy the dynamical equations that make the
action stationary with respect to arbitrary variations in the fields. When
we make the change of vanables dy(x) = itysa{x)yp(x), the change in the
path integral over the fermionic fields is

5 / [dy]idip] ¢ =i f d*x f L[] [ (x)(x) + JE(x)B(x)] e
(22.2.25)

But this is a mere change of variables, and so for arbitrary a(x) it cannot
affect the path integral. Therefore for arbitrary gauge ficlds

1
[

where for any operator ¢, ()4 is the quantum average of ¢ in a fixed
background field A#(x):

(@), = L1wldn e’
Jly)idpTel

Incidentally, it is possible to rewrite Eq. {22.2.26) as a conservation
condition. Consider the special case where tr {t,tgt} is proportional to
60('3.

(22.2.27)

tr {tytgt} = Ndug . (22.2.28)
Define a current known as the Chern—Simons class:
1
Gt = 2elvAp [AWGAAW + gca'g},Avaﬁ,{A},pJ
1
— Hrip [AW Foop— gcaﬁyAwAmAw} , (22.2.29)
which satisfies the identity
1
8,G* = Eeﬂwlﬂ Fow Fpip - (22.2.30)
Eq. (22.2.30) allows us to rewrite Eq. {22.2.26) as the condition
0, K¥ =0, (22.2.31)
where
Ke= (1) + N g (22.2.32)
5 A 87:2 . - -
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However, we cannot use the conservation of the current K# to argue, as
we did in the previous section, that the process n° — 2y is suppressed,
because in making that argument we assumed not only the chiral symmetry
associated with axial-vector current conservation but also electromagnetic
gauge invariance, and as we see from Eq. (22.2.29), the current K# though
conscrved is not gauge-invariant.

Our derivation of the formula (22.2.24) for the anomaly shows that
if we had evaluated the anomaly function using a differential operator
f(— #2/M?) in place of f(—= P2/M?) in Eq. (22.2.13), we would have
obtaincd a vanishing anomaly function. In fact, with this regulator
procedure the axial-vector current is K#, not J{. The trouble with this
procedure, as mentioned above, is that the regulator operator is no longer
gauge-invariant, resulting in the presence of a non-gauge-invariant term
in K#, There is no regulator procedure for fermion propagators as well as
determinants that is both gauge- and chiral-invariant.

We may now return to the problem that gave anomalies their start,
and use our results to calculate the actual rate of the process 7% —
2y. The symmetry of interest here is generated by charge-neutral chiral
transformations of the light quark fields:

ou = ioysit , dod = —iaysd . (22.2.33)

This symmetry is anomaly-free in pure quantum chromodynamics, because
the u and 4 belong to the same representation of the color gauge group,
so that their contributions to the gluon-gluon terms in the anomaly of
the symmetry (22.2.33) cancel. On the other hand, in the presence of an
clectromagnetic field A#(x), this symmetry has an anomaly

1
A (x) = ~ond Chvee FR(x) FP(x) tr {q2 T3} ,

where g is the quark charge matrix and 13 is the diagonal 2 x 2 matrix
with clements +1 for u and —1 for d. If we assume as usual that there are
N. u quarks of charge 2e/3 and an equal number of d quarks of charge
—e/3, the trace is

2

2e €
r{q2r3}=Nc (—) (+1) + N, ( ) (—1)= ,
so the anomaly function here is
Nc ¢ . 06
(x) = T Ewvpe F¥{(x) FP°(x) . (22.2.34)

We must then include in the effective Lagrangian terms that under the
chiral transformation (22.2.33) give it the transformation (22.2.12), that is,

_ Nee?

OL (%) = asf (x) = T

€nps FP () FP (x)a . (22.2.35)




368 22 Anomalies

Under the transformation (22.2.33) the pion field transforms as
on’ = aFy, (22.2.36)

where F, = 184 MgV is the pion decay amplitude introduced in Chap-
ter 19. (The normalization convention for this constant is fixed by our
definition of the symmetry generator as yst3 = 2pst3.) It follows that we
must include in the effective Lagrangian a term

n0(x)sf(x) _ Nee?
F. 48nlF;
Comparing this with the gencral formula (22.1.1) for the effective La-

grangian for the decay n® — 2y, we see that the constant g in Eq. (22.2.1)
must have the value

€vpa F*(x) F¥° (x) (%) . (22.2.37)

N
 48n2F,
(This shows that our previous crude order-of-magnitude cstimate (22.1.3)

was too large by just a factor 6/N,.) The rate (22.1.2) for pion decay is
thus predicted to be

g (22.2.38)

2.,2...3 2
L® — 2y) = Neo'my (£> x 1.11 x 101 ¢71 (22.2.39)

14473F2  \ 3

The observed rate is [(n® — 2y) = (1.19 £ 0.08) x 10'¢ 57, in good
agreement with the theorctical result (22.2.39) if and only if N. = 3. The
success of this calculation was one of the first pieces of firm evidence that
there are three colors of quarks.

Remarkably, as we have seen in the previous section, shortly after
the discovery of the n° Steinberger calculated g from a single proton-
loop diagram, and obtained the result g = €*G/32n’my, where G is the
pseudoscalar pion-nucleon coupling constant. This result would precisely
agree with Eq. (22.2.38) for N, = 3 if we used the Goldberger-Treiman
relation with g4 = 1 to set G = 2my/Fz. The correct result is larger than
the Steinberger result by a factor g4 = 1.56. The reason that Steinberger
got nearly the right result is because the answer is determined by the
triangle anomaly, which is proportional to tr {g*t3}. For one proton, this
trace has the value e, which is the same as the quark value found above
for three colors of quarks.

* ¥ ¥k

As mentioned earlier, a more rigorous derivation of the anomaly can
be given by using path integrals in Euclidean spacetime. (The use of
Euclidean path integrals is briefly discussed in Appendix A of Chapter
23.) We introduce a Euclidean fourth coordinate x4 = ix? = —ixg, and

correspondingly d4 = —ido, p4 = iy, and Ay = i4). The spacetime
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volume is then expressed as d*x = —i(d*x)g, where (d*x) is the Fuclidean
volume element (d*x)r = dxjdxadxsdxs. In Euclidean spacetime the ficlds
p(x) and {p(x) must be regarded as entirely independent, with local chiral
transformations defined by dy(x) = in(x)tysyp(x), SP(x) = —iolx)P(x)tys.
The transformation of the measure is then again given by Eq. (22.2.10),
with the anomaly function 2/(x) given by Eq. {22.2.11). Introducing a
regulator function as before, this again gives the formula (22.12.13) for
</{x). One great advantage of the Euclidean approach is that with x4 and
Ay, real, the Dirac operator i P in Eq. {22.2.13) is Hermitian:

ip = [id, + teApa i (22.2.40)

with i, j, etc. here summed over the values 1, 2, 3, 4. It therefore has
orthonormal spinor eigenfunctions ¢,{(x):

IDox = Ao, (22.2.41)

f (d*X)E 9e(%)! () = S (22.2.42)

with real eigenvalues 4,. We also are assuming, as throughout this section,
that t commutes with i P, so that we can choose the ¢, so that tg, = .
These eigenfunctions satisfy a completeness relation

Y onlx)or(y) = 84x— )1, (22.2.43)

where ‘1’ is the 4 x 4 unit matrix. Therefore the anomaly function may
now be written as the limit of a manifestly convergent sum:

(x) = ~2limpro Tr {ps 11~ P/MY) Y )0l ()}
= —2limpce Yt fL/MP) (pl(ps0)) - (22244)

In just the same way that we derived formula (22.2.24) for the anomaly
function, we can show here that

A (x) = eg'kg Fijy Fyp tr{tytgt} , (22.2.45)

1672

where €y, is the totally antisymmetric tensor with €E,,, = +1. (The
difference of sign in Eqs. (22.2.24) and (22.2.43) arises because Eq. (22.2.45)
is missing two factors of i as compared with Eq. (22.2.24): one factor i
from Eq. (22.2.23), because

trp {yslye vk, i1} = 16 €5y,

together with another factor i from the replacement of d*k with (d4k) E In
Eq. (22.2.20).)
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Now, given any eigenfunction ¢.(x) of i P and t with eigenvalue A, £ 0,
there is another normalized eigenfunction ¢, (x) with cigenvalues 4,- =
—Ax and t, given by @.-(x) = psp(x). (Recall that in the notation
used throughout this book, ys is the Hermitian matrix ys = —ip1y2y390 =
p1727374.) Furthermore ((pi(x)(p,c(x]) = ((pi_(x)(p,c—(x)), so the terms «
and x~ cancel in the sum in Eq. (22.2.44). This leaves just a sum over the
eigenfunctions with A, = 0. These are not generally paired ; rather, since ys
anticommutes with i P, they can be chosen as simultaneous orthornormal
eigenfunctions ¢, ¢, of i P with eigenvalue zero and of ps with eigenvalues
+1 and —1, respectively.

iPpu=0, V3Pu = Qu ;s
(22.2.46)
ipﬁﬂv =0, Y5®p = —Pyp -
Using the fact that f{0) = 1, Eq. (2.2.44) then becomes

A (x)=-=2

bH

PEA I ENENEDD rv(mi(x)%(x))] L (22247)

Now, since the ¢, and ¢, are normalized as in Eq. (22.2.42), the integral
of Eq. (22.2.47) gives

[ (d*x)p A (%) = --2[2 i — > :v] \ (22.2.48)

with the sums over # and v running over left- and right-handed zero
modes of the operator ip, respectively. In particular, for the case where
t is the unit matrix, by using Eq. (22.2.45) this may be expressed as a
relation between a functional of the gauge field and the numbers of the
zero modes of the Dirac operator with definite chiralities:

b
32n?

where here ny are the numbers of zero modes of P that have eigenvalues
+1 for ps. This is the celebrated Atiyah-Singer index theorem.%® Among
other things, it shows that under variations in the gauge field the integral
on the left-hand side of Eq. (22.2.49) cannot change smoothly, but only
by integers, so this integral can only depend on the topology of the gauge
field. Its dependence on this topology will be described in Section 23.5.

/ (d*x)e €5y Fuj Fau tr[tmtﬁ] =ny—n_, (22.2.49)

22.3 Direct Calculation of Anomalies: The General Case

We saw in Section 22.2 how to use the elegant Fujikawa approach to
calculate anomalies of chiral symmetries in gauge theories like quantum
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chromodynamics, where the gauge intcractions are non-chiral and fermion
number is conserved. This method can also be used to deal with more
general problems, but there it becomes less straightforward.” In this section
we will treat the anomaly by direct calculation, as it was originally done.
This will provide a useful additional perspective on the anomalies, and
will incidentally allow us to discuss anomalies in general theories with
very little extra trouble.

To deal with the general case, we will unite all left-handed fermion
fields (including antifermions, where that distinction is meaningful) in a
single column y. For instance, if ¢ is a column containing all quark and
lepton (as opposed to antiquark and antilepton) fields, then

= 1+ ys)y _[ 04y
A= %[%’(1*-?5)w]'] { ;(1+y5)(€w*J ! (22.3.1)

where € is the matrix defined i Section 5.4 by
mﬁ. .
qg?; %7_1 = '}’u »

which is needed in order that all components of y should belong to the
same (1/2,0) tepresentation of the Lorentz group. Under an infinitesimal
fermion number (e. g., baryon number or baryon number minus lepton
number) conserving gauge transformation:

Sy = i | 3(1+95)5 + 41— pshR] v (223.2)
this column undergoes the transformation
oy =ie, Tyy, (22.3.3)
where
- R I -
|5 e =[5 ] (2234

We shall not limit ourselves here to theories that conserve fermion number,
so the T, will now be any Hermitian representations of the gauge algebra,
not necessarily of the block-diagonal form (22.3.4). For the moment we
will consider only massless fermions, returning to the effect of fermion
masses a little later.

We shall be concerned here with the one-loop three-point function

oy (5 v,2) = (T{), J30) 72} vac » (223.5)
where j# is the fermionic current, calculated in terms of free fields:
J§ = —ix Ty . (22.3.6)

The two Feynman diagrams of Figure 22.1 give
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93 (V) 34 (2)

Ja(x) ja ()

j’rp(z) J;(y)

Figure 22.1. Two triangle diagrams for the anomaly in the current j{(x). Solid
lines are fermions; wavy lines indicate fictitious gauge fields, coupled to the
currents.

TP(x,y.2) = —iTr [S(x — ¥)Tp7" PLS(y — 2) Ty3" PLS(z = X) Ty P
—iTr [S(x — 2)T,yPPLS(z — ¥)Tpy" PrS(y — x)Tuy*PL] ,

(22.3.7)
where P; is the projection operator on the left-handed fermion fields
1
P = ( 27’5) (22.3.8)
and S(x) is the propagator of a massless fermion field:
—i —i p
(x)= any d*p e (22.3.9)

(For further comments on this use of the Feynman rules, see the end of
this section.) Collecting factors, Eq. (22.3.7) now reads

i oy ey o
Clgfte.2) = oom [tk dthy et s g [ ghp

X{tr[ p-bitd . #td Pt d ,u1+vs]

p—kitaf—ic (ptaf—ie (p+kz+ay—ie’ 2
X tr [TpT, T

p— it ¥ v P+ ¥ . P+ b p1+'}’s]
(p—ky+b)2—ic’ (p+b) —ie (p+k1+b)2—iey 2

+ir [

x tr [T, Tp T } , (22.3.10)

where ‘tr’ here denotes a trace over either Dirac or group indices, de-
pending on its argument. We¢ have introduced the arbitrary constant
four-vectors a and b because, although the expression (22.3.10) is con-
vergent and hence independent of the labelling of the momenta carried
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by internal lines, the evaluation of é,I"%/# involves the manipulation of
divergent integrals that do depend on this labelling. We will see that
the freedom to choose a# and b* corresponds to a freedom to move the
anomaly in these integrals from one current to another, but does not
allow us to eliminate the anomaly altogcther.

In taking the divergence of Eq. (22.3.10), we use the identities

it kb=F+htd—F— b+ dH=0F+ h+H—F— t+ B
and find

/d4kl d4k2 g Hkitka)yx Jikpy lkzz/d4

P—bitd ., Pt ,,1+?5}
(P—k1+a)2—i6y (p+a)2—ie? 2
Fj+¢ P ﬁ+k2+¢ v1+'})5jl
_(p+a)2*ie'y (p+k;+a)— 2
[ P—ktd Pt h v1+’}’5jl
((p—ka+ D) —ie’ (p+bY—ie’! 2
A RN A Y. p1+-y5]
P+ b7 —ie (p+hki+b2— 7 (-
(223.11)

Loy (% 3.7) = an )12
X {tl’ [TB Ty Ta} tr {

—tr [Tﬁ T, Tg} tr

+tr [T], TB Tcx] tr

—tr [T, Tp T:] tr

At this point it is convenient to separate the three-point function into
terms symmetric and antisymmetric in the group indices, by writing

tr [Tg Ty Ta]) = Dugy + LiN Cop,
and
tr [T, Tp Ta] = Dugy — 3iN Capy
where D,g, is the totally symmetric quantity
Dygy = 1tr [{Ty, Tg} Ty (22.3.12)
and the coefficient of the structure constant C,g, is defined by
tr[T,Tg]l = N dap .

The terms that are antisymmetric in group indices are in general non-
zero, but they do not represent any breakdown of the symmetry. Just
as in the derivation of the Ward identity in Section 104, in a formal
calculation of the divergence of the matrix element (22.3.5) we encounter
contributions from the time-derivatives of the theta-functions in the time-
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ordered product, equal to
0 , Vo
[aﬂﬁﬁ‘; (x,, Z)} = —iCopst*(x — VU () £ (2))vac

formal
—iCyys8*(x — 2)(J3(1)J5(2) vac . (223.13)

It is not hard to see that the antisymmetric terms in Eq. (22.3.11) just
reproduce Eq. (22.3.13). The anomaly is contained in the symmetric part
of Eq. (22.3.11):

1 4 1dp itk ) x ki Liksz
[@Fﬁﬁ‘;(x,y’zﬂanom= WDaﬁy]dkldkze ety et

X/d4p{tr[ P-btd Pt ,,1+vs]

(p—ki+al—ie' (p+af—ie 2
u [(p f;;z{ifyp(p fij; jfz;;f— EEYVI J;%}
e g s fzz;zﬁ—if”’p(pf;ﬁ—ie“’VIZ%}
- [(p f zgzﬁ—ie?’v(p f l: fllgzﬁ— if"*’p1 +2y5] } - (22319

Grouping together the first and fourth traces, and the third and second
traces, this may b¢ put in the form

0 v L 4y )y iy ik
{@Fzﬁg(x,y,zﬂ anom N WDaﬁ? fd ki d ko e - E)xé e
K, V.4 p1 + Vs
X tr[ww > ]Ixz(a~b—k1,b,b+k1)
1 A
+tr [y”y"yzy“%] Iab—a—kyaa+ kz)} . (22.3.15)

where
Ttk = [ dp[fole+ked = fuped], (22316
(P + C)x(P + d);
a(p,cd) = : — . 22.3.17
A e | C T (32317
To evaluate these integrals consider the expansion of the function fii(p +
k,c,d) in powers of k:

Ha anffcl(pa Ca d)

o.8
1
g ke d) =3 =k'k _
f i(p+ ¢ d) = n! 6p:”1 S - Ophs

The zeroth-order term fya(p, ¢,d) clearly cancels in Eq. (22.3.16). All other
terms in Eq. (22.3.16) arc integrals of derivatives with respect to p, and
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hence after Wick rotation may be written as surface integrals over a large
three-sphere, say of radius P. The nth derivative of f then yields the
sutface integral of a function that behaves as P~~~ while the area
of the three-sphere of radius P goes as P?, so the only terms that can
contribute for P — oo are those with n =1 and n = 2:

Latk, ¢, d) = k¥ / gplfsitP e d) g / dtp LIw@6d) - ) 3 1g)

o pH  dpript
A straightforward calculation then gives
Latk,c,d) = lin [Zk;c,c+2k dy— k,ld,c—k,cq—n,dk-(k+c+d)] . (223.19)

We must now separately consider the terms in the traces in Eq. (22.3.15)
arising from the 1 and the ys in the projection matrix i(1+7s). The terms
arising from the 1 involve tr[y*y*y*y#], which is symmetric in x and /,
and also in v and p, so the integrals here appear in the combination

Lala—b—ki,b,b+ ki) +Iila—b—ki,bb+ ki)
+hb—a—kyaa+k)+Ib—a—ky,aa+k).
Using Eq. {(22.3.19), it is not difficult to s¢¢ that this vanishes if and only
if we choose the arbitrary constant vectors so that

a=—b. (22.3.20)

Furthermore, this is a choice that avoids the non-chiral anomaly for all
three currents, because in (8/0y" )F“"”(x v,z), a and b would be replaced
with @ =k +a and ¥ = —ky + b, whlle in (6/82P)F;‘;’;’(x,y,z), a and b
would be replaced with a” = k; + @ and " = —k; + b, so that taking
a = —b also insures that ¢’ = —b" and o = —b".

We are left with the term in the trace involving ys. This is totally
antisymmetric

tr 1%y v P ys| = —4ier (22.3.21)

where €% is the totally antisymmetric tensor with ¢%1%* = 1. Using this

in Eq. (22.3.15) with b — —a gives
J 2 .

" _ 4, —ifky+ha)

{0 #szg(x,y,z)] = WDmﬁyfd“kl d kz e WK +K2 )X

x MY 27 g2y (ky +ky)y . (22.3.22)

aI1om

We could eliminate the anomaly (22.3.22) in the current J¥(x) by taking
a o k1 + k2. Although this is possible, it would not eliminate the anomaly
altogether; it would appear in (d/8y" )T;‘”g(x v,z) or (a/azﬁ)r“”P(x V,2).
The symmetry of the problem indicates that the anomaly will ¢ absent
in (8/8y" )F;‘Ef;(x y,z) if and only if (k2 + a) — (—k2 + b) oc k1, or in other
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words a + ks oc ki, and will be absent in (B/OZP)I"”""(x y,z) if and only if
(—k1 + a) — (k; + b) oc k,, or in other words a — k| oc k>. It 1s possible to
choose a* to satisfy any two of these conditions, so that the anomaly can
be removed from any two of the currents, but for non-parallel k; and k;
it is evidently impossible to simultancously satisfy all three conditions —
a oc ki +ky and a + ky oc ki and a — k) o¢ ky. (For instance, the first two
conditions would imply that a = —k; — k7, in contradiction with the third
condition.) We therefore conclude that although we have some freedom
in deciding which current exhibits the anomaly, the non-vanishing of Dy,
shows deﬁnirely that there is an anomaly in at least one of the currents
J#(x), , or JP(z). This is one of the chief results of these calculations,
and Wllf be explo1ted in the next section as a source of constraints on the
matter content of gauge theories.

We have seen that the evaluation of the anomalies depends on the choice
we make of the shift vector a#. Unfortunately, there is no one choice that
is uniformly satisfactory, so we have to choose a# in accordance with the
special features of the problem at hand.

In one class of problems of great importance, J¥(x) is the current of a
global symmetry, while J5(v) and J{(z) are currents of gauge symmetries,
that is, currents to wh1ch gauge ﬁelds are coupled. (We dealt with such a
problem in the previous section.) In such cases, we must choose a* so that
the anomaly is solely in J(x), not in Jj(y) or J#(z). As we have seen, this
requires that a+k; oc ki and a —k; o ka, wh1ch leads to the unique result
that

a=ky—k. (22.3.23)
Adopting this value of a*, the anomaly (22.3.22) is

4 1 by gdp. —itkitha)x Ky ks
], = e [ttt i
x 47IZEKVJ'pk1 kz;

1 (K 2p P84y — x) 06*(z — X)

42 Py cy* fz*

We note in passing that a result like this can only arise from a theory
that involves massless particles.”® Otherwise, we would expect the Fourier
transform of T’ “B" (x,y,z) to have a power series expansion around zero
momentum. The only terms in such an ¢xpansion that could possibly lead

to a current divergence of the form (22.3.24) are pseudotensors of first
order in momenta

[Tk)| = / dhydiz eyt (00,3, 2)]

. (22.3.24)

anom

= f#vpg{ ocﬁykla + Bacﬁyer::I )
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where Ay, and By, are constants. According to Eq. (22.3.24),

i ;
— LDy Pk
anom an? afty 124

(ki + ko), [Tl er. k)|
50
i
4m?
But the symmetry of the amplitude among the three currents requires that
Aaﬁykla + BﬁﬁykZG = _AD!]JBkZO' - Ba]fﬁklcr = _Ayfxﬂ(_kla - err) - B',zmﬁchr

so, equating the coceflicients of ki, and ka,,

Aaﬁ? — Bypy = Daﬁ? :

Aspy = —Buyp = Ayup . Bupy = —Auyp = Ayap — Brag -
Taking the difference of these equations gives
Asgy = Bagy = Azpp = Buyp = By -

Since this is proportional to Dyg, it must be totally symmetric, so Byg,
and hence also A.p, arc totally symmetric. But then the conditions for
the symmetry of the three-point function read 4 = —B = B — A, which
implics that 4,s, = B,p, = 0, in contradiction to Eq. (22.3.24). By the
same reasoning, it is not possible to cancel the anomaly by adding a local
term to the interaction whose contribution to the divergence of the current
J# cancels that given by Eq. (22.3.24).

Returning now to Eq. (22.3.24), we can express this result in terms of
the vacuum expectation value of the current J# in the presence of gauge
fields coupled to the currents Ty and J¥. The triangle graphs make a
contribution to the current in the presence of the gauge ficlds

(J4()a =~} / dtyd'z Tix,y,2) Al (y) 4(2) . (22.3.25)
Using Eq. (22.3.24), this has the anomalous divergence
1 _ .

[(0,J5(x)) alanom = — 53 Detr €% 9, AB(x) 0, 4%(x) . (22.3.26)

There are additional diagrams, shown in Figure 22.2, that also exhibit
anomalies. Gauge invariance requires that the diagrams of Figure 22.2
should add up to give the gauge-invariant result

1
[(a,u-]o":(x)}]anom = _3_2“7;2

As a check, consider a fermion-conserving theory, with generators Ty
of the form (22.3.4). The constant D,g, in the anomaly (22.3.26) is here
given by

Dyp, €% FL(X) F} (%) . (22.3.27)

Dugy = Ste[{ey, e5}el] — der[{eR, ef3e5] . (22.3.28)
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Figure 22.2. One-loop diagrams for the anomaly in a current indicated by the
dashed line. Solid lines are fermions; wavy lines are gauge fields with which they
interact.

More specifically, in Section 22.2 we calculated the divergence of an axial-
vector current J¥, with tf = —f = ¢, due to gauge-field interactions
with vector currents J; and J¢ (called J; and Jf in Section 22.2) with

tk = R = tg, and likewise for ¢,. Hence in this case Dyg, is replaced with
tr[{t, tg}t,] = te[{tp. 1, }1], and Eq. (22.3.27) becomes

' 1 .
(Bl E 3D anom = — 35 5 1rl{tp.t; 1] " WEE(X)F](x), (22329

in agreement with Eq. (22.2.26).

Where no gauge fields are coupled to any of the currents J¥(x), Jg(y),
or Jf(z), the choice of the shift vector a* is a matter of convenience.
When som¢ but not all currents are associated with symmetries that are
spontancously broken, we keep the unbroken symmetrics manifest if we
choose a* so that there are no anomalies in the currents corresponding
to the unbroken symmetrics. (This will be important in Section 22.7.)
For instance, in quantum chromodynamics and simtlar theories, where
the generators T, of global symmetries like chiral SU(3) x SU(3) take the
form (22.3.4), all currents are either vector, with t& = ¢L corresponding
to unbroken symmetrics, or axial-vector, with (& = —tL, corresponding
to broken symmetrics. We se¢ from Eq. (22.3.28) that in this casc the
only triangle graphs with anomalics are those with one axial-vector and
two vector currents, or three axial-vector currents. In the case of one
axial-vector and two vector currents, we choos¢ a# so that there is no
anomaly that interferes with the conservation of the vector currents.
Thus, if J¥(x) is the axial-vector current and J(y) and Jf(z) the two
vector currents, then as in Eq. (22.3.23) we must take a* = kf — k5, so
that the anomaly is given by Eq. (22.3.24). On the other hand, for three
axial-vector currents, there is no reason to require that any one¢ of them
should be free of anomalies. Instead, it is natural to give a* a value
that respects the symmetry among the three currents. Guided by Lorentz
invariance, suppose we try a = wk; + fkz, where o and f§ are constants.
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Then symmetry would require that the momentum of each internal line
should be p plus « times the momentum flowing out at the end of the
line plus B times the momentum flowing out at the beginning of the
line. That is, if we require that a = k; + fk;, then symmetry requires
also that a — k; = —alk; + k + 2) + Bk and a — ky = aky — B(k1 + ka).
These three relations are satisfied for non-parallel k; and k; if and only if
«=—f =1/3, so that

a= (ki —k) . (22.3.30)

Using this in Eq. (22.3.22) and comparing with Eq. (22.3.23), we see¢ that
the anomaly in the axial-vector current in a Feynman amplitude for three
axial-vector currents is one-third what it would be for one axial-vector
and two vector currents.

The divergence of the current contains additional anomalies from the
graphs of Figure 22.2. Gauge invariance is no guide here, because even
the triangle graph does not yicld conserved currents. The total anomaly
has been calculated by Bardeen® for the chiral SU(3) x SU(3) symmetry
of the strong interactions, with momentum shift vectors chosen so that
vector currents are conserved and graphs with all axial currents are
symmetric among these currents. Although this SU(3) x SU(3) symmetry
(which acts on quark flavors rather than colors) is not gauged in quantum
chromodynamics, it is convenient to express the anomaly as a failure of
gauge invariance in a functional I'[V, 4] of fictitious weakly coupled gauge
ficlds: an octet of vector fields V¥(x) and an octet of axial-vector ficlds
Af(x). We also introduce infinitesimal gauge-transformation operators”

. é &
iYa(x) = BthSVau(x) — fabe Voulx )5un( X) fabcAby(x)m
(22.3.31)
and
. d 0 & o
iZq(x) = " 5 Agu(X) _fachbp( )'5146;(( ) — fabeApu(x )5Vw( x)’
(22.3.32)

where fuc are the SU(3) structure constants. As mentioned above, the
labelling of internal line momenta is chosen so that the vector current is
not anomalous:

Y, T[V,A] =0, (22.3.33)

* The operators %, and &, here are what in Ref. 8 were called X, and Y,. This switch
in notation is made to maintain consistency with the notation of Chapter 19, where
broken symmetry generators are consisfently labelled X,.
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but then an anomaly appears in the axial-vector currents

T, TV, A] = ﬁfuwarr{@[vm Voo + $Amdps — 2A,A,4,4,

+ (A A Vo + AV 0 4y + VpUAFAv)]} . (22334)

where A; are the SU(3) matrices given by Eq. (19.7.2), and

Vi= 4V,  Au= YheAy, (22.3.35)
Viw = 8,Vy — 3,V — iV, Vil — i[4,, 4] , (22.3.36)
Ay = 0,4, — 8,4, — iV, A,] — ilA,, V] . (22.3.37)

The factor 1/3 accompanying the second term on the right-hand side in
Eq. (22.3.34) has already been explained as a consequence of the different
choice of a# in the AVV and AAA graphs. In Section 22.6 we will
describe consistency conditions that allow the cubic and quartic terms in
Eq. (22.3.34) to be calculated from the quadratic terms.

For anomali¢s involving symmetries that are all spontaneously broken,
there is no reason to choose a” in a way that distinguishes among the
different currents, and instead it is natural to label internal fermion lines
in a way that is symmetric among the attached gauge boson lines. As
we have seen, this means that the triangle graph is to be calculated with
the choice a = 1 (k1 — k). This gives a triangle anomaly one-third of the
value given by (22 3.26). When square and pentagon graphs are included,
this result becomes®

1 .
—— W Ty { T, |0cAs 2,4, — LideAy A:A,

[(Dp-]cg}]anom = _24715

+ Lid, D, A1 A, — %iA,cAvaAAP]} , (22.3.38)

where 4* = A4T,. We will not derive this result here, because we have
already seen that in such cases the terms quadratic in Ay are given by
one-third the corresponding terms in Eq. (22.3.26), and in Sectmn 22.6 we
shall be able to use consistency conditions to derive the remaining terms
in Eq. (22.3.38) from the quadratic terms.

Now we must consider possible corrections to these results. A careful
derivation of the anomaly to all orders of perturbation theory was given
by Adler and Bardeen;? what follows is intended to give only the gist of
their analysis.

The argument that led to Eq. (22.3.22) may be repeated in any order of
perturbation theory, and shows that the anomaly in general arises from



22.3 Direct Calculation of Anomalies: The General Case 381

momentum-space integrals that can be reexpressed as surface terms. In
consequence, as we saw here in Eq. (22.3.18), the only graphs for the
current divergence that contribute to the anomaly are those for which
the integral over the momentum circulating in the fermion loop has
dimensionality (in powers of momentum) zero or greater. Interactions
of the fermions in the loop with virtual gauge bosons would reduce the
dimensionality of the integral over the fermion loop momentum enough to
eliminate the anomaly, so the anomaly receives no contribution from such
radiative corrections. (It is true that the integral over the momenta of the
virtual gauge bosons as well as the fermion loop would have non-negative
dimensionality, but the gauge boson propagators can be regulated, as the
fermion propagator cannot, without interfering with the chiral symmetry
in question.) The anomaly is affected by interactions of the gauge bosons
attached to the fermion loop with other gauge bosons and fermion loops,
but these just serve to renormalize operators like e Ff,(x) F} (x). By
the same argument, any fermion mass that respects the symmetries in
question (if this were possible) would not change the anomaly, because
extracting factors of this mass would lower the dimensionality of the
momentum-space integral.

The last remark of the previous paragraph raises the question of whether
we can calculate the anomaly without knowing all the fermions in a theory,
heavy fermions as well as light or massless ones. Yes, we can; we shall
now show that no fermion that is allowed by a given symmetry to have a
mass can contribute to the anomaly for that symmetry. In the general class
of theories considered here, a mass term in the Lagrangian density would
take the form

FLrnass = — Z Xon€oq Muw Xow + Hec. R (22339)

nmec’

where o is the two-component spinor index of the (%,0) representation
of the Lorentz group, €4, 1s the antisymmetric matrix with ¢ L= +1,
needed for Lorentz invariance, and M is a symmetric mass matrix."* Now,
in order for % mass to respect gauge invariance, the mass matrix must

" In fermion-number-conserving 1heories where y has the form (22.3.1), M is related to
the usual mass matrix m by
1 0 m
w38 )

With all inversion phases equal 10 unity, parity, charge conjugation, and time-reversal
invariance respectively have the further consequences thal m is Hermilian, symmetric,
or real.
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satisty
—TIM=MT,. (22.3.40)

The index n may be replaced with an index r labelling different irreducible
representations of the gauge group, and an index s labelling components
within each irreducible representation, so that

(Tadrsrs = Ol TN (22.3.41)
and we write
Myspg = (MT))g (22.3.42)
Eq. (22.3.40) then becomes
— 7T pgtrry = gl ) (22.3.43)

(This is not summed over r or .} Schur’s lemmal® tells us that whenever
the matrices of a pair of irreducible representations are related by such
an equation, the matrix that relates them is either zero or non-singular.
(See Section 5.5.) Thus, either (i) MU+ = 0, or else (i) —TYT and TV
are related by a similarity transformation, and likewise for Tz and T,. In
the latter case the contributions to the anomaly constant (22.3.12) from
fermions belonging to the individual irreducible representations r and »’
are related by

(22.3.44)

so the anomaly either vanishes (for r = r’) or cancels between the two
representations (for r # r').The anomalies in a given set of symmetries
therefore are unaffected by the possible presence of fermions with a mass
allowed by these symmetries.

* k k

There 1s a fine point in the use of the Feynman rules to calculate
the three-point function (22.3.7), to which we now return. In using the
conventional fermion propagator (22.3.9), we have in effect doubled the
number of fermion fields; in additional to the purely left-handed fields
x(x) given by Eq. (22.3.1), the propagator {22.3.9) includes right-handed
modes (unrelated to the fields (1 — ys)y of fermion-number-conserving
theories) that do not interact with the gauge fields. Combining these
non-interacting right-handed fields with the interacting left-handed fields
in a single spinor ¥, the fermion Lagrangian density is —¥ P¥, where p
is now

1“’5) | (22.3.45)

Dxa*mm( a
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The one-loop vacuum functional for spin ! fields interacting with real or
fictitious gauge fields is just Det p. The failure of gauge invariance in this
determinant can be blamed on the fact that the operator (22.3.45) is the

sum of two terms
1 — 1
D=¢( 2]’5)+D( J;ys) (22.3.46)

of which only the second 1s gauge-invariant.

There is another way of looking at anomalies,!® which provides a
framework for calculations of a large class of anomalies, of coordinate
as well as gauge symmetries in spaces of any dimensionality. Instead of
working with the operator (22.3.45), which has a well-defined determinant,
one deals instead with just the second term 1n Eq. (22.3.46)

po=p (%)

This is perfectly gauge-invariant, but does not have a well-defined deter-
minant, because this operator does not map the space of fermion fields
of one handedness into itself, but rather into the space of fermion fields
of the other handedness. One can try to define a gauge-invariant vac-
uum functional Det P; by writing differential equations for Det p; in the
space of gauge fields, modulo gauge transformations, but then one may
encounter obstructions. There are local obstructions due to violations of
the necessary integrability conditions, which correspond to the anomalies
we have been discussing. Even where these local obstructions are absent,
in cases where the infinite-dimensional space of gauge-field configurations,
modulo gauge transformations, 1s not simply connected, topclogical ob-
structions can prevent the definition of single-valued functionals on this
space. Such a global anomaly was found by Witten'% for the gauge group
SU(2) (which is free of local anomalies) with an odd number of massless
left-handed fermions in SU(2) doublets.

(22.3.47)

224 Anomaly-Free Gauge Theories

We have calculated the effect of anomalies on the conservation of a general
current JZ. Where this current is itself coupled to a gauge field, gauge
invariance requires that the anomaly be absent. We saw in the previous
section that the anomaly is proportional to the completely symmetric
constant factor D,g, defined by Eq. (22.3.12), so for gauge currents we
must have!!

Dy, = WHT, T} T,) =0, (22.4.1)
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where T, is the representation of the gauge algebra on the set of all left-
handed fermion and antifermion fields, and ‘tr’ again denotes a sum over
these fermion and antifermion species. This condition may be satisfied
for any gauge group if the fermion fields furnish a suitable reducible or
irreducible representation of the group. In addition, there are some gauge
groups for which Eq. (22.4.1) is satisfied for fermions in any representation
of the group.!? (The Batalin-Vilkovisky formalism is used in Section 22.6
to give a purely algebraic proof that for such gauge groups the anomaly
is absent to all orders of perturbation theory.)

The condition (22.4.1) is obviously satisfied if the left-handed fermion
(and antifermion) fields furnish a representation of the gauge algebra that
is equivalent to its complex conjugate, in the sense that

(iT,)" =S (iTy) S
or equivalently (since we always take T,, Hermitian)
TS =—-ST,87". (22.4.2)

(Inserting Eq. (22.4.2) in Eq. (22.3.12) gives Dyg, = —D,g,.) Such a
representation may be either real, in which case it is possible by a similarity
transformation T, = RT,R™! to convert the representation to a form
in which T, is imaginary and antisymmetric, or pseudoreal, in which
case this is impossible. (For instance, the three-dimensional irreducible
representation of SU(2) is real, while the two-dimensional representation
is pseudoreal.) There is no anomaly for gauge algebras that have only real
or pseudoreal representations, namely'* SO(2n + 1) (including SU(2) =
S0O(3)), SO(4n) for n = 2, USp(2n) for n > 3, G, Fs4, E7, and Eg, and all
of their direct sums. A few other algebras also have only representations
for which D,g, vanishes, even though some representations are neither
real nor pseudoreal.!? These are SO(4n + 2) (except for S 0(2) = U(1) and
SO(6) = SU(4)) and Es, and their direct sums with each other and the
above algebras. Anomalies are thus only possible for gauge algebras that
include SU(n) (for n = 3) or U(1) factors. As it happens, these are among
the most important gauge algebras in today’s physics. The standard model
is based on the gauge group SU(3) x SU(2) x U(1), so we must rely on
cancellations among the quarks and leptons to make the theory free of
anomalies.

Table 22.1 gives a classification of the left-handed spinor fields of the
first generation of the standard model according to the representations
they furnish of the color SU(3) group and the electroweak SU(2) group,
and the value of the U(1) quantum number y/g' = t3/g — ¢q/e.

We can now check whether D,g, vanishes when T, Tj, and T, run over
all of the generators of SU(3) x SU(2) x U(1). We need only consider
those combinations of generators for which the product of Ty, T, and T,
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Table 22.1. First-generation left-handed fermion and antifermion fields of the
standard model.

Fermions SU(3) SU(2) U(l) [y/g']
)
( y )L 3 2 —1/6
Uy 3 1 +2/3
4 3 1 —1/3
Ve
1 2 1/2
€/
R 1 1 —1

is neutral under SU(3) x SU(2) x U(1), since D,p, obviously vanishes for
all the others. We can make invariants out of either zero, two, or three
SU(3) generators (because 8 x 8 and 8 x 8 x 8 both contain singlets), zero,
two, or three SU(2) generators, and any number of U(1) generators, so
we only need to check the following cases:

SU(3)-SU(3)-SU(3): Here Dyp, vanishes because the left-handed fermions
furnish a representation 3 +3 4+3 4+ 3414 1+ 1 of SU(3), which is real.
SU(3)-SU(3)-U(1): Here the anomaly is proportional to

1t 2 1
e R AS R

SU(2)-SU(2)-SU(2): There is no anomaly here because SU(2) only has
real or pseudoreal representations.
SU(2)-SU(2)-U(1): Here the anomaly is proportional to

> y/g'=3(-~%)+%=0.

doublets
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U{1)-U{1)-U(1): Here the anomaly is proportional to

’3613323313213 1P=0
Sorer=6(g) +3(3) +3(3) +2(3) +evr=0.

We see that all anomalies cancel for the gauge symmetries of the
standard model.!** This result can be neatly understood by noting that
SU(3) x SU(2) x U(1) may be embedded in SO(10).1* All of the repre-
sentations of SO(10) are anomaly-free, so the same property is inherited
by any reducible representation of SU(3) x SU(2) x U(1) that furnishes a
complete representation of SO(10). As it happens, the left-handed fields of
a single generation of quarks, leptons, antiquarks, and antileptons plus one
additional (S U(3) x SU(2) x U(1))-singlet forms a complete 16-dimensional
representation of SO(10) (the fundamental spinor representation), so for
this set of left-handed fermions there are no SU(3) x SU(2) x U(1) anoma-
lies. The singlet would not contribute to such anomalies anyway, so there
are no anomalies in the gauge symmetries of the standard model.

There is one more anomaly that needs to be evaluated. All species of
fermions interact with gravitation in the same way. Calculation of the
fermion loop graph for the expectation value of the current ¥ Ty#y (where
¥ is a column of all left-handed fermion and antifermion fields) in the
presence of an external gravitational field yields an anomaly' 8,(xTy¥y)
proportional to

tr{ T} P R s Ros™ .

In particular, to avoid a gravitational violation of a gauge symmetry like
(22.3.3), the generators must satisfy

tr{T,} = 0. (22.4.3)

Like the pure gauge anomaly, this vanishes for gauge generators satisfying
Eq. (22.4.2), so this anomaly receives no contribution from fermions that
form real or pseudoreal representations of the gauge group, and it can
therefore be calculated taking into account only those fermions whose
masses arise from a breaking of the gauge symmetry. Also, this condition
is automatically satisfied by the generators of any simple subalgebras like
SU(2) or SU(3) of the gauge algebra. (tr{T,} is just a number which
commutes with all the Tg, so if it is non-zero then the algebra is not
simple.) Hence we only need to check that Eq. (22.4.3) is satisfied by the
U(1) generators of the gauge algebra. In the standard model, the sum of
the values of the weak hypercharge y for all left-handed fermions is

ng:s(-é)%(i) +3(-%) 2(%)+(—1)m0,

so there are no gravitational anomalies in the standard model currents.
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The requirement of vanishing of anomalies may be used as a guide 1n
formulating realistic theories. For instance, the values of the weak hy-
percharges y for various SU(3) x SU(2) multiplets were originally taken
from experiment, but one may wonder why these weak hypercharges (and
the corresponding average electric charges in each multiplet) take the ob-
served values. To answer this question, suppose we assign arbitrary weak
hypercharges a, b, ¢, d, and e to the multiplets (u;,d;), ug, dg, (vi,eL),
and e}, respectively. The conditions for anomaly cancellation tell us that:

SUB)-SUGB)-U(1):

Zy=2a+b+c:0;
33
SU(2)-SU(2)-U(1):
Y y=3a+d=0;

doublets
U(1)-U(1)-u(1):
Sy =6a+30°+37 +24° + & =0
graviton graviton U(1):
Zy:6a+3b+3c+2d+e=0.

Aside from the possibility of interchanging ug and dg, these equations
have only two solutions, which we may call U{1) and U(1):

UQ) : b/ja=-—4, c/fa=2, d/la=-3, efa=6,
Uy : b=—c, a=c=d=e=0.

Furthermore, these solutions are exclusive; we cannot suppose that both
U(l) and U(1) are local symmetries, because then we would encounter
a U(ly-U(1Y-U(1) anomaly proportional to (—4) + (+2) # 0 and a
U(1Y-U(1)-U(1) anomaly proportional to (—4)> — (4+2)> # 0. The U(1)
generator is just the weak hypercharge of the standard electroweak theory
(with the overall constant factor a absorbed into the definition of g'),
while the U(1Y symmetry resembles nothing observed in nature. This
little calculation provides a rational explanation of the assignment of y
values, or equivalently of electric charges, in the standard model, and it
shows that if all gauge anomalies must cancel within a single generation
of quarks and leptons, then it is not possible to couple a gauge boson to
any other U(1) quantum number, in addition to weak hypercharge.

On the other hand, although it is reasonable to guess that the SU(3) x
SU(2) x U(1) gauge bosons of the standard model may couple only to the
known quarks and leptons (both to explain why no other fermions have
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been discovered and to preserve the beautiful cancellation of anomalies in
the standard model), there may be other U(1) gauge bosons that couple
to other undetected (SU(3) x SU(2) x U(1))-neutral fermions as well as
to the known quarks and leptons. Suppose we denote the U(1)’ quantum
numbers y" of the multiplets (ur,dr), ug, dy, (vi.er), and ey as d, ¥,
¢, d', and ¢, respectively. Since we don’t know anything about possible
(SU3) x SU(2) x U(1))-neutral fermions, the requirement of cancellation
of the U(1y-U{(1y-U(1) and graviton graviton-U(1) anomalies does not
help us to constrain 4, ¥, ¢/, d', or ¢. The remaining conditions of
anomaly cancellation tell us that:

SU3)-SU(3)-U(1):

Yy =2d+b 4+ =0;
33

SUQ-SUQR)-U(1Y:
Z y=3d+d =0,

doublets
U)-U)-U(L)':
oY = 6a 4 342+ 3(2)% + 23 +(6)%' =0 ;
UQ) UQy-v(y:
S92 =64 + 3(—4)b” + 3(2)c? + 2=3)d? + (6)e? = 0.

The general solution has y’ a linear combination of y and a quantum
number B — L (where B and L are the conventional baryon and lepton
numbers) that takes values 1/3, —1/3, —1/3, —1, and +1 for the multiplets
(ur.dL), ug, dg, (vi,ep), and e, respectively. If B — L is a local symmetry,
with a coupling that is not many orders of magnitude smaller than e, then
it must be spontaneously broken, since ordinary bodies have macroscopic
values of B— L. To avoid conflict with observations of neutral currents, the
characteristic scale F of the symmetry breaking would have to be larger
than that of the electroweak interactions, but not necessarily many orders
of magnitude larger. Thus a neutral vector boson somewhat heavier than
the Z° and coupled to B — L seems like the most plausible addition to the
standard model.

This has all been for a single generation of the standard model. With
three generations there are many more anomaly-free symmetries. One class
of symmetries that are not broken by anomalies or (as far as we know) by
anything else consists of the differences in the numbers of leptons of the
various flavors. Together with B— L, this will be important in Section 23.5
in classifying the baryon- and lepton-non-conserving processes produced
by anomalies.
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225 Massless Bound States’

It is sometimes speculated that quarks and leptons may be bound states
of more fundamental particles. If these hypothetical fundamental par-
ticles had asymptotically free gauge interactions, like those in quantum
chromodynamics, then we would expect them to be trapped, which would
explain why they are not observed. However, there is a difficulty with
this picture. No internal structure of the quarks and leptons has ever
been observed, so the characteristic energy scale A’ (analogous to the
A =~ 200 MeV of quantum chromodynamics) of these gauge interactions
must be very high. For instance, as remarked in Section 12.3, the agree-
ment between theory and experiment for the magnetic moment of the
muon indicates that A’ > 3 TeV. But, aside from Goldstone bosons, we
would normally expect the bound states in such a theory to have masses
of order A’, or perhaps 2nA’, just as in quantum chromodynamics the
proton mass 15 of order 2zAgcp. This expectation is of course in sharp
contradiction with the fact the observed masses of the quarks and leptons
are much less than A’. To put this problem another way, if the leptons
and quarks are bound states, then why is their size (as measured by
anomalous magnetic moments, etc.) so much smaller than their Compton
wavelengths?

One way to answer this question is to suppose that, unlike quantum
chromodynamics, this theory has unbroken chiral symmetries that keep
the quarks and leptons massless, aside from small corrections from other
interactions. In general, a chiral symmetry 1s any symmetry for which the
massless elementary fields of some given helicity (including the complex
conjugates of the fields of opposite helicity) furnish a complex represen-
tation. By operating on the vacuum with products of the elementary
fields we can construct other states of definite helicity that also furnish
complex representations of these symmetries. If any of these states are
actual composite particles then they must be massless, because all helic-
ity components of the state of a massive particle must furnish the same
representation of any symmetry that commutes with rotations, so a given
helicity component of a particle together with the antiparticle of the op-
posite helicity component would together furnish a real representation. Of
course, it may not be so easy to tell which of the states constructed in this
way correspond to actual composite massless particles, but if they do, their
masslessness is natural, because in order for some massless particles of a
given helicity that belong to a complex representation of the symmetry

* This section lies somewhat out of the book’s main line of development, and may be
omitted in a first rcading,
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group to become massive as we change some parameter of the theory,
their symmetry properties would have to change discontinuously from a
complex to a real representation.

Although this reasoning shows that there are theories in which it is
natural to have massless or very light composite particles, it does not
give any indication of when this actually happens. The question is an
interesting one, quite apart from the problem of understanding quarks
and leptons as possible composite particles. °t Hooft!6 has suggested
a powerful way of answering this question, based on considerations of
anomalies. Briefly, if the underlying theory has global chiral symmetries
(not broken by gauge anomalies, and not spontaneously broken) consisting
of transformations on the elementary left-handed spin ! fermions (and
antifermions) y with symmetry generators T,, T}, etc., and if the anomaly
constant tr[{T,, T3} T,] of these global symmetries is non-zero, then the
spectrum of bound states must include spin ! massless particles on
whose left-handed states the same symmetries induce transformations
with generators 9, J g, etc., with the same anomaly constant

{72 7 5)7,] = wl{To, T5}T,] . (22.5.1)

't Hooft’s argument was as follows. Imagine that some weakly-
interacting gauge bosons are coupled to generators T,, Tp, etc. of the
global symmetries of the underlying theory. Suppose also that although
some of the coefficients Dy, = tr[{Ty, T3} T,] are non-zero, this anomaly
is cancelled by anomalies due to other ‘spectator’ massless fermions, which
do not feel the strong forces that trap the constituents of the composite
particles. Physical processes at energies much less than the charactetistic
energy scale A’ of the trapping interactions will be described by an effective
Lagrangian in which the trapped fermions do not appear. If the symme-
tries with generators Ty, T}, etc. are not spontaneously broken, then there
are no Goldstone bosons, so the only particles in this effective Lagrangian
will be the weakly coupled gauge bosons and spectator fermions, plus any
massless bound states of the trapped fermions and strongly interacting
gauge bosons. The consistency of the effective field theory requires that it
must be anomaly-free, but the spectator fermions by assumption have an
anomaly constant equal to —D,g,, so there must be massless bound states,
to provide an anomaly constant equal and opposite to this, and hence
equal to that of the original trapped fermions.”” Note that this argument

** 1t remains to show that these particles must have spin ;. We are assuming that there
are no Goldstone bosons here, and that other spinless particles would not naturally be
massless. The elementary gauge bosons of the thcory are assumed neutral under the
anomalous symmetry transformations, so they could not contribute to the anomaly,
Composite particles of spin j > 1 are ruled out by a different argumcnt.!® This is
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works no matter how weak are the gauge interactions with generators T,,
Tg, etc., so these gauge bosons and the untrapped fermions do not have
to be real particles to reach the conclusion that the massless spin | bound
states reproduce the anomalies of the trapped elementary spin 1 fermions of
which they are composed.

As a simple example, suppose that the underlying theory contains n *fla-
vors’ of massless fermions, each of which has both left- and right-handed
parts in the defining representation N of an asymptotically free SU(N)
gauge group. We require N to be odd so that there can be untrapped
S U(N}-neutral fermionic bound states. Just as in quantum chromodynam-
ics, this theory has an automatic global SUL(n)x SUg(n)x Uy (1) symmetry,
with the left- and right-handed massless fermions respectively in its (n, 1)
and (1, n) representations, both having equal values for the Uy (1) quantum
number, which can be taken as unity. There are non-vanishing anomaly
constants in the underlying theory for the SU(n).-SU(n),-U(1)y and
SUn)r—SU(n)r—U(1)y current triplets, which have the values

Darpro = Darpro = Ndw ,

where a, b, etc. label the SU(n) generators A,, normalized so that in the
defining n-component representation tr{dsds} = i64. For n > 2 there
are also non-vanishing anomaly constants for the SU(n} -SU(n).-SU(n)s.
and SU(n)gr—S U(n)r—SU(n)g currents, equal to

DaL,bL,cL = DaR,bR.cR = Ntr[{/laa Ab}a 'lc] .

We suppose here that the SUr(n) x SUgr(n) x U(1) symmetry is not
spontancously broken. Because of trapping, the only fermionic bound
states in the physical spectrum will be contained in representations of this
symmetry that can be formed from m; and mp elementary fermions of
helicity + ! and — 1, respectively, and 7y and /g of their antiparticles,
with

my +mp —mp — g =kN , (22.5.2)

where k is any positive or negative odd integer. In consequence, the only
irreducible representations (r, s) of SU(n);, x SUg(n) encountered are those
for which r is in the direct product of my, of the defining representations of

a theory in which the anomalous currents can be constructed as Lorentz four-vector
functions of the elementary spin 1 fields, and in order to contribute to the anomaly
these currents would have to have non-vanishing matrix elements between any massless
composite particles of spin j = 1, which would violate Lorentz invariance. Massless
composite particles of spin j > 3/2 are ruled out because in this theory it is also
possible to construct a conserved energy-momentum tensor, which would have to have
non-vanishing matrix elements between these massless composite particles, which for
7 = 3/2 would also violate Lorentz invariance.
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SU(n) and /my, of their complex conjugates, while s is in the direct product
of mp of the defining representations of SU(n) and mg of their complex
conjugates, and the U(1)y quantum number is kN, with &k, my, mg, m;,
and /g subject to Eq. (22.5.2). Let p(r,s,k) be the number of times an
irreducible representation (r,s) of SUL(n) x SUg(n) with U(1)y quantum
number kN appears among the helicity + 1 bound states. Eq. (22.5.1)
then reads

> op(r, s ks ' T 0 T T ] = Ntr[{da o)Al . (22.5.3)

r.s.k

> p(r s, kydk tr (T 4, T = tr[{da, Ap)] (22.5.4)

rs.k

where tr'") denotes the trace in the irreducible representation r of SU(n),
and d; is the dimensionality of representation s of SU(N). The only other
constraint on the p(r,s,k) is that they must be positive integers.

The complex conjugate (F,5,—k) of any representation (r,sk) of
SU2). x SU2}g x U(l)y has values of the traces tr'”?[{F, 717 ]
and ktr'")[{7,, 74}] opposite to those of the representation (r,s,k), so
Egs. (22.5.3) and (22.5.4) only restrict the values of

f(r, 5, k) = p(r, S:k) - p(Fa§s _k) .

Recall that in the notation we have been using here, these traces are
over all massless bound states of helicity + !, including the antiparticles
of the massless bound states of helicity — 1, which transform according
to the complex conjugate representations. The complex conjugate of any
representation of SU(2), xSU(2)g x U(1)y has values of trV[{7,, T} ]
and k trf"[{F,, 7},}] opposite to those of that representation. Thus we
can sum in (22.5.3) and (22.5.4) only over the representations with U(1)y

quantum number kN > 0
> sk do i T o T3] = Ntr[{da, 43}A),  (22.5.5)

r s k=0

o e, s, k) dk O [{ T o, T3] = trl{Ag, )], (22.5.6)
rsk>0

with #(r,s,k} equal to the number of times an irreducible representation
(r,s} of SUL(n) x SUr(n} with U(1)y quantum number kN > 0 appears
among the helicity + | bound states, minus the number of times the same
representation appears among the helicity — { bound states. (If parity is
unbroken then a representation r,s,k must occur among the helicity — !
bound states as often as the representation s, 7,k occurs among the helicity
+ 1 bound states, so in this case £(r,s,k} = —£(s, r, k).)

First, consider the case of n = 2 flavors. There is no way of coupling
three three-vectors together symmetrically to make an SU(2)-invariant,
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so both sides of (22.5.5) vanish automatically, leaving only the condition
(22.5.6). The defining two-component representation of SU(2) 1s contained
in the product of any odd number of these two-component representations,
so we can always find a solution of (22.5.6) with £(r,s,k) = 0 for all
SU2)1, x SU(2)r x U(1)y representations with » non-trivial except the
one in which r is the defining representation, s is the trivial representation,
and k = 1, for which we take # = 1. Unfortunately, this solution is far
from unique — there is an infinitc number of ways of reproducing the
anomalies of the underlying theory.

For general n and N it is usual to find many solutions of Eqgs. (22.5.5)
and (22.5.6), but there are some cases where no solutions can be found.
In such theories we can reach the conclusion that the SU(n). x SU(n)r x
U(1)y symmetry must be partly or completely spontaneously broken. This
has particularly interesting implications for quantum chromodynamics, so
let us now specialize to the case of an SU(3) gauge group.

To be concrete, we will focus on the representations, with k = 1 and
mp = mg = 0, that can be formed from just three elementary fermions
and no antifermions. These are:'

(a) r is the symmetric third-rank SU(n) tensor; s is the trivial representa-
lion.

(b) r is the antisymmetric third-rank SU(n) tensor; s is the trivial repre-
sentation.

(c) r 15 the third-rank SU(n) tensor of mixed symmetry; s is the trivial
representation.

(d) r is the symmetric second-rank SU(n) tensor; s is the SU(n) vector.
(e) r is the antisymmetric second-rank S U(n) tensor; s is the SU(n) vector.
(f) r i1s the SU(n) vector; s is the symmetric second-rank SU(n) tensor.
(g) ris the SU(n) vector; s is the antisymmetric second-rank S U(n) tensor.

(h) r is the trivial representation; s is the symmetric third-rank SU(n)
tensor.

(1) r is the trivial representation; s is the antisymmetric third-rank SU(n)
tensor.

(i) r is the trivial representation; s 1s the third-rank SU(n) tensor of mixed
symmetry.

t All SU(N) vectors and tensors here are understood to be contravariant.
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For n > 2, Eqgs. (22.5.5) and (22.5.6) here read 1t
Ln43)n+6)s+ (n—3)n—6¥p + (2 — N + nin +4)¢,
taln — 4o + P (n+ 1)p+ inf(n—1) =3 (22.5.7)
and

Y(n+2)(n+3) o+ Ln—2)n—23)s+ (0 —3)c +n{n+2)¢,
+n(n— 2+ nn+ )5+ nn— 1)y =1. (22.5.8)

There is no problem in satisfying Eq. (22.5.7), but note that if n is a
multiple of three then for all values of the /s, each term on the left-
hand side of Eq. (22.5.8) is also a multiple of three, which makes it
impossible to satisfy this condition. We conclude in particular that the
SU@B) xSU@B)r x U(l)y symmetry of quantum chromodynamics with three
Jlavors of massless quarks must be spontaneously broken. This result is not
limited to the representations (a)—(j), but applies to any representations
of SU(3)L x SU(3)r x U(l)y that can be formed from color-neutral
combinations of quarks and antiquarks.

* ¥ %

Aside from special cases such as an SU(3) gauge group with n = 3
elementary fermion S U(3)-triplets, the 't Hooft anomaly matching condi-
tion is not very restrictive; in general it allows a wide variety of massless
bound states when chiral symmetry is unbroken. ’t Hooft also proposed
a decoupling condition, which requires that when one or more of the ele-
mentary fermion flavors become very heavy there should be no unbroken
chiral symmetries that prevent composite particles that contain heavy el-
ementary fermions from acquiring masses. For instance, in the case of an
SU(3) color gauge group, if we give one of the n quark types a large mass
then those three-fermion bound states that contain a single massive quark
will furnish representations (¢, s') of the group SU{(n—1) x SU(n— 1) that
are either

(v) v’ is the symmetric second rank SU(n — 1) tensor; s’ is the trivial
representation,

(w) r’ 1s the antisymmetric second rank SU(n — 1) tensor; s’ is the trivial
representation,

(x) v and s’ are SU(n) vectors,

" In Ref. 16, t Hooft assumed that parity is not spontaneously broken, so he gave these
formulas for the case where £, = —&4, & = —¢,, 6, = —¢;, {4 = —fr,and £, = —£,.
As we sec here, the main conclusion does not depend on parity conservation.
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(y) 7 is the trivial representation, s is the symmetric second rank SU(n—1)
tensor,

(z) ' is the trivial tepresentation, s is the antisymmetric second rank
SU(n — 1) tensor.

In order for the three-fermion mass state to acquire a large mass, it is
necessary that £/(v/,s’) = 0, where #/(r',s') is the number of times that
an irreducible representation (r',s"} occurs among the helicity + { bound
states minus the number of limes the same representation appears among
the helicity — 1 bound states. By inspecting the list of three-fermion
representations (a)—(j) of SU(n} x SU(n) to see what representations of
SU(n—1)x SU(n—1) they yield, we see then that the 't Hooft decoupling
condition requires that!

0=, =Cy+ e+ 14,
0={iv=fb+fc+{e,
0=/, =l +Llg+la+ e, (22.5.9)
0=f;,=ff+f;,—|—fj,
O0=/4,=C(e+{i+ .

Unfortunately, in most cases there are still an infinite number of solutions,
though there are no solutions in which the #s are n-independent integers.

The decoupling condition seems quite plausible, but its use by 't Hooft
was questioned!” on the ground that, as one or more fermion masses
increase, one usually encounters phase transitions that make the mass
spectrum different from what it would be for small fermion masses. There
is a stronger condition, known as the persistent mass condition, which
requires that when one or more of the elementary fermion flavors acquire
any mass, there should be no unbroken chiral symmetries that prevent
composite particles that contain these massive elementary fermions from
acquiring some masses.'’ If valid, the persistent mass condition would
lead to the same consequences, such as Eqgs. (22.5.9), that were described
by ’t Hooft, with no chance of being invalidated by phase transitions.

It is easy to construct non-realistic models in which the persistent
mass condition is violated, such as theories with spontancously broken
non-chiral symmetries, which lead to massless Goldstone bosons formed
as composites of massive fermions.!” (These models also exhibit phase
transitions with increasing fermion masses, which invalidate 't Hooft’s
conclusions from the decoupling condition.) But the work of Vafa and

' In the parity conserving case studied by 't Hooft, the fourth and fifth equations are
identical to the first and second, while the third is empty.
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Witten discussed in Section 19.9 shows that, in a variety of more realistic
QCD:-like theories, non-chiral symmetries cannot be spontaneously bro-
ken, so this should not be taken as a serious objection to the persistent
mass condition.

22.6 Consistency Conditions

The numerical coefficient appearing in the anomaly for any symmetry
depends on the matter content of the theory. On the other hand, the form
of the anomaly is largely independent of the details of the theory, because
it is governed by consistency conditions, first presented in 1971 by Wess
and Zumino.!8

Even when we are interested in anomalies in global symmetry currents,
in order to derive the consistency conditions it is convenient to imagine
that all symmetry currents are coupled to gauge fields, which for non-
Abehian symmetries also couple to each other, in such a way that these
symmetries become local symmetries of the Lagrangian density. We can
always return to the case of global symmetry by letting the corresponding
gauge coupling constants become infinitesimal. Apart from anomalies,
the effective action ['[4] in a background gauge field A,,(x) will in
this formalism be invariant under infinitesimal transformations Ag,(y) —
Apu(y) +1 [ d*x €,(x) T o(x) Agu(y) on the gauge ficld, where in order to
reproduce the transformation (15.1.9) we must take

% é 3

- -ya - o = . s
VT a(X) 8x* 0 Agy(x) ¢ ﬁ]’Aﬁ“(")éAw(x)

(22.6.1)
Taking anomalies into account, .7 ,(x) no longer annihilates ['[4], but
rather

T o(x)'[A] = Gy[x; 4] , (22.6.2)

where Gy [x; A] represents the effect of the anomaly. Eq. (22.6.2) may also
be written as a formula for the covariant divergence of the expectation
value of the current:

D, (JH(x)) = —iG,[x; A] , (22.6.3)

where

D = 54

and D, is the gauge-covariant derivative (15.1.10), taken here in the adjoint
representation with (tg),, = —iCyg,.

[[A] (22.6.4)



22.6 Consistency Conditions 397

The Wess—Zumino consistency conditions follow from the commutation
relations®

[T 4(X), T ()] = iCagy0*(x — YT ,(x). (226.5)
From Eqgs. (22.6.2) and (22.6.3), we derive the general consistency condition
T o(x)Gly; Al — T 5(x)Galy; 4] = iCop, % (x — )G, [y:4] . (22.66)

These consistency conditions were originally derived by Wess and Zu-
mino for the chiral SU(3) x SU(3) symmetry of the strong interactions,
a special case of physical as well as historical importance. Here the
generators 7 ,(x) acting on the gauge fields consist of the even parity
generators %,(x) defined by Eq. (22.3.31), and the odd parity generators
%X o(x) defined by (22.3.32)."" They satisfy the commutation relations

[% o(x), Wp(y)] = i6H(x — p)fapc Y o(x)
[ a(x), Kp(y)] = i8*(x — y)fape X elx)

[ a(x), X)) = i6*(x — y)fapeH (X},

where fap. are the SU(3) structure constants. Since the SU(3) subgroup
generated by the %, is not spontancously broken, it is convenient to
treat the integration over fermion momenta in such a way as to preserve
invartance under gauge transformations generated by %, so that

Wo(x)I' =0,
leaving us with the non-zero anomaly
Za(x}T = Galx).
The non-trivial consistency conditions are then
Y o(x)Gr(y) = i0*(x — y)f aheGelx)
and
T o(X)Gp(¥) — Zp(x)Galy) = 0.

The first of these simply says that G,(x) transforms like an octet under
ordinary SU(3) transformations. The second condition imposes other
strong constraints on G,(x). The reader may check that this condition is

* The factor —i was inserted in Eq. (22.6.1) in order to provide the conventional factor +i
accompanying the structure constant C,g, in this commutation relation. A reminder:
we are using a basis for the Lie algebra in which the structure constants are totally
antisymmetric, and so we do not distinguish between upper and lower gauge indices.

" Another reminder: as mentioned in Section 223, the 4, and %, used here are what
were called Y, and X, in Ref, 8.
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satisfied by the Bardeen formula (22.3.34) for G,(x). We will not go into
this here, but will instead use as an illustration a general gauge theory with
all currents treated symmetrically. In Section 22.3 we quoted the formula
(22.3.38) for the anomaly in this case, but did not derive the terms in this
formula of higher than second order in the gauge ficlds. Here we shall
show that these terms are dictated by the consistency conditions (22.6.6).

For this purpose, and also to allow for further generalizations, it is very
convenient to reformulate the set of Wess—Zumino consistency conditions
as a condition of invariance under the BRST transformations described
in Section 15.7. Let us introduce a ghost field w,, and define the nilpotent
BRST operator s for a general gauge theory by

SAcxu = a‘uwa + CaﬁyAguw}, , (22.6.7)
SWy = — %C“lnglgw}, R (2268)

it being understood that s satisfies the distributive rule s(4B) = (s4)B +
A(sB), the sign being negative where A is a fermionic quantity like ,, and
otherwise positive. In place of the anomaly function G,{x;A], we shall
work with a functional

Glw, 4] = / w2(x) Golx: 4] dx (22.6.9)
Then (keeping in mind that , is fermionic)

$Gl, A] = — 1Cog, [ d*x 025(x) 0,(x) Gylx; A]

—/d4x a)a(X)/dd' {510,3 ) + CpyoAyuly )(Ua(}’)] %%EE(’—;;]
I3

= [ @ [y o0 wp) |~ 1Cpd%(x — )G, Ix: A
+i T 5(0)Galx; A1

Because the ghost fields anticommute with each other, this can be written

sGlw, A] = — ;ifd4x /d4}’ e (X) wg(y)
% [iCapyd*(x = Y)Gy[x; A + T p(3)Galx; A] — T o(X)Gy(y)] .

We see that the consistency condition (22.6.6) will hold if and only if
G[w, A] is BRST-invariant

sGlw, A] =0 (22.6.10)

for all ghost fields w,(x).
Now consider the possibility that the anomaly G[A4; w] could be written
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as the BRST operator s acting on a local functional F[A]:
GlA;w] = sF[A] . (22.6.11)

(Note that the functional F is necessarily independent of the ghost field,
because the operator s adds one ghost field factor, and the anomaly
functional G is already linear in the ghost field) The BRST operator
satisfies s> = 0, so such an anomaly would satisfy the consistency condition
sG = 0. If F[A4] is a local functional’ of the gauge field, then it could be
subtracted from the action, thus cancelling the anomaly. The same is true
of any term in the anomaly that can be written as the BRST operator s
acting on a local functional; such a term satisfies the consistency condition
by itself, and can be cancelled by adding a local term to the action. The
possible anomalies that interest us are thus the local functionals Glw; 4]
of ghost number unity that satisfy the consistency condition (22.6.10),
modulo terms that can be expressed as s acting on some local functional
of ghost number zero. In accordance with the usual terminology for
nilpotent operators, the equivalence classes of such functionals form what
is called the cohomology of the s operator at ghost number unity.

We can also express this in terms of the local densities themselves. We
can write the anomaly (or any term in the anomaly) as G = [ d*x %(x),
where %(x) is a power series in the gauge and ghost fields and their
derivatives at the spacetime point x. The condition sG = 0 then is
equivalent to the statement that

SH(x) = 8, 7#(x) (22.6.12)

for some function ##(x) of fields and field derivatives. Likewise, the terms
in % that can be cancelled by adding local terms to the action are those
that are of the form s% up to possible derivatives. Thus the anomalies
that interest us are the local functions of ghost number unity that satisfy
the consistency condition (22.6.12), modulo terms that can be expressed as
s acling on some local functional of ghost number zero, modulo possible
derivatives. This is known as the cohomology of s at ghost number unity
in the space of local functions, modulo derivatives, and denoted H(s|d).
Algebraic methods have been used to work out the cohomology of the
BRST operator s, and thereby deduce the form of the anomaly in general
gauge theories.!” This approach leaves unknown only constant coefficients
that depend on the matter content of the theory and need to be calculated
by the methods of Sections 22.2 or 22.3. Since we have already calculated
the terms in the anomaly of second order in the gauge fields for general
gauge theories, including their constant coefficients, here we will use the

T By a local functional is meant the integral of a local function, that is, a function of
fields and field derivatives at a given point.
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consistency condition (22.6.12} to calculate the terms of higher order in
the fields.

We saw in Section 22.3 that when all currents are treated symmetrically,
the terms of second order in the gauge fields are one-third the expression
(22.3.26). This is an operator of dimensionality four (in units of mass),
while the Wess-Zumino consistency condition (22.6.6) relates only oper-
ators of the same dimensionality, so to satisfy this condition we should
add only terms of higher order in the gauge field that have the same
dimensionality. We therefore seek a solution of the consistency conditions
in the (not necessarily unigue) form

G, = i[(au"rgnanom = —‘241? EKMP Tr { T, [axAv ‘3AA,0 + ic10A, AiAﬂ

tica Ay 8y Az Ay + ic3 Ak 634, — CaAcA, A1A] } : (22.6.13)

where A, = A,,T,, and the ¢; are constants to be determined.

In order to save a great deal of effort, it will be convenient to rewrite
this in the language of differential forms. (See Section 8.8.) We introduce
a set of c-number parameters dx* that are taken to anticommute with
themselves and all fermionic fields, such as the ghost field w,. The dx*
then also anticommute with the BRST operator s. Because dx*dx’dx*dx*
is totally antisymmetric, it may be written as

dx*dx’ dx*dxP = e d*x d*x = dxPdx'dx?dx® . (22.6.14)
We also introduce the exterior derivative
i
= gyt
d = dx Erwlt

which since derivatives commute is nilpotent as well as anticommuting
with s:

=0, ds+sd=0. (22.6.15)
Finally, we introduce the anticommuting quantitics
A = iAdx! = id,, Tydx? w=iw, T, . (22.6.16)
In this notation, Eq. (22.6.13) reads

Glw,A] = ﬁ / Tr {w [(dA)2 + c1(dA) 4>

+ C2A(dA)A + e34%(dA) + caA?] } . (226.17)

In order to implement the consistency condition (22.6.10), we note
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that the BRST transformation rules (22.6.7) and (22.6.8) may be written
as

sA = —do + {4,w}, (22.6.18)
s = w? . (22.6.19)

Now, the BRST transformation of the last term in Eq. (22.6.17) is given
by

sTr [wA‘“] =Tr [sz“ — 0{4,0}4* + wA{4,w}4?
—wAz{A, wid + wA3{A, w}A] + wdwA® terms
= —Tr [szﬂ + wdwA? terms .

There is no other contribution to sG proportional to Tr sz"‘}, so the
consistency condition (22.6.10) can only be satisfied if ¢4 = 0. With ¢4 = 0,
a straightforward calculation gives

6= 51 2/’&{ (dAPo? + 0 do AdA — do o dA A
—AwdAdw — wAdwdA

te1 |0 dd dor 4 — o dA A do]
o3| dow dA A — wAdA do)
+c3 io) dow AdA — wAdw dA]
—Cq :— wAdo A* + wdo A3 + a)dAAza)]

—C3 (A% dw A — A de A2 + wAdA dw]

—03r—wA?’dw-f—wAzde—f—wAszw]}.

We do not need to assume that the integrand vanishes, but only that
it is the derivative of some local function, so that its integral vanishes.
This condition must be satisfied scparately for the terms involving two
derivatives and those involving one derivative, since no cancellation can
occur between terms with different numbers of derivatives. It is not hard
to see that the terms in the integrand involving just one derivative are of
the form d# if we take ¢| = —¢» = 4¢3 = ¢. The remaining terms are a
total derivative if ¢ = —1/2, thus justifying the previously quoted result
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(22.3.38). This result is often expressed more compactly as

Glo, A] = Tlnz fTr {w d{AdA — %Aﬂ}
- /Tr {o) d[4F + 1A3] } , (22.6.20)
2472 2
where F is the matrix-valued field-strength two-form
F = lityFyy dx*dx’ = dA — 4%, (22.6.21)

The anomaly does not have to be put in the form (22.6.13), so Eq. (22.6.20)
is not the unique result for Glw, A]. Results quoted in the next section
show that, for any subgroup H of G for which Tr {t,-{t js tk}} = () for all
generators of H, it is possible to add local terms to the action in such a
way that the anomaly G; vanishes when ¢; is any generator of H.

There is an elegant algebraic tool, known as the Stora—Zumino descent
equations,'® for constructing a solution of the consistency conditions. It
is just as easy to describe this method in a spacetime of any even dimen-
sionality as in four spacetime dimensions, so we will take the spacetime
dimensionality to be 2n. To start, one must imagine that at least two
additional variables have been added to the 2n coordinates of space and
time, in order to give meaning to the (2n + 2)-form Tr F*t!. Note that

dF = —d(A%) = —(dA)A + A(dA) = [A, F] (22.6.22)
0 that Tr F™*! is closed:
dTr F™! = (n+ 1)Tr {(dF)F"} = Tr {[4, F**']} =0 . (22.6.23)

As long as the extended spacetime is simply connected, Poincaré’s theorem
then tells us that Tr {F"+1} is exact, in the sense that there is a (2a+1)-form
Qp+1 (known as the Chern—Simons form), for which

Tr{F™2 = d Q1 . (22.6.24)

Further, Tr{F"*!'} is manifestly gauge-invariant and depends only on the
gauge field, so it is BRST-invariant:

sTr{F"1 =0, (22.6.25)

The ‘differentials’ dx* are understood to anticommute with fermionic fields
like the ghost field w,, so the operator 4 anticommutes with the operator
s defined by Eqs. (22.6.7) and (22.6.8):

sd +ds=0.
Because s is nilpotent, it follows then that s€»,  is also closed:
d(s Qoni1) = —sTe {(F*1) =0,



22.6 Consistency Conditions 403

Again using Poincaré’s theorem, this means that there must be a 2n-form
Qf,, of first order in w,, for which

s Qouy1 = dQ,, . (22.6.26)
Furthermore, d(s Qﬁn) = —s2y,.1 = 0, so there is also a (2n — 1)-form
Q3,_,, of second order in the ghost field, for which

s, =d0d . (22.6.27)

It follows than that the integral of Q) over the 2n dimensions of space
and time is BRST-invariant:

s / ol —0, (22.6.28)
spacctime

even though Q! is not itself BRST-invariant. We can thus find a candidate
[ Q) for the anomaly functional G[w, 4] by integrating the two first-order
differential equations dQy,4; = Tr {F 3 } and dQén = 5Oy, . General (not
unique) solutions of these equations are

Qi1 = (n+1) /0 Ty {aF}, (22.6.29)
Qb =nn+1) fo a1 — HTr{wddF™)},  (22630)

where F; = tF + (t — t*)42. Evaluation of the integral (22.6.30) shows that
Eq. (22.6.20) gives a result for Glw, A] proportional to [ Q) in the case of
four spacetime dimensions.

We can continue this descent, and derive other useful results. In
particular, it follows from Eq. (22.6.27) and the nilpotence of s that
d(sQ3, ) = 0, so Poincaré’s theorem tells us that sQ3, , is of the form
dQ3,_,, so the integral of O} , over the 2n — 1 coordinates of space is
BRST-invariant:

s Q,_,=0. (22.6.31)

space
Such BRST-invariant functionals of second order in the ghost fields are
candidates'® for so-called Schwinger terms.'*¢ Schwinger terms of the sort
that concern us here arisz as anomalous terms S, (X, ¥) in the equal-time
commutation relations of the time components of two symmetry currents:

I0(x, 1), Ty, x)] = iCop, 1O%, )07 (X — y) + Syp(x,7,1) . (22.6.32)

(All operators in this paragraph are taken at the same time ¢, which
will henceforth not be shown explicitly.) From the antisymmetry of the
commutator we have S,p(x,y) = —Sg.(y,x), so all information about
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Sap(x,y) is contained in the functional
S[w] = / PP 21y co,(x) wp(Y) Sap(X, ) - (22.6.33)

Note that S,4(x, y) depends in general on various matter and gauge fields,
so S[w] generally depends on these fields as well as on the ghost field
wy(x). Taking the commutator of Eq. (22.6.32) with a third current J.f,’(z),
contracting with w,(x) wy(y) w,(z), integrating over x, y, and z, and using
the Jacobi identitics, we find

0= fdz"‘lx dly g?niz 0 (X) 0g(¥) 04(2)

X iCops 8,52 %)% 1 (x = y) + [10(2), Sup(x.y)]|

On functionals of gauge and matter fields like Sxg(X,¥), the action of
the BRST operator s is the same as that of a gauge transformation with
transformation paramelter wy,, so

$Sup(x,3) = i f 412 ,(2) 1%(2), Syp(x,v)]

Recalling Eq. (22.6.8), we find that the functional (22.6.33) is BRST-
invariant

sS[w] =0. (22.6.34)

Also, by adding terms to the currents we can change S[w] by terms of
the form sT [w], so the set of possible Schwinger terms that could nor be
removed by adding terms to the currents is given by the cohomology of
the BRST operator s at ghost number two — that is, by BRST-invariant
functionals S of second order in the ghost field that are not themselves of
the form s7. Eq. (22.6.31) shows that [ Q2 | is a candidate for such a
functional,

* % ¥

The analysis of anomalies given so far in this section is strictly applicable
only to anomalies in one-loop order. It is true that a theory with one-
loop anomalies in currents to which quantum gauge fields are coupled is
inconsistent, and therefore does not need to be studied in higher orders.
But the converse does not hold; if a theory with quantum gauge fields is
anomaly-free in one-loop order, we still need to show that anomalies are
absent in higher orders. Also, there is nothing inconsistent in theories with
anomalies in global symmetries, such as the chiral symmetries of quantum
chromodynamics, and for these we need to know whether higher-order
cotrections affect the anomalies.

Since BRST transformations act non-linearly on the fields, even in
the absence of anomalies we would not necessarily expect the quantum
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effective action I'[w, A] to be BRST-invariant beyond the one-loop ap-
proximation. As we saw in Section 17.1, beyond this approximation we
need to consider functionals not only of gauge and ghost fields but also
of their antifields. (The introduction of antifields is sometimes important
even in one-loop order for another reason: a local functional of fields
alone that satisfies the Wess—Zumino consistency conditions, and that is
not expressible as the BRST operator acting on a local functional of
ficlds alone, will not be a candidate anomaly if it can be expressed as the
antibracket of the action with a local functional of fields and antifields,
because in this case the anomaly can be cancelled by subtracting this term
from the action. This corresponds to a change in the action of the fields
combined with a change in the gauge symmetry obeyed by this action.)

The study of anomalies with antifields included in the action turns
out also to have a cohomological formulation.?®?! The analysis of this
problem 1s based on the Zinn-Justin version (17.1.10) of what Batalin
and Vilkovisky called the master equation. In the absence of anomalies
(I,T) = 0, so that in one-loop order (§,1";) = 0, where § is the zeroth-
order action and I'y is the one-loop contribution to the quantum effective
action. In the presence of anomalies we have instead

(8.I'y) =Gy, (22.6.35)

where G is some functional of fields and antifields which, since § and
I') have ghost number zero, must have ghost number unity. The action
is assumed to satisfy the classical master equation (S,5) = 0, so the
antibracket operation in Eq. (22.6.35) is nilpotent, and therefore (S, G1) =
0. But if G, = (8, F)) for some local functional F, of ghost number zero
then we can cancel the anomaly to one-loop order by subtracting the
term F; (which is treated as a quantum correction of order #) from the
action and hence from I';. (Of course, Gy = (§,1'1), but in the presence
of massless particles T'; is not a local functional) Thus the candidate
anomalies are those local functionals G; of ghost number unity that are
closed, in the sense that they satisfy (S, G;) = 0, but that are not exact,
that is, that cannot be expressed as G; = (S, Fy) for local functionals F; of
ghost number unity. In other words, the candidate anomalies correspond
to the cohomology of the antibracket operation X — (§,X) at ghost
number unity on the space of local functionals of the fields and antifields.
This is just like the result found earlier in this section, but with the
antibracket (S, ) replacing the BRST operator s. If we set the antifields
equal to zero in Eq. (22.6.35) and recall that (611 /5%"),2—p = sy", we find
that the condition (22.6.35) in fact yields the condition sI'y = 0, which
as we have seen is equivalent to the requirement that I'y satisfies the
Wess—Zumino consistency conditions. But there is a sense in which the
analysis based on Eq. (22.6.35) can be extended to higher orders.
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To see this, suppose that it is found that the antibracket operation
X — (8, X) has an empty cohomology at ghost number unity in the space
of local functionals, and that we redefine the action as described above
to make Gi = (§,I'1) = 0. An anomaly that violates the master equation
(I, T') = 0 in two-loop order is represented by a function G, for which

(Fl,l“l) +2(S,1“2) = (.

But since (S,1'1) = 0 and (8, ) = 0, any such G, would satisfy (§, G;) = 0.
On the assumption of an empty cohomology, this means that it can be
expressed as Gy = (S, o) with Fy a local functional of ghost number ZEro,
so in this order the anomaly can be cancelled by subtracting F» from the
action.

This argument can be extended to all orders. Suppose we have cancelled
the anomalies in the master equation up to order N — 1, so that

0= G = 30 (FooTwms) = 2(5,T) + 3 (FooTecs)
L=0 L=1

for all M < N. The Nth-order term in the antibracket (I",T") is likewise
N—1
Gy =2(S.Tw) + > (Tw.Tw-m)
M=l

s0, using the Jacobi identity (15.9.21) (in which for three bosonic operators
all signs are —) and the above formula for (S, Ty), we find:

(5.00) = =2 ((81w)Pwr) = 2 3 ((FuTuce)o o).

This can be written in a more symmetric way

N-2 N2 N2

(S,GN) =— Y > ONM MMy ((FMI, (er,FM3)) :

Mi=1 M;=1 Ma—1

Since the ranges of Mj, M), and M; are the same, we can write the
double antibracket in this sum as a sum over the 3! permutations over
these indices, which vanishes according to the Jacobi identity (15.9.21),
leading to the conclusion that (S, Gy) = 0. If as assumed the cohomology
is empty then this implies that there is a local functional Fy for which
Gn = (8, Fy), so by subtracting Fy from the action the anomaly can be
cancelled in order N, as was to be shown.

Using purely algebraic methods Barnich, Brandt, and Henneaux?? have
succeeded in showing that for Yang-Mills theories (in four spacetime
dimensions) based on semisimple gauge groups, the cohomology of the
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antibracket operation X — (S, X) (at ghost number unity on the space
of local functionals) consists entirely of a linear combination of terms
of the form (22.6.20), one for each simple subgroup of the gauge group,
with unknown coefficients.”t This shows without any reference to the
matter content of the theory that in one-loop order, where the anomaly
G automatically satisfies (S,G1) = 0, the anomaly for a semi-simple
gauge group must be a linear combination of terms of the of the form
(22.6.20), with only the constant coefficient for each simple subgroup
left to be determined by detailed calculations that take into account
the matter content of the theory. Further, we saw in Section 22.4 that
there are gauge groups for which the trace in Eq. (22.6.20) vanishes
automatically for any menu of fermion fields. (These are the semisimple
gauge groups with no SU(n) factors with # > 3.) In such cases the theorem
of Ref. 22 shows that the cohomology of the antibracket operation
X — (§8,X) at ghost number unity is zero. As we have seen, this means
that in such theories there is no anomaly in any order of perturbation
theory.

There 1s another sense in which the anomaly is related to the cohomol-
ogy of the antibracket operation.?? In deriving the Slavnov—Taylor identity
(16.4.6), we assumed that the measure [, , dy"(x) is invariant under the
symmetry transformation in question. In Section 15.9 the Zinn-Justin
equation was derived from the Slavnov-Taylor identity for the symmetry
transformation x" — y" + 858 /8yk, so the derivation of the Zinn-Justin
equation given in Section 15.9 breaks down unless [],, , dx"(x) is invariant
under this transformation, or in other words unless AS = 0, where A is
the operator (15.9.34). Where AS # 0, it still may be possible to save
the Zinn-Justin equation by adding local functionals to S that violate the
classical master equation (8,S) = 0 in such a way as to cancel the effect
of the non-invariance of the measure. It turns out that the condition for
this cancellation is nothing but the quantum master equation (15.9.35). To
construct an action § that satisfies this equation, we start with a zeroth-
order action 8o that satisfies the classical master equation, (Sp, Sg) = 0,
and add quantum corrections. In the case in which the cohomology of
the operation X — (Sp, X) (at ghost number unity in the space of local
functionals) is empty, the same proof that was used above to show the
absence in this case of anomalies to all orders can be used to show that a
local functional can be added to Sy so that the quantum master equation
is satisfied to all orders.

"7 1t is not necessary to specify the representation of the gauge algebra in which the trace
in Eq. (22.6.20} is lo be calculated, because this trace is the same up to a constant
coefficient for all representations of a simple Lie algebra,!® and (he constant coefficient
is not determined anyway by this cohomology theorem,
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22.7 Anomalies and Goldstone Bosons

In the same 1971 paper in which they introduced the consistency con-
ditions, Wess and Zumino!® also noted that the possibility of anomalies
has important consequences for the interactions of Goldstone bosons. To
understand their point, it is helpful to apply the ‘anomaly matching’ ar-
gument developed by 't Hooft!® in 1979, which has already been used in
Section 22.5.

Consider a broken global symmetry group G that is realized linearly
in some underlying theory of trapped massless fermions, as for instance
the global chiral SU(3) x SU(3) symmetry in quantum chromodynamics
with three massless quarks. In this underlying theory introduce fictitious
gauge fields, so that aside from possible anomalies the global symmetry
G becomes local. In general this local symmetry will be broken by
anomalies, since in the real world the symmetry is purely global, and there
is no reason why a global symmetry should admit an extension to an
anomaly-free local symmetry. However these anomalies can be cancelled
by adding suitable massless spectator fermions. As long as the gauge
couplings introduced in this way are sufficiently small, and the spectator
fermions have only these very weak gauge interactions, the dynamics of
the theory will not be substantially changed by these modifications.

Next consider the effective field theory that describes physics at low
energy, where the trapped fermions are unobservable. The only degrees
of freedom in this theory will be the massless particles: the fictitious
gauge bosons and spectator fermions, and a set of Goldstone bosons
with fields &, one for each independent broken symmetry. Since the
underlying theory had been made gauge-invariant and anomaly-free, the
same must be true of the effective field theory. But the spectator fermions
produce an anomaly which had previously cancelled the anomaly due to
the trapped massless fermions in the underlying theory, so in order for
them to cancel the anomaly duc to the Goldstone bosons, the gauged
effective field theory of the Goldstone bosons must have an anomaly for the
Sietitious local symmetries which is equal to that produced by the trapped
Jermions in the underlying theory. That is, in place of Eq. (22.6.2), the
effective action I'[&, A] of the fictitious gauge fields and Goldstone bosons
is subject to the condition

T 3(X)T[E, A] = Gglx; 4], (22.7.1)

where Gg[x; A] is the anomaly function of the underlying theory, in which
there are no Goldstone bosons, and .74 is a generator of the gauge
group G, now acting on both gauge and Goldstone boson fields. (The
index f on 7 g runs over values i labelling a complete set of independent
generators %; of the unbroken symmetry subgroup H, together with values
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a labelling a set of independent broken symmetry generators &;; there is
one Goldstone boson field &, for each &,.)

Of course, Eq. (22.7.1) may also be used to study the interactions of
Goldstone bosons with real weakly coupled gauge fields. For instance,
where the underlying theory includes electroweak gauge bosons coupled
to the quarks, we would identify some of what we have called ‘fictitious’
gauge fields with the electroweak gauge fields. In such cases some of the
‘spectator’ fermions must also be real in order to cancel the anomalics
produced by loops of trapped fermions in the gauge symmetries of the
real weakly coupled gauge fields, as for instance the leptons cancel the
electroweak anomalies produced by the quarks.

Now let us turn to the implications of Eq. (22.7.1). To calculate the
gauge symmetry generator 7 g(x) in this context, note that under a general
group transformation g = exp(—i [ {3(x).7 5(x) d*x), the Goldstone boson
fields &,(x) transform into fields &,(x) given by Eq. (19.6.18), and the
gauge fields Ag(x) transform into gauge-transformed fields 4"(x), so that

T y(x) = TH(x)+ T 3(x). (22.7.2)
Here 7 ﬁ(x) acts on the gauge fields and is given by Eq. (22.6.1):

¢ 0 0
Ty = — -
17 5(x) Gk 5 A (%) CﬁmAw(x)éAw(x) . (22.7.3)

where C,g, are the totally antisymmetric structure constants of the gauge
group G, while .7 f;(x) acts on the Goldstone fields and is given by the
infinitesimal limit of Eq. (19.6.17), which (for the exponential parameteri-
zation (&) = exp(ié,X,)) reads:”

T exp (ia(X)Xa) = =7 5() XP (I€a()Xa) + eXP (Za() Xa) ()Y,
(22.7.4)

Here Ty are matrices representing the generators of G in any represen-
tation; they are divided into sets X, and ¥;, which represent the broken
and unbroken symmetry generators, respectively. Also the fg,(x) are
&-dependent functions whose form will not concern us here.

About the anomaly functions Gg[x; A], we will assume only the consis-
tency conditions (22.6.6)

TGy A] = Ty(x)Galy; A] = iCopyd*(x —9)Gy[y; 4] (22.7.5)

* The minus sign in the first term on the right-hand side of Eq. (22.7.4) and the factor
—i on the left-hand side of Eq. (22.7.3) appear because it is exp[—if Ap(x)7 y(x)] that
induces a gauge transformation (15.1.17) with gauge parameter Ag, as can be scen by
requiring the 7 4(x) to satisfy the commutation relations (22.6.5).
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and the absence of anomalies in the unbroken symmetries
Gi[x;A] =0. (22.7.6)

As mentioned in the previous section, as long as the trace Tr [T:{ T}, Ty }]
vanishes for the generators of unbroken symmetry subgroup (as it does
for the non-chiral generators of SU(3) x SU(3)), it is always possible to
add a local functional to the action so that Eq. (22.7.6) is satisfied.

Under the assumptions (22.7.5) and (22.7.6), it is always possible to find
a solution of the anomalous Slavnov-Taylor identities (22.7.1):

1
PiEA =i [ dt [ () Golyid el . (227.7)

where [A_:(x)], is the result of acting on 4, = TgA,s with a gauge
transformation (15.1.17) having A; = —t&, and A; =0:
[A—tf(x)]u = exp (—itX,&(x)) Ap(x) exp (itX,La(x))
—i[3uexp (—itX Eu(x)) | exp (itXala(x) . (2278)
In contrast with the case in which unbroken symmetries have anomalies,
Egs. (22.7.7) and (22.7.8) define a local (though complicated) functional of
gauge and Goldstone boson fields. Any other solution of Eq. (22.7.1) will
differ from this one by an anomaly-free functional.
Here is an outline of the proof?* that the action (22.7.7) satisfies

Eq. (22.7.1). Instead of working with the local generator 7 y(x), it is
convenient to introduce an arbitrary function ny(x), and define

Tly] = / dx ng(x)T 4(x) . (22.79)
To evaluate 7 []&p(x), we introduce the matrix

Hoie(x) = oxp (—iXulul)0) [1x)+7 Tl exp (iXala0)t) = 12 (X))s Ty,

(22.7.10)
where #(x) = ng(x)Ty. Then
é
2 1-2(¥) = ~1| Xala(x) 1 ()] + (7 &) Xa,
so that
T [nép(x) = _i(%[’?—tﬁ(x)]b + iCqyb £u(X) [n_se(xX)], . (22.7.11)

To evaluate 7 [5]Gp[y, 4], we apply 7 [#] to the gauge field, and after a
straightforward calculation find that

T A = (740l Au)) (227.12)
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so, using the consistency condition (22.7.5),
TGy dre = [ dx lr-c(0)), (7100 Gyly: A1)

= [ @ et (780) Gulidl)
HiCypa -t ()} Galy; A—ie] . (22.7.13)

A_*A_;é

The structure constant terms in Eqs. (22.7.11) and (22.7.13) cancel, yielding
1 4 a
TN A = [ de [ay § =] D boels] Golyia-a

—iln—ez(¥)a (7 [€] GaLV;A])A_) A;} . (227.14)
Another straightforward calculation shows that

5,
o A=l = i(74(2)4,00) (227.15)

A—A_;’

so the terms in the integrand in Eq. (22.7.14) add up to a t-derivative

1
TUreA=— [ a [ %{[W—ré(]’)]bcb[y;/i—té]}
t=1

== [['?—té(y)]b Goly; A—:«:]] - (22.7.16)
t=0

At t =1 we have
1-¢(x) = exp ( — iXalu(x)) | 1(x) + 7 (11| exp (iXala(0)) -

From Eq. (22.7.4) we see that this is a linear combination of the generators
of the unbroken symmetry subgroup H, so the coefficient [#_z(y)]) of any
broken symmetry generator X, vanishes. Also, Egs. (22.7.10) and (22.7.8)
show immediately that at ¢t =0, 5_.:(y) = n(y) and [A_.:(p)], = A, (y), so
Eq. (22.7.16) yields

T A= [ & ol Golyi do] = [ v m(») Goly: 4], (22.7.17)

which with Eq. (22.7.6) is equivalent to the desired result (22.7.1), as was
to be proved.

The solution (22.7.7) of Eq. (22.7.1) is not unique, but it is the unique



412 22 Anomalies

solution that vanishes for ¢ = 0. To see this, note that

exp |~ / np(x) 7 4(x)d*x | T[E, 4] = T[E, A1, (22.7.18)

where the primes indicate a gauge transformation with transformation
parameter rg. It is convenient to represent the exponential here as

1
exp(z) =1 —|—/ dr exp(zt)z ,
0
so Egs. (22.7.1) and (22.7.18) yield

1
LA =i [ deexp[—it [np(07 00 ] [ mln)Goly: Alay
— [, 4. (22.7.19)

In particular, if we take n, = —¢, and y; = 0, then &, = 0, in which case
by assumption Eq. (22.7.19) has a vanishing right-hand side, and therefore
yields the formula:

1
M) =i [ drexp [it [ &z ddx] [amGuiyady.
(22.7.20)
The functional operator expl[it | &,(x)74(x)d*x] in Eq. (22.7.20) simply
produces a gauge transformation (15.1.17) with gauge parameter Ag(x) =
—tq(x), so that Eq. (22.7.20) may be written as in Eq. (22.7.7).

Eq. (22.7.7) may be applied to study the electroweak interactions of the
octet of pseudoscalar Goldstone bosons, but it has important implications
for the interactions of the Goldstone bosons themselves, in the absence of
real gauge fields. In the case where 4 = 0, Eq. (22.7.8) becomes a ‘pure
gauge’ field

[iz(0)]y = —i[ 0 exp (—itX aa(x) | exp itXota(x))

= —E{BHV(té(x))] vi(ee) (22.7.21)
where
V(r&(x)) = exp (— itXa(fa(x)) . (22.7.22)
With 4%(x) = 0, Eq. (22.7.1) gives
T p(x)'[E,01=0, (22.7.23)

so the result of using Eq. (22.7.21) in Eq. (22.7.7) is a G-invariant local
functional of the Goldstone boson field £,(x), though, as we shall see, it
1s not in general the integral over spacetime of a G-invariant function of
£q(x) and its derivatives.
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The simplest example is the case of a completely broken symmetry
group. Here the condition (22.7.6) is empty, and we can use the symmetric
form (22.3.38) for the anomaly:

Ga[x; 4] = '24% GKMP Tr { T, [arcAv(x) BZAP(X) - %iaxAv (x) Ai(x)AP(x)

+ Lid(x) 8y A(x) Ay(x) — %iAK(x)Av(x)GAAP(x)] } , (22.7.24)

where now T, 1s the specific representation of the group generator fur-
nished by the left-handed fermions (including antifermions, where the dis-
tinction is relevant) of the theory. In this case when we use Eq. (22.7.21)
in Eq. (22.7.24), we find that the only terms in the trace in (22.7.24) that
survive when contracted with €% are then all proportional to

T {T@ @ vy @@, vyr}

with coefficients —1, 4+ ], — 1 and + |, respectively, so Eq. (22.7.7) becomes
here

I[2,0] = —Flnze"’”‘p [ty ey /0 e { T, |0V (1E)]
x v (12) [0, v ()] v (2 ) [0 (8))]
x v (ew) [3v (rE)) v (té(y))} S (2729)

As promised, this is not the integral of an invariant function of fields
and field derivatives. For instance, for small Goldstone boson fields
Eq. (22.7.25) becomes

1
I'iE,0] = %We"”" Tr {T.T,T. 14T} / d*y &q 0lp 0v&c 0184 Cple
+0(&%). (22.7.26)

Any function of the covariant derivatives of Goldstone boson fields would
have a term of lowest order in the fields which would be simply a product
of partial derivatives of the Goldstone fields, and therefore could not have
a lowest-order term of the form (22.7.26).

For an example of greater practical importance, consider the SU(3) x
SU(3) chiral symmetry of quantum chromodynamics with massless u, d,
and s quarks, spontaneously broken to the diagonal SU(3) subgroup of
Gell-Mann and Ne’eman. In order to use the results of this section, we
must label internal momenta in the fermion loop integral so that the vector
currents of the diagonal SU(3) subgroup are anomaly-free, in which case
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the anomaly takes the Bardeen form (22.3.34):

in

Ga[V,A] 16 2

GﬂlpaTr {ra [VMV Vpa’ + A.U-VAPO' - STZA#A‘;APAG

+ 3i(ApAs Voo + Voo Ay + Voo Aydy)| } : (22.7.27)

where V), Ay, Vy, and Ay, are defined by Eqgs. (22.3.35)-(22.3.37); 1, is
here half the Gell-Mann matrix 4,, given by Eq. (19.7.2); and n is the
number of quark types (‘colors’) of each flavor. (We are now using a
lower case ¢ for the matrices representing the group generators, because
in this trace we sum only over the left-handed quarks, not the lefi-handed
antiquarks.) For a pure gauge field like (22.7.21) the field strengths Vi and
Ay vanish, so that using Eq. (22.7.27) in Eq. (22.7.7) yields the anomalous
effective Goldstone boson action

i
P00 = 5o [ [ Tr{atal Aol el el Al )

(22.7.28)
where ‘4" now denotes the axial-vector as opposed to the vector gauge

field. To find [A_;], we use Eq. (22.7.21), which here reads

[V_z (0l + 9504 e ()] = 1|8 exp (= ivstadal)) ] exp (itystada()) .

(22.7.29)

Multiplying with (1+1vs5)/2 and (1 —ys)/2 and taking the difference yields
the axial-vector term

[A_z(x)], = — i {6 exp ( — itCataH exp (it&ara)
+ %i{ﬁﬂ exp (itdjata)] exp ( - ir(;’ara)

= tiexp (it€ata) U™ (12(0) [0,U (2() )| exp ( — ittata) .
(22.7.30)

where
U(ré) = exp (2italat) (22.7.31)
Using this in Eq. (22.7.28) yields the effective anomalous action

0] = — 24 Selpe f dt / d‘*xTr{fa:a Y(12(0) [0 (22(0))]
“eee0) 0 U(20) U™ (200) [3,U (0) | U (16(0)

x [6{,U(r§(x))] } . (22.7.32)
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As noted by Witten,?® this may be expressed in a convenient five-
dimensional form. We take ¢ as our fifth coordinate, and define &;(x, 1) =
t&a(x). Then Eq. (22.7.32) becomes

T'[£,0] = _i_"e"f“m ]d5z Tr {U" ({(z)) [EL-U((;’(Z))]

240xn2
x U (&@)[o;U(e@) U (e@) [acu (22)| v (¢(2))
X [a,U(f(z))] U1 (Zj(z)) [amu(g(z))] } , (22.7.33)
where i, j, etc. run over the values 1, 2, 3, 0, 5, with z/ = x' for

i=1,2,30and z° =1, and the integral is over the region 0 < z° < 1.
(An extra factor 1/5 appears in Eq. (22.7.33) to take account of the
fact that any one of the five indices i, j, k, I, or m may take the value
5.) Since &,(z) takes a fixed value zero for z° = 0 and all values of
the other components z* of z', we can identify these values of zi as a
single point, and consider the region of integration in Eq. (22.7.33) as a
five-dimensional ball, with the four-dimensional boundary z°> = 1 taken
as ordinary spacetime. Eq. (22.7.33) is thus a special case of the “Wess
Zumino—Witten’ action given by Eqs. (19.8.1) and (19.8.3), which was also
proportional to an integer n; the only difference is that n is now identified
as the number of colors. We saw in Section 19.8 that the integral (19.8.3)
depends only on the values of &,(z) on the spacetime boundary of the
five-ball, so in deriving Eq. (22.7.33) we have shown that Eq. (19.8.2)
applies for any continuation of £,(x) into the interior of the five-ball, not
just for &,(x,t) = t&(x).

# ok %

More generally, consider an arbitrary gauge group G that is sponta-
neously broken to a subgroup H that by itself is anomaly-free — that is,
for which the D-symbol (22.3.12) vanishes for any three generators of H.
Chu, Ho, and Zumino®® have shown that we can add a local function
B[A] to the action, in such a way that the currents of the subgroup H are
anomaly free, even when the gauge fields of the broken symmetries are
taken into account. This functional is

1
B[A] = Wqﬂpﬁ /d4x Tr {[A‘f,f,A"](FF’or + FJ{]’") + A”A;’,AﬂAg
1 ‘
—ALA" 4P A% + 4847 404° ¢ (22.7.34)
h b h b

where again 4 = T,4% and F* = T,F{", while 4} = T;4{ and F}” =
T;F{" are the terms in 4* and F*’ in the algebra of the unbroken symmetry
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subgroup H. The total anomaly is then
Gylx; Al = Gplx; A] + 7 p(x)B[A] (22.7.35)

(where Gy[x;A4] is the symmetrized anomaly (22.3.38)) and satisfies the
desired condition

Gilx; 4] =0. (22.7.36)

The anomalous part of the effective action for Goldstone bosons and
gauge fields is given by using Eq. (22.7.35) in place of Gg in Eq. (22.7.7).
In this way, Chu er al.%® found an anomalous effective action

I"[¢, 4] =T, 4] — BlA—¢] + BlA4], (22.7.37)

where T'[£, 4] is the previously derived effective action (22.7.7), and A_s(x)
1s obtained by setting t = 1 in Eq. (22.7.8). In particular, where the gauge
field vanishes 4 . is the pure gauge field

-0l = =i[a,V (e00) [V~ (¢0))
V(£60) = exp (- iXala(x))

so here the Goldstone boson action is

I'[,0] = [z, 0] — 82w,pa/dxTr{A“(:A"_“A"_éhA‘léh

—AF, A AR _5+2A AL AP, ‘ig}. (22.7.38)

This result is not unique; in particular, in parity-conserving theories
like quantum chromodynamics we can add additional local terms to the
effective action to cancel any parity-non-conserving terms in Eq. (22.7.38).

Problems

1. Calculate the rate of the decay process  — y + y, to leading order
in ms, with m, = my = (.

2. Consider a chiral SU(3) symmetry under which the left-handed parts
of the spin i fields of a fermion-number-conserving theory form N
defining representations 3 of SU(3), while the right-handed parts are
all singlets. Evaluate the anomaly in the SU(3) symmetry. What
1s the anomaly if we add M fermion fields whose left-handed parts
are singlets, and whose right-handed parts transform as symmetric

traceless second-rank SU(3) tensors?



6a.

Ta.
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Find a solution of the 't Hooft anomaly matching conditions (22.5.5)
and (22.5.6) for the case of n = 4 flavors. Find a solution for n =2
flavors other than the one given in the text.

Derive the Zinn-Justin equation from the quantum master equation,
without assuming that AS = 0.
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23
Extended Field Configurations

Most of this book has been devoted to applications of quantum field the-
ory that can at least be described in perturbation theory, whether or not
the perturbation series actually works well numerically. In using perturba-
tion theory, we expand the action around the usual spacetime-independent
vacuum values of the fields, keeping the leading quadratic term in the ¢xpo-
nential exp(il ), and treating all terms of higher order in the fields as small
corrections. Starting in the mid-1970s, there has been a growing interest
in effects that arise because there are extended spacetime-dependent field
configurations, such as those known as instantons,! that are also stationary
‘points’ of the action. In principle, we must include these configurations
in path integrals and sum over fluctuations around them. (In Section 20.7
we have already seen an example of an instanton configuration, applied
in a different context.) Although such non-perturbative contributions are
often highly suppressed, they are large in quantum chromodynamics, and
produce interesting exotic effects in the standard electroweak theory.

There are also extended field configurations that occur, not only as
correction terms in path integrals for processes involving ordinary par-
ticles, but also as possible components of actual physical states. These
configurations include some that are particle-like, such as as magnetic
monopoles? and skyrmions,” which are concentrated around a point in
space or, equivalently, around a world line in spacetime. There are also
string-like configurations,* similar to the vortex lines in superconductors
discussed in Section 21.6, which are concentrated around a line in space
or, equivalently, around a world sheet in spacetime. Then there ar¢ config-
urations that are sheet-like, like the domain walls® between spatial regions
in which discrete symmetries are broken in different ways. In contrast, the
instantons mentioned above are event-like, concentrated about a point in
spacetime, and therefore never appear as components of actual physical
states.

Some extended field configurations are stabilized because of boundary
conditions that are imposed by the natur¢ of the problem in which
they appear. An example is the ‘bounce’ solution, which appears in the
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analysis of vacuum decay.® and will be discussed in Section 23.8. Other
configurations are stable because they carry a quantum number whose
conservation forbids any possible decay mode.”

In this chapter we shall mostly be concerned with extended field con-
figurations that are stabilized by their topology. In analyzing all such
configurations we use the same topological tools, chiefly homotopy theory,
so we shall begin by considering all topologically stabilized configurations
together, in a space or spacetime of arbitrary dimensionality 4.

23.1 The Uses of Topology

It often happens that the space of all possible field configurations may be
given a non-trivial topology by the condition that some functional S of
the various fields 1s finite. In classical field theory S is the potential energy
(or in some cases the potential energy per unit area or per unit length); no
finite perturbation can produce a configuration where this is infinite. In
classical statistical mechanics S is the Hamiltonian, and in quantum field
theory formulated in Euclidean spacetime S is the Euclidean action or is
proportional to it. {Euclidean path integrals and some of their applications
are discussed in Appendix A of this chapter.) We construct a perturbation
theory by starting with some¢ cquilibrium ficld configuration for which
the Euclidean action or Hamiltonian is finite, and then integrating over
fluctuations which leave it finite.

Two field configurations are said to be topologically equivalent if it
is posstble to deform one of them continuously into the other without
passing through forbidden configurations with S infinite. This is ¢vidently
an equivalence relation (in the sense of being reflexive, symmetric, and
transitive), and therefore divides the set of all field configurations into
equivalence classes, each consisting of configurations of the same topology.
For example, if § is the potential energy (the Hamiltonian for time-
independent fields) in d space dimensions, then topologically different
field configurations are forbidden by an infinite energy barrier from being
transformed into one another. In particular, extended configurations with
a different topology from the usual spatially uniform vacuum fields cannot
spread out to become spatially uniform.

The topological classification is also useful when we are looking for a
local minimum of S. If we can find a configuration that minimizes S for
all configurations of a given topological type, then that field configuration
must be at least a local minimum of S for all configurations of any type,
since no small variation of the fields can change their topological type.
Such a configuration is therefore a solution of the field equations, which
arc equivalent to the condition that S is stationary. This sort of problem
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comes up not only in stability problems, where S is the Hamiltonian,
but also in finding field configurations around which we may cxpand the
field variables in path integrals in Euclideanized d-dimensional spacetime.
Here S is the negative of the Euclidean action I, and we must look for
a local minimum so that the leading term in the expansion around this
configuration will be a quadratic free-field action with second-order terms
of the right sign.
Here are some examples:®

(a) Skyrmions, ete. Consider the real Goldstone boson fields r, associated
with the spontancous breakdown of a continuous global symmetry group
G to a subgroup H. As we saw in Chapter 19, the potential energy for
these Goldstone bosons in a Euclidean space of dimensionality d > 2 will
take the form

S[r] = / dx [52 2a(M)0imadimy + .| (23.1.1)
ab

where g, is a positive-definite matrix, and ‘+ ... denotes possible terms
of higher order in the derivatives of 7. Alternatively, Eq. (23.1.1) can
b¢ regarded as minus the action for a Goldstone boson field in a d-
dimensional Euclidean spacetime.

Field configurations of finite S must have fim,(x) vanishing at infinity
faster than |x]~%2 (where |x| = JXiXi), so that m,(x) must approach a
constant ma,, as X — co with a remainder vanishing faster than [x|2—9/2.
The Goldstone boson fields 7, at any point form a homogeneous space, the
coset space G/H, for which it is possible to transform any one field value
to any other by a transformation of G, so by a global G transformation
it is always possible to arrange that the asymptotic limit 7, takes any
specific value, say m,, = 0. The field n,(x) thus represents a mapping of
the whole d-dimensional space, with the sphere r = co taken as a single
point, into the manifold G/H of all field values.

Now, a d-dimensional Euclidean space with the (d — 1)-dimensional
spherical surface at infinity identified as a single point is topologically the
same as Sq, the d-dimensional sphere (that is, the surface of a (d + 1)-
dimensional ball), in the sense that either can be continuously mapped
into the other. The fields n(x) that approach zero as x — co may therefore
be classified according to the topologically distinct mappings of Sy into
the manifold G/H of the field variables, for which the point at infinity
is mapped into zero. The set of classes of such topologically distinct
mappings S; +— .# with one point of S; mapped into a fixed point of .#
is known as my(.#), the dth homotopy group of the manifold .#. These
homotopy groups will be discussed (and their group structure explained)
in the next section, and a list of homotopy groups for various manifolds
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is given in Appendix B of this chapter. For the present it will be enough
to mention that, although when the manifold .# is a linear space the
homotopy group na(.#) is trivial (in the sense that any ficld configuration
n(x) that approaches a constant value as x — oo can be continuously
deformed into one in which the field takes that value everywhere), the
manifold .# = G/H of the Goldstone boson fields often has a non-trivial
homotopy group. In the cases relevant to quantum chromodynamics, of
SU(2) ® SU(2) broken to SU(2) or of SU(3) ® SU(3) broken to SU(3),
the manifold G/H is the same as SU(2) or SU(3), respectively, for which
according to Appendix B the homotopy groups n3(H) are non-trivial. The
topologically non-trivial fields at local minima of the potential energy
with d = 3 are known as skyrmions.> Baryons like the proton may in some
respects be regarded as skyrmion solutions in a pure meson theory.

The functional (23.1.1) does not have skyrmion stationary points, unless
terms involving higher powers of 8;n, are included in the integrand. In the
absence of such terms, any topologically non-trivial field configurations
will have a continuum of values for S, extending down to a lower bound
§ = 0 at which n becomes singular, so topology cannot stabilize such
configurations. This is generally known as Derrick’s theorem.” To prove
this theorem, note that for any field configuration n,(x) we may introduce
another configuration with the same topology,

TR(x) = n4(x/R)

with R an arbitrary real positive scale factor. Then for the terms shown
explicitly in Eq. (23.1.1)

S[r®] = R*28[n] .

For 4 > 2 this is a decreasing function of R as R — 0, so there is
a continuum of values of S[zR] extending down to a value § = 0.
Furthermore S[r] > 0, because S[n] can only vanish if n(x) is constant,
which is not possible because we assumed that = is topologically non-
trivial. Hence this lower bound is attained only at R = 0, at which z(x)
becomes singular.

(oldstone boson field configurations can be stabilized by adding higher
dernvative terms to S. For instance, if we take S[r] = T[=] + D[=] with

T[n] = / dx 1S gup(m)oimadimy 2 0,
ab
Din] = fddxfabcd(n) Vr, Vr,Vnr. - Vrg >0,
then D[zX] = R*“D[r], while as before T[zRk] = R*2T[x], so S[rX]

reaches a minimum at a finite R if 2 < d < 4, and in particular for the
physically interesting case d = 3.
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The problem with the theory of skyrmions is not that we have to
include higher-derivative terms like D[rn] in the action. As discussed in
Section 19.5, we expect such terms in the action of any effective field
theory of Goldstone bosons. The problem is that there is no rationale
for excluding an infinite number of other higher-derivative terms, all of
which are generically of the same order of magnitude for configurations
that are stabilized by a balance between terms with different numbers of
derivatives, which makes realistic calculations impossible.

(b) Domain boundaries. When a discrete symmetry is broken, we have
the possibility that the symmetry is broken in different ways in different
domains, separated by domain boundaries in which the vacuum ficlds
make a transition from on¢ minimum of the potential to another. For
instance, consider a flat domain boundary in the y—z plane, and suppose
that the energy per unit area is given by

siol= [ ax[3(2) + v, 2312

where ¢(x) 1s a real scalar field that is assumed to depend only on the
distance x along the direction normal to the boundary, and V(¢) is a
potential satisfying the reflection symmetry ¢ — —¢, with minima only at
field values +¢. For convenience, we will adjust an additive constant in
V{(¢) so that the minimum value of V(¢) is zero, in which case V{(¢) > 0,
and V(¢) =0 only at ¢ = +¢. To keep S finite, it is necessary for ¢ to
approach either +¢ or —¢ as x — oo, and also to approach either +¢ or
—¢ as x — —oo. We then have four topologically distinct configurations,
in two of which ¢ approaches the same limits as x — —+oo, so that the
configuration can be smoothly deformed into the vacuum configurations
with ¢(x) constant everywhere, and in two of which ¢ approaches opposite
limits as x — +co, which are topologically stable. Here we are classifying
field configurations according to no(G), where no(.#) for any manifold .#
1s conventionally defined as the set of connected components of .#, and
G is the symmetry group, which in our case is the Z, group of reflections
¢ — —0.

This is a good place to introduce a trick due to Bogomol'nyi'? that will
prove useful in Sections 23.3 and 23.5 in dealing with the more complicated
cases of monopoles and instantons. Rewrite Eq. (23.1.2) in the form

% d 2 (o)
sl =5 [ ax (L) = " VAVar. (313

The integral in the second term on the right-hand side of Eq. (23.1.3) can
be regarded as a ‘topological charge,” which depends only on the values
taken by the field at x — +co. For configurations that approach the same
limit as x —» +o0 and x — —o0, this integral vanishes, and the minimum
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value of S is zero, reached for constant fields. For a field ¢(x) that takes

different values at x = +oo, we can choose the + sign in Eq. (23.1.3) to
yield a lower bound

7
S[¢] = -/—a VIV df . (23.1.4)

This bound is reached when the first term in Eq. (23.1.3) vanishes, or in
other words, when

+ e df 23.1.5
X _/0 2V(f)+x0’ (23.1.5)
where xg is an integration constant, which evidently gives the position of
the center of the domain boundary. Note that Derrick’s theorem is no
obstacle to a solution here, because for domain boundaries d = 1, so for
a rescaled field ¢(x/R) the integrals of the two terms in the integrand in
Eq. (23.1.2) go as R~ and R"1, respectively.

Eq. (23.1.5) could have been obtained more directly, by deriving a
second-order differential equation for ¢(x) from the condition that
Eq. (23.1.2) must be stationary under small variations in ¢(x), and then
using this differential equation to show that the quantity (d¢/dx)>*—V(¢)
is constant in x. The advantage of the derivation based on the formula
(23.1.3) is that it shows immediately that the solution (23.1.5) is stable
against small perturbations that maintain the flatness of the boundary,
aside from the ‘zero-mode’ associated with changes in the boundary lo-
cation xo. By adding a term l(d¢/dy)* + (d¢/dz)* in the integrand
of Eq. (23.1.2), we can see that this solution is also stable against any
perturbation d¢(x, v, z), provided d¢ix,y,z) — 0 for x - oo with fixed
y and z.

If there are discrete spontancously broken symmetries then domain
boundaries would have formed when these symmetries became broken
in the early universe. If the domain boundaries did not disappear they
would produce gross distortions of the observed isotropy and homo-
geneity of the present universe.’ We do not now know of any of any
exact discrete symmetries except CPT, or of any spontaneously broken
approximate or exact discrete symmetries, so for the present this is not a
problem.

(c) Instantons, etc. Now consider a gauge theory, with
S[4] = 4 f d%x FyjF i | (23.1.6)

where F; is the usual field strength tensor, and we take d > 4. This can
either be regarded as the action for quantum gauge fields in a Euclidean
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d-dimensional spacetime, or the potential energy for classical gauge fields
in temporal gauge, with 43 =0, in (d + 1)-dimensional spacetime.

In order for S[A] to be finite, F,ij(x) must vanish as x — oo, This can
be achieved by having A,;(x) vanish sufficiently rapidly as x — oo, but
even for d > 4 it is also possible for S[A4] to be finite for a ficld Ayi(x) that
vanishes as slowly as 1/[x|, as long as the field approaches a pure gauge
as |X| - o

ity dyi(x) — g1 (%) Dig(R) | (23.1.7)

where g(X) is a direction-dependent element of the gauge group G. Fur-
thermore A,;(x) is unaffected if we replace g(%) with 2og(X) for any fixed
group element gy € G, so by choosing go = g~!(%;) we can arrange that
g(%1) = ! for any one direction %;. Each gauge field of finite § [4] therefore
defines a mapping from the unit sphere |%| = 1 to the group manifold,
with the point ; mapped into the unit element of G. (In the case in which
the gauge field vanishes faster than 1 /Ix| as |x] — co, this mapping takes
all points on the unit sphere into the identity element of the gauge group.)
The set of classes of such topologically distinct mappings S;_; — G, with
one point of Sy mapped into a fixed element of G, is known as 74—1(G),
the (d — 1)th homotopy group of the group manifold. As indicated in
Appendix B of this chapter, 73(G) is non-trivial for any semisimple Liec
group G. The topologically non-trivial stationary points of S{A4] ford =4
are known as instantons.! Their importance in quantum chromodynamics
is discussed in Sections 23.5 and 23.6.

In order for S[A] to be stationary at a field A(x), it is necessary that
A(x) should satisfy the field equations

OFi; =0. (23.1.8)

A simple scaling argument again limits the values of the dimensionality 4
where we can hope to find a topologically non-trivial local minimum of
S[A]. Define AR(x) = A(x/R)/R. Then

S[A®] = R¥*514],

so for d # 4 there can be no topologically non-trivial stationary point of
S[A] unless S[A] = 0. But if S[4] = O then Fu; = 0 everywhere, so by a
gauge transformation we can make 4,; also vanish everywhere.

As we shall see in Section 23.5, for d = 4 it is possible to find instanton
solutions where S[A] (here identified as —J [4]) is stationary, with Fyij
not equal to zero except at infinity. The scaling argument above shows
that if A(x) is such an instanton solution then so is A(x/R)/R, but this
degeneracy is removed by quantum corrections.
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(d) Monopoles, vortex lines, etc. Now consider a theory of gauge fields
together with scalars that furnish a lincar representation of the gauge
group, with

S|, 4] ﬁ/ddx [%Zgab(qb)Di(baDi(bb + $FujFuj + Ul(d)| , (23.19)
ab

where g.5(¢) 1s a positive-definite matrix (usually ¢-independent), U(¢) is
bounded below, and shifted by a constant term so that its minimum value
1s zeto, and F,;; and D; are the usual field strength and gauge-covariant
derivative. We require that U(¢) is a scalar and gq;(¢) is a tensor under
transformations in the gauge group G. Again, Eq. (23.1.9) gives either the
action for a quantum field theory in Euclidean d-dimensional spacetime,
or the potential energy for a classical field theory in temporal gauge in
(d + 1)-dimensional spacetime.

For S[¢. A] to be finite it is necessary for U(¢(x)) to vanish as x — oo,
The set of ¢s at which U(¢) vanishes is invariant under G and may be
discrete or continuous. In case {(b) above we have dealt with an example
where this set is discrete. Let us now consider the broken symmetry case
where the zeros of U(¢) form a continuous manifold .#¢ consisting of
fields related by transformations ¢ € G. In this cas¢c cach ¢(X) may be
obtained by a transformation y(X) € G acting on the value ¢(X,) of the field
in any one direction X;. We may therefore consider the field ¢(x) to define
a mapping S;—1 — G/H into a coset space G/H; in other words, mnto
the group G with elements gy and g identified if they differ only by right
multiplication with some element 4 of the subgroup H < G that leaves
(X1} invariant, that is, if g = g>h. In particular, the point X, is mapped
into the subgroup H, in order that y(X;) acting on ¢(X;) should yield ¢(X))
itself. The fields that approach values on the manifold .#y as X — co may
therefore be classified according to the topologically distinct mappings of
S4_1 into G/H that map the point %, into the fixed ‘unit’ element H of G/H.
The set of classes of such topologically distinct mappings Sy — G/H
with one point of $;_1 mapped into a fixed element of G/H is known as
ny-1(G/H), the (d — 1)th homotopy group of the manifold G/H.

In this case d;¢(x) goes as 1/|x| for x — co. In order for S[¢] to be
finite D;¢p must vanish faster than |x|~%2 for x — o0, 50 it is necessary for
ityAyi(X) to approach y~1(%)éy(%) faster than |x|~%2 for x — oo. This is a
pure gauge field, so the field strength tensor Fyj(x) vanishes faster than
|x|~4/2~1, which is fast enough to make [ d?x F,;F,; converge.

Derrick’s theorem does not apply for the gauge theory defined by
Eq. (23.1.9), but it is interesting to see where the same reasoning takes
us. For any given fields ¢(x) and A(x), again define ¢&(x) = ¢(x/R), and
now also A%(x) = A(x/R)/R. The three terms in the Hamiltonian (23.1.9)
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now have the scaling propertics
TR, AR = R*2T[¢, 4] . K[4M =RK[4], VI =RVIp),

where T[¢, Al = 1 [d'x Yo 2p(9)DidaDidy, KIAl = 4 [d'xFyiFy;,
and V[¢] = [dxU(¢). Now, for d > 4, S[¢pR, AR] has no minimum at
any finite value of R, so there is no stable configuration with non-trivial
topology. For 0 < d < 4 there is no difficulty in finding a finite value of
R at which S[¢F®, 48] is a minimum.

In the physically interesting case d = 3, topologically non-trivial field
configurations are classified according to the homotopy group nx(G/H),
which is non-trivial for a simply connected group G (such as SU(2)) broken
to an H containing the U(1) of electromagnetism. The topologically non-
trivial classical field configurations with d = 3 are known as magnetic
monopoles.? As we shall see in Section 23.3, their magnetic pole strength
is quantized, the different values corresponding to different elements of
n2(G/H).

For d = 2, topologically non-trivial configurations correspond to ¢le-
ments of n1(G/H), which is non-trivial when G is a non-simply connected
group like U(1) or SO(3), broken either completely or to a discrete sub-
group. The topologically non-trivial classical field configurations with
d = 2 are the cross sections of vortex lines. One example is provided by
superconductivity, where G = U(1) is spontancously broken to H = Z,.
We have seen in Section 21.6 that vortex lines occur in type II super-
conductors for magnetic field strengths in a certain range, and that the
magnetic flux carried by a vortex line is quantized, the different values
of the flux corresponding to different elements of n;(U(1)/Z3). Vortex
lines can also occur in relativistic quantum field theories,* and may be
produced in symmetry-breaking transitions in the early universe, in which
case they are known as cosmic strings.!!

Monopoles and vortex lines share a remarkable feature that can be
deduced on purely topological grounds. In both cases the forms of the
Goldstone boson fields n,(x) on large spheres (S; for vortex lines, S for
monopoles) surrounding the configurations are twisted, i such a way
that they cannot smoothly be deformed into constants. In particular, it is
impossible smoothly to reduce the radii of these spheres to zero without
¢ncountering some sort of singularity, because a non-singular field m,(x)
on a sphere would have to become a constant as the radius of the sphere
shrinks to zero. The singularity in both cases occurs in a core (a line or
perhaps a tube for vortex lings, a point or perhaps a ball for monopoles)
within which the group G is no longer broken, so that the system is no
longer described by Goldstone boson fields, but by an order parameter
that transforms linearly under G.

For d = 4, the function S[¢R, AR] of R can only have a minimum
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at some finite R if T'[¢,A] = V[¢] = 0, which would require that ¢(x)
everywhere takes a value at which U(¢) = 0. Assuming that these values
form a continuum related by transformations in the gauge group G, by a
gauge transformation they may be made constants, ¢(x) = ¢po. Then in
this gauge the condition T'[¢, A] = 0 impli¢s that 4,(x) = O for all broken
symmetries, for which #,¢9 # 0. Both T[¢, A] and V[¢] are stationary at
such a field configuration, so in order for S{¢, A] to be stationary K [¢, A]
must also be stationary, which means that the non-zero gauge fields 4;,
(which belong to the subgroup H < G that is unbroken by ¢y) must
satisfy the Euclidean Yang-Mills field equations

a,uFiyv =0. (23110)

This case therefore reduces to case (c), but with the gauge group G
replaced with its unbroken subgroup H.

23.2 Homotopy Groups

We learned in the previous section to classify field configurations, at which
the Hamiltonian or other functionals are finite, in correspondence with the
¢lements of appropriate homotopy groups. But we have not yet explained
in what sense the the homotopy groups are groups, nor have we given
any physical significance to the group structure. As we shall see, there is
a natural definition of the multiplication rule for elements of homotopy
groups, according to which two extended configurations of fields forming
a manifold .# in d dimensions, that belong to different elements ¢; and c2
of ng(#), can only fuse continuously to form a configuration belonging
to the element ¢; x ¢ of my(.#).

We will begin by defining the first homotopy group =;(.#) of an arbi-
trary manifold .#, also known as the fundamental group of the manifold.
As we have seen, the existence of a non-trivial 71(G/H) for some coset
space G/H is the condition for the topological stability of a vortex line in
three dimensions (or a monopole in two dimensions). After considering
n(.4#), we will then move on to more general homotopy groups.

A connected manifold .# is said to be multiply connected if there
is some closed curve of points p(z) on the manifold, parameterized by
a single variable z with 0 < z < 1 and p(0} = p(1), which cannot be
contracted to a point by a continuous deformation. Since on a connected
manifold we can always continuously deform any such closed curve so
that any one point on the curve is anywhere we like on the manifold,
we may restrict our attention only to curves for which p(0) = p{1) = py,
where po is any fixed point of the manifold, known as the bhase point. Two
such closed curves p;(z) and py(z) are said to be homotopically equivalent
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if they can be deformed into each other, that is, if there is a continuous
function p(z,t) for 0 <t < 1, with

p(Z, 0) = pl(z) 3 P(Zs 1) == pQ(Z) )

p(0.¢) = p(l,t) = po .

The relation of homotopic equivalence is an equivalence relation in the
sense of being symmetric, reflexive, and transitive, so it divides the space of
closed curves on the manifold into equivalence classes: two closed curves
are in the same class if and only if they are homotopically equivalent. The
set of these equivalence classes is known as the first homotopy group of
the manifold, m;(.#).

To define the multiplication rule for = (.#), choose a standard curve
plz;c] that starts and ends at the base point py for each equivalence class
¢ in my (). For any two equivalence classes ¢; and ¢,, define the ‘product’
¢1 X ¢z as the equivalence class containing the curve p[z, ¢, cz) that starts
at po, follows p[z,c;} back to pp, and then follows p|z, ¢z} back again to
po. Formally, we take

pl2z,c1} 0
pl2z — 1,¢;] :

ok B b

p[Z,C],CQ] = {

1A A

z
z

1A IA

We must now show that multiplication defined in this way satisfies
the conditions for a group. First, let us check that this multiplication is
associative. For this purpose, note that (¢; x ¢3) x ¢3 is the equivalence
class containing a curve p[z,c; X ¢2,¢3} that goes along the standard
curve plz,c; x ¢3] from the base point and back again, and then along
the standard curve p[z,c;]} from the base point and back again, while
¢1 X (€2 X ¢3) is the equivalence class containing a curve p[z,¢(,¢2 x 3]
that goes along the standard curve p[z, ¢} from the base point and back
again, and then along the standard curve p[z,¢2 X ¢3] from the base point
and back again. By definition, the curve p|z, ¢; X ¢2] may be deformed into
a curve that goes along p[z,c¢(] from the base point and back again and
then along p[z, c;] from the base point and back again, while p[z,c; x €3]
may be deformed into a curve that goes along p[z,c»] from the base
point and back again and then along p[z,¢3;] from the base point and
back again. Hence both curves p[z,c; X ¢3,¢3) and p[z, 1, ¢2 X ¢3) may be
deformed into the curve that goes along p[z,c;] from the base point and
back again, then along p[z,c;] from the base point and back again, and
finally along p|z,c3] from the base point and back again, and hence they
may be deformed into each other, showing that

(cp X ¢2) x e3 =1c1 X (€2 X €3).

The unit element e of n;(.#) is defined as the equivalence class con-
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taining the curve p[z, e} = po that stays at the base point. To check that
e X ¢ = ¢, note that

— Do
Pz, e,cl = { pl2z — 1,¢}

But this curve can be continuously deformed into p[z,¢] by taking

_ p 0<z<t/2
NA”‘{;ﬂb—nﬁz—md t2<z<1

which is the same as p[z,e,c] for t = 1 and the same as p[z,¢] for t = 0.
The product e x ¢ is the equivalence class containing p|z, e, ¢}, which we
now see is the same as the equivalence class containing p[z,c], which is
just ¢. The proof that ¢ x e = ¢ is similar.

The ‘inverse’ ¢! of the equivalence class ¢ is the equivalence class
that contains a curve p~'[z,c] which goes around the same path as the
standard curve p|z, c] but in the opposite direction; that is,

=
IA A
IA A
b B

Z
z

p_l[z,c] =p[l —z,c].

This is not necessarily the same as the ‘standard’ curve p[z,c¢~!], but by the
definition of the equivalence class ¢!, the two curves may be deformed
into each other. To check that ¢~! x ¢ = e, note that by deforming p[z, c™}]
into p~!(z,¢], the curve p[z,c™',c] may be deformed into
p[l —2z,c] 0<z<i
p[2z —1,¢] l<z<«i

plz,c™' el — {
But this curve can be continuously deformed into p[z,e] = po by taking

_ pl1 —2tz,c) 0<z<i
mLﬂ_{po+l—%d l<z<l

which is the same as p[z,c1,¢] for t = 1 and the same as p[z,e] for t = 0.
The product ¢ ! x ¢ is the equivalence class containing p[z,¢™!, ¢], which
we now see 1S the same as the equivalence class containing p[z, e}, which
is just e. The proof that ¢ X ¢~! = ¢ is similar. The existence of a unit
element and inverses shows that these equivalence classes form a group.
The classic example of a manifold .# with a non-trivial first homotopy
group is the circle itself, .# = S;. This may be parameterized by an
angle § with 8 = 0 and 8 = 2nr (with n any positive or negative integer)
identified as the same point. The homotopy groups consist of classes of
functions #(z) for 0 < z < 1 that begin at some base point, 6(0) = 6y, and
end at the same base point, (1) = 0y + 2nr. Two such functions may be
continuously deformed into each other if and only if they have the same
value of n, so 7)(S)) consists of a denumerably infinite number of classes
cy labelled by the positive or negative integer n. Furthermore, the ‘product’
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of two classes ¢, and ¢, consists of curves that go n times around the
circle from the base point and back again, and then m times around the
circle from the base point and back again, so here multiplication is just
addition:

Cn X Cm = Cntm (23.2.1)
and hence
m(S1) =2, (23.2.2)

where Z 1s the group of addition of positive and negative integers. As
an immediate physical application, we note that when a gauge group
S0(2) is completely spontaneously broken, the coset space is just SO(2)
itself, which has the topology of a circle, so in this case there is an
infinite number of types of topologically stable vortex line, characterized
by a positive or negative integer n. For instance, this is the case in a
type II superconductor, where as we saw in Section 21.6 the U(l) of
clectromagnetic gauge invariance is spontancously broken to a discrete
subgroup Zs.

More generally, all spheres S; with d > 1 are simply connected, which
means that they have a trivial first homotopy group, a statement conven-
tionally expressed as

71(S4) =0 ford>1. (23.2.3)
Only a few of the more familiar Lie groups are multiply connected:

(Z G=U() k>1
Zy G=S80(k) k>3
) 0 G=Spink) k>3

n1(G) = { 0 G=SUK) k> 2 (23.2.4)
0 G=USp(2k) k>1

0 G=Gy,Fy,Eg Eq7, Eg

\

Here Z; is the group with two elements 1 and —1, with group multi-
plication defined as ordinary multiplication, and Spir(n) is the simply
connected covering group of SG(n). (As we saw in Section 2.7, Spin(3) is
the same as SU(2).) Also, for a direct product of two manifolds .# and
A, the fundamental group is

(M X M) = 7 (M) X (M) . (23.2.5)

We can appreciate the physical significance of the group structure of
ni(-#) by asking what happens when two distant parallel vortex lines
in three dimensions are brought together. When the vortex lines are
sufficiently far apart their fields do not interact, so the configuration can
be described by specifying the classes ¢’ and ¢” in n(G/H) to which
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each belongs. The class ¢ to which the whole configuration belongs is
determined by the behavior of the fields on a very large circle surrounding
both vortex lines. By a continuous deformation we can distort this very
large circle into two large circles, one surrounding each vortex line, which
intersect at a point midway between them. As we go around this closed
curve in two-dimensional space we first trace out a curve in G/H which
consists of one of the closed curves in the class ¢/, and then one of the
closed curves in the class ¢”, just as in the definition of the product
of the classes. We conclude then that the whole configuration is in a
class ¢ = ¢’ x ¢/, and so the two vortex lines can only fuse together to
form a \;ortex line of this class. In particular, they can only annihilate if
=7,

For instance, when =n;(G/H) = Z (as in superconductivity, where
G/H = S0O(2)/Z;), in three dimensions two vortex lines of classes ¢,
and ¢, can fuse together to form a vortex line of class ¢,4m, so they can
only annihilate if n = —m. On the other hand, when =1(G/H) = Z; (as
when G = SO(N) with N > 3 and H is trivial or discrete) there is only
one kind of vortex line in three dimensions, corresponding to the element
—1 of Z;, and since (—1)? = 1, any two can annihilate.

Now let us consider the general homotopy group nx(.#). This is much
like m;(#), except that instead of considering mappings of the circle S;
into a manifold .#, we consider mappings of the k-sphere S; (the surface
of a (k + 1)-dimensional ball) into .#, again with one point of Sy, always
mapped into the same ‘base point’ py of .#. Two such mappings are
equivalent if one can be continuously deformed into the other, keeping
the same point of §; always mapped into the base point. The kth
homotopy group ny(.#) has elements consisting of equivalence classes of
these mappings.

It is often convenient to picture the d-sphere S; as the interior of a
d-dimensional hypercube, with all points on the boundary identified as
a single point. For instance, we have already seen that the circle $; can
be treated as the interval 0 < 6 < 2z, with points ¢ = 0 and § = 2x
identified. Similarly we can make a map of an $; like the earth’s surface
by cutting out the south pole and spreading out the resulting sheet on
the unit square 0 < z; < 1, 0 < z; < 1. Continuous mappings of this
square into .4 must take all points on the boundary into the same point
of .#, because all points on the boundary are the same point, the south
pole. In general, two mappings p(z;,---z4) and p’(z;, -~ z4) of S; into #
are homotopically equivalent if one can be continuously deformed into
the other, while keeping p on the boundary of the hypercube equal to the
base point py.

As before, for each equivalence class ¢ we choose a standard mapping
p(z1,-- z4;c). The product of ¢; and ¢, is defined as the equivalence class
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that containg the mapping

p(2z1,22,7 - 245 €1) 0<z <
p(2zy — 1,22, - z4;¢2) l<z <

[ S [

p(zy, 22, zgic1,02) = {

(23.2.6)
The unit element e is defined as the equivalence class that contains the
mapping with p = po for all z, and the inverse ¢! of ¢ is defined as the
equivalence class that contains the mapping with

pzizo, - znsel = pll — zp, 22,0+ zwv;c] (23.2.7)

In the same way as for =y, it can be shown that this multiplication is
associative, and that e x c = ¢ xe=cand ¢ I xc=cxcl =e Al
Ta(#) for n > 2 are Abelian. (There are manifolds .# for which = (.#) is
non-Abelian, such as the plane with two or more points removed.)

In any case in which n(#) = Z, there must be a one-to-one mapping
of the k-sphere Sy into a k-sphere S/ in .#, which corresponds to the
clement ‘one’ of Z (not the unit element, which is zero). The element v
of Z with v = 2,3,... corresponds to the mapping of §; into the same
k-sphere S in .#, which covers S v times, with the Jacobian of the
transformation Sy — S, positive. The clement v of Z with v = —1,-2,...
corresponds to the mapping Sy — S/, which covers §; |v| times, with the
Jacobian of the transformation S, — S; negative.

For instance, we saw in the previous section that magnetic monopoles
arise when a simply connected group G is broken to the U(1) of electro-
magnetism. In this case the appendix shows that

2(G/U) = m(U(1) = Z , (23.2.8)

s0 a magnetic monopole carries an integer-valued quantum number v,
which as shown in Section 23.3 is proportional to the magnetic charge.
This quantum number gives the number of times that a two-sphere of
large radius surrounding the monopole is mapped into a two-sphere in the
manifold G/U(1) of Goldstone boson fields (with the relative orientation
of the two two-spheres being the same or opposite for v positive or
negative, respectively) and is therefore known as the winding number. The
structure of the group Z shows that this quantum number is conserved,
in the sense that a monopole of quantum number v can fuse with a
monopole of quantum number v’ only to form a monopole with quantum
number v + v/,

If the unbroken subgroup is SO(n) with r > 3, then according to
Appendix B of this chapter

72(G/SOM)) = 11 (SO(n)) = Z> . (23.2.9)

In this case there is just one sort of ‘monopole,’ corresponding to the
element —1 of Z;, which can annihilate only in pairs. It is important to
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distinguish between this case and that in which SO(n) is replaced with its
simply connected covering group Spin(n), for which there are no monoples.
We will come back to this point at the end of the next section.

Another example: we saw in the previous section that the skyrmions in
quantum chromodynamics with n light quarks correspond to elements of
n3(SU(n)), which according to the appendix is Z. Thus these skyrmions
carry a conserved integer-valued quantum number v, which perhaps may
be identified with baryon number. Similarly, recall from the previous
section that the instantons in a gauge theory based on a simple gauge
group G correspond to the elements of n3(G), which according to the
appendix 18 Z, so these instantons like skyrmions carry an integer-valued
quantum number v, also known as the winding number. In Section 23.5
we shall see how to express this quantum number as a local functional of
the gauge field.

23.3  Monopoles

As a detailed example of a topologically non-trivial field configuration,
we shall now consider the monopole of 't Hooft and Polyakov,? and its
generalizations. We saw in Section 23.1 that when a simply connected
gauge group G is spontaneously broken to the U(1) of electromagnetism,
the configurations of finite energy are classified according to the elements
of the group n2(G/U(1)) = my(U(1)) = Z. (The case of non-simply con-
nected Lie groups is considered at the end of this section.) According to
the physical interpretation of homotopy groups discussed in Section 23.2,
this means that these configurations have a conserved additive quantum
number. But we still need to show that any of these stationary con-
figurations actually exist, and to give a physical interpretation of their
topological quantum numbers.

As an illustrative example, consider a theory (like the Georgi-Glashow
electroweak model!?) in which an SU(2) gauge group is spontaneously
broken by the vacuum expectation value of an SU(2) triplet of scalar
fields ¢,. (It 1s explained at the end of this section why in this case we say
that the gauge group is SU(2) rather than SO(3).) The Lagrangian density
for the scalars and gauge fields in Minkowskian spacetime is taken as

¥ == FapwFy — 1Dyl dn — Vidngn) (23.3.1)

where
Foyw = 0yAny — Oy Any + e€pmiAmu Ay, (23.3.2)
D, ¢n = 0ypu + € €nmAm by (23.3.3)

and the function V(¢n¢,) is assumed to be positive, with the value zero
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at a non-vanishing value {¢) (taken positive) of \/@,$,. (In much work
on monopoles V is taken to be the quartic polynomial A(¢ndn — (¢)2)%,
with 2 > 0, but we shall not make this assumption here.) Eq. (23.3.1)
describes a theory with a spacetime-independent vacuum solution with
Ay, = 0, in which a vacuum expectation value ¢, with ¢npn = (¢)*
breaks SU(2) to its U(1) subgroup, which can be identified with the
gauge group of electrodynamics. Instead we here shall seek topologically
non-trivial inhomogeneous but time-independent classical solutions in
temporal gauge, with AY = 0 but 4! # 0. The Lagrangian density in this
case is the negative of the potential energy density #, given by

H = LF+ WD) + V(@) (23.34)
with squares including obvious index contractions. Because each term in
(23.3.4) is positive, the integral of each term must separately converge in
a configuration of finite energy.

In particular, for the integral of V(¢n¢,) to converge, the vector ¢,
must have the fixed length {(¢) at infinity, so cach configuration of finite
energy defines a smooth mapping of a large two-sphere % surrounding the
monopole configuration into the two-sphere of the ¢, with ¢pep, = {$)>.
As % runs over %, ¢, may run over the sphere ¢,d, = (¢)> any integer
number N of times, either with Jacobian Det (0x/d¢) positive, in which
case we say that the winding number is N, or with Jacobian negative, in
which case the winding number is —N.

To see what the winding number has to do with the magnetic monopole
moment, we must first consider what in this theory is observed as ‘the’
magnetic field. Whatever the field configuration, we can introduce a gauge
in which the scalar field ¢, points in some definite direction, say the
three-direction, in any given finite region, so that in this region the gauge
field associated with the unbroken U(l) subgroup of SU(2) is As; . t
Hooft* found a gauge-invariant tensor # v which reduces to the usual
electromagnetic field strength tensor 6,43, — 0,43, in this gauge:

~ 1 ~ A A
g’-gw = anw(ﬁn - E"Enmi ¢n D,u¢m Dy, (23.3.5)

where 55,, = ¢n//OmPm . To check that #,, is the ordinary elec-
tromagnetic field strength tensor in a gauge with constant c;%,,, (and
for later purposes) we use Eqgs. (23.3.2) and (23.3.3) and the identity
EabcCade = OpdOce — OpeOeg tO WritE ,?F’w in the form!?

N A 1 N A N
«gruv = ap(ﬁbnAnv) - av(d)n/‘lnp) - *é'enm[ (bn 8,u¢m avﬁbf . (2336)

Thus in a gauge in which ¢, is a fixed unit vector in the three-direction,
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we have as promised
gz:.uv == a.uA3\; - avA3.u .

The magnetic monopole moment g of any localized field configuration
18 defined as 1/4xn times the magnetic flux through a large closed surface
& around the configuration:

1
dng = EeijkL?ij d*s; . (23.3.7)

The first two terms in Eq. (23.3.6) for #;; are derivatives, and therefore
do not contribute to the integral (23.3.7), so that

1 A R
g= —%L"ijkfnmi jy bu Oim O d*S . (23.3.8)

This has the important property of being a topelogical invariant: inte-
grating by parts where necessary, we can see that the change in g under
an infinitesimal variation d¢, in ¢, is

3 A A R
~ etk Enmi'f P Oithm Ojb1 A7 Sy .

But because e;b is a umt vector, 5e;b as well as ¢; qh and 0; e;b are all in the
plane perpendicular to qb SO

Enmi 583'11 aiﬁ%m a,{ﬁ%f =0 N

and therefore dg = 0. The quantity (23.3.8) is related to the topological
invariant known as the Kronecker index.

Because g is a surface integral, it is additive: for any two distant
localized configurations, the surface & used to calculate ¢ may be taken
to be a pair of spheres, one surrounding each configuration, connected by
a thin neck between them, so the value of g for the whole system will be
the sum of the values of gy, g5 for the individual localized configurations.
Furthermore, since g is a topological invariant, we will have g = g, + g2
for any field configuration that is formed by a smooth fusion of two
configurations with magnetic monopole moments g; and g>. It follows
that g must be proportional to the winding number. Arafune, Freund, and
Goebel!? verified this and calculated the coefficient of proportionality by
using the formula (23.3.8) for general winding number. Here we will simply
calculate the coefficient by studying the ’t Hooft-Polyakov monopole,” in
which the fields have unit winding number.

As we saw in the previous section, the ‘identity’ (as opposed to the unit)
element # of m(SU(2)/U(1)), which corresponds to the element ‘one’
of Z, consists of configurations in which the two-sphere & at infinity is
mapped once (with positive Jacobian) into the sphere described by gbn
As a representative of this homotopy class, we may take a configuration

og =
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in which at infinity ¢, is in the same direction as x. To construct
this configuration let us impose a symmetry under joint rotations on

= {¢1.¢2, ¢3} and x, as well as parity conservation, and make the
ansatz:

bn = Xn{P)Flr), (23.3.9)
Ay = f’:’f‘ G(r). (23.3.10)

There is an important similarity between this field configuration and that
for a vortex line in a superconductor. The solution ¢ = +/¢/2e for the
Goldstone boson field in a vortex line found in Section 21.6 shows that,
although gauge invariance and rotational invariance ar¢ spontancously
broken, the vortex line solution is invariant under the combination of a
global gauge transformation for which ¢ — ¢ + A and a rigid rotation
@ — ¢+ 2eA/¢. Similarly, a monopole solution of the form (23.3.9)-
(23.3.10) is not invariant under rotations or gauge transformations, but
it is invariant under the combination of a rigid three-dimensional spatial
rotation and an equal global SO(3) gauge transformation.

As already mentioned, in order for the integral of V(¢,¢,) to converge
it is necessary for ¢,¢, to approach (¢)> as r — oo, so in this limit
F(r) — 1. To derive the limiting behavior of G(r), note that the covariant
derivative of the scalar field is

Digw=48) [(1-61) (6w —50%) T 4 205700, @331

so the scalar term in the Hamiltonian density is

FZ 1—G 2 FfZ
L(Dighn)* = ()° [4( > ©y TJ . (23.3.12)
For this to have a finite integral it is necessary also that G(r) —» | and
F'(r) — 0 as r — . Finally, the field strength (23.3.2) is

Fpij = -2 [ G’(r)( " «—scnsc,-) - riz(zG(r)— Gz(r))icni‘cl} . (23.3.13)

so the Yang-Mills term in the Hamiltonian density is

1 |G? (2G—-G*?
2 _
i(Fuij)” = 2 [ﬂ 74 . (23.3.14)
This has an integral that converges at large distances as long as G'(r)
vanishes sufficiently rapidly as r — cc.

We can use these results to calculate the magnetic monopole moment

of this configuration. Eq. (23.3.13), together with the limits G(co) =1 and
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G'(c0) = 0, shows that for r — oo, we have

A -
€ijk Xk Xn

2
er
Since Dj¢, vanishes rapidly as r — oc, the magnetic part of the field
strength tensor in this gauge is given for r — oo by the first term in
Eq. (23.3.5), so at large distances the magnetic field becomes
X

= (23.3.16)

Bi= lep g — teijpPnFuj —
Thus this configuration has magnetic monopole moment g = 1/e. According
to the general argument above, the magnetic moment of a configuration
with winding number v, corresponding to the element v of Z, is then

g =v/e. (23.3.17)

It requires a detailed numerical calculation to find the stable config-
uration that minimizes the integral of the Hamiltonian density (23.3.4).
However there is a limiting case where an analytic solution is available.
To see this, it is useful first to derive a general lower bound due to
Bogomol'nyi'® on the monopole energy for a given magnetic monopole
moment g. Note that (23.3.4) may be written

_ 2
H = %(anj + Efjkacbn) + LeijkFuijDidn + Vipudn) . (23.3.18)
Using the Bianchi identity (15.3.9), the second term may be written
+ deijFuijDin = £ eijDs (Faijohn) = £ deih(Fuijhn)

so its integral is given by the magnetic monopole moment g

i %EijkdeX anjDk¢n = i(qb) /B -dA = i4n(¢)g

Since every other term in # is positive, we have a general lower bound
on the energy of a configuration with magnetic monopole moment g

E= /d3x,%9 > dn(p)lg] . (233.19)

For g = +1/e, this gives an energy E > 4n{¢)/e, which for small
coupling constant e is much greater than the corrections due to quantum
fluctuations, which are at most of order {¢). This is why we can take such
a classical configuration seriously as the leading term in a perturbation
expansion.

Now, it is tempting to try to minimize the energy for a given magnetic
monopole moment by setting the first term in Eq. (23.3.18) equal to zero,
so that

Fpij = tepDin, (23.3.20)
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but in general this does not lead to a configuration at which the energy
is stationary. The condition that the encrgy should be stationary with
respect to variations in the scalar field is the field equation

DyDy by =20,V () , (23.3.21)

while Eq. (23.3.20) together with the Bianchi identity (15.3.9) would imply
that DyDy¢, = 0. This argument suggests that in the special case where
V(gnihn) is very small, it will be possible nearly to reach the lower bound
(23.3.19), and hence minimize the energy for a given magnetic monopole
moment, by imposing the condition (23.3.20). (Where V is the quartic
polynomial A(¢n¢» — (¢)?)?, the assumption that V is small means that
4 & €2, as in a type I superconductor.) Such stable configurations were
studied in this way by Bogomol'nyi'®, They had been found earlier by
Prasad and Sommerfeld'® without direct use of Eq. (23.3.20), and are
usually called BPS monopoles.

The Bogomolnyi condition (23.3.20) provides first-order differential
equations for F(r) and G(r), which are much easier to solve than the
second-order field equations derived directly from the condition that the
energy should be stationary. Using Eqs. (23.3.11) and (23.3.13), the terms
in Eq. (23.3.20) proportional to € [0k, — XkXn] and e;jxXxi X, respectively
yield the differential equations

e PFl -G =G, (23.3.22)
e(p)r’F = G2 —G). (23.3.23)

With the boundary condition that F(r) — 1 and G(r) — 1 as r — oo, these
equations have the solution

I
sinh p ’

F =cothp — % , G=1 (23.3.24)
where p = e{¢)r. Note in particular that the field ¢, given by Egs. (23.3.9)
and (23.3.24) vanishes for r — 0, so as remarked in Section 23.1, the SU(2)
symmetry is restored at the center of the monopole.

Let’s now return to the case of a potential V' of arbitrary strength. The
't Hooft-Polyakov monopole is stable, because are no configurations of
smaller topological quantum number into which it could decay. Config-
urations of higher magnetic monopole moment are generally unstable.1
There are also interesting configurations with both magnetic monopole
moments and electric charge, known as dyons.!?

There is another way of understanding the value 1/e of the 't Hooft-
Polyakov magnetic monopole moment, which goes back to the original
work of Dirac on magnetic monopoles.'® As mentioned earlier, instead
of the gauge we have been using, we can make a gauge transformation
¢n — Rum(X)¢p, that rotates ¢, to point in a fixed direction ¥, for instance
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the three-direction. Then the field strength By = e Fuij is transformed
into RypBuk, which approaches v,%;/er? for r — oo, so here we do not
have to project this on a local unbroken symmetry direction. The price
we need to pay for these conveniences is that the gauge transformation
is singular; the rotation that takes a vector in the X direction into some
fixed direction ¥ is

R&:%) =1—(1—3- %) +¥(

(% —G-9%) (R —&-98)
14 %-¥

which is singular at X = —¥. This R is not unique; for instance, we could
perform the rotation R(x; —¥) that takes X into the —¥ direction, followed
by a fixed rotation of 180° around some axis perpendicular to ¥, but this
would become singular at X = +V. To avoid the singularities, we have
to adopt different gauges in different regions; for instance, with ¥ in the
three-direction, we can use a gauge for 0 < ¢ < 8y that is singular at
8 = m and a gauge for 8y < 0 < = that is singular at ¢ = 0, where 0, is an
arbitrary angle with 0 < 6y < =, often taken as n/2. Everywhere except
at 8 = 0 and # = = the magnetic field will be given at large distances
by B — g&/r’, where g is the magnetic monopole strength. This can be
written as the curl V x A of a vector potential whose only non-vanishing
component is in the azimuthal ¢ direction. For 0 < 6 < 6y we must
take 4, = g(1 —cos8)/r sinf, which is only singular at § = n, while
for 6y < 0 < m we must take 4, = —g(1 4 cos)/rsin0, which is only
singular at 8 = 0. The difference AA between these two vector potentials is
a gradient VA with A = 2g¢, which of course does not affect the magnetic
field for 0 < 6 < 7, but could affect the dynamics of charged fields. A
gauge transformation with A = 2g¢ will change a field of charge g by
a factor exp(2iggyp), which is not single-valued unless 2gg is an integer.
This is the Dirac quantization condition; the existence of any magnetic
monopole with monopole moment g would require all electric charges to
be integer multiples of (2g)~L. For the "t Hooft-Polyakov monopole this
condition is automatically satisfied, because here g = 1/¢, and all charges
in the Georgi-Glashow model are integer multiples of ¢/2.

The Georgi-Glashow model was ruled out as a theory of weak and elec-
tromagnetic interactions by the discovery of neutral currents, but magnetic
monopoles are expected to occur in other theories, where a simply con-
nected group G is spontaneously broken not to U(1), but to some subgroup
H' xU(1), where H' is simply connected. (According to Appendix B of this
chapter, for simply connected groups G we have n2(G/H) = n1(H), which
for H = H' x U(l) equals 7, (H') x m(U(1)) = 7 (U(1)) = Z.) There are
no monopoles produced in the spontaneous breaking of the gauge group
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SU(2) x U(1) of the standard electroweak theory, which is not simply
connected. (About this, more below.) But we do find monopoles when
the simply connected gauge group G of theories of unified strong and
electroweak interactions, such as SU(4) x SU(4) or SU(5) or Spin(10),
is spontaneously broken to the gauge group SU(3) x SU(2) x U(l) of
the standard model. (See Section 21.5.) The monopoles in this case are
expected to have a mass larger by an inverse square gauge coupling con-
stant than the vector boson masses M & 101°-1016 GeV produced by this
symmetry breaking. Such monopoles would have been produced when
the universe underwent a phase transition in which G was spontaneously
broken to SU(3) x SU(2) x U(1), at a temperature T of order M.

This poses a problem for some cosmological models.!” The scalar fields
before this phase transition would have necessarily been uncorrelated
at distances larger than the horizon distance, the furthest distance that
light could have travelled since the initial singularity. At an early time
t in standard cosmological theories!® the horizon distance is of order
t = (Gy T2 (where Gy ~ (10 Gev)~2 is Newton’s constant), so the
number density of monopoles produced at this time would have been
of order t 7 ~ (GyM*?/2, which is smaller than the photon density
M3 at T ~ M by a factor of order (GyM2)*/2, For M =~ 105 GeV
this factor is of order 1078, If monopoles did not find each other to
annihilate, then this ratio would remain roughly constant to the present,
but with at least 10° microwave background photons per nucleon today,
this would give at least 10° monopoles per nucleon, in gross disagreement
with what is observed. This potential paradox was one of the factors
leading to inflationary cosmological models,!” in which there was a period
of exponential expansion, which if it occurred before the monopoles were
produced would have greatly extended the horizon, and if it occurred after
the production of monopoles (but before a period of reheating) would
have greatly diluted the monopole density.

The discovery of monopoles of any sort would create opportunities
for the observation of remarkable phenomena, including the existence of
fermion-monopole configurations of fractional fermion number,?® and the
violation of baryon conservation in fermion-monopole scattering.?!

% % %

In the above discussion we have considered only monopoles associated
with the spontaneous breakdown of a simply-connected gauge group G.
This raises a question. For every Lie group G, whether simply connected
or not, there is a simply-connected group G with the same Lie algebra,
known as its covering group. (For examples, see Section 2.7.) Any non-
simply connected group has fewer representations than its covering group
(for instance, the doubly-connected groups SO(n) have only scalar, vector,
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and tensor representations, while their covering groups Spin(n) also have
spinor representations). If a theory does not happen to involve fields that
belong to the extra representations of the covering group, then are we
are free to consider the gauge group of the theory to be either the non-
simply connected group G or its covering group G? In particular, does
the menu of possible monopoles depend on whether the theory contains
only fields transforming as representations of a non-simply connected
group G, or additional fields that would only furnish representations of its
covering group G? For instance, in the original Georgi-Glashow model]!l?
the only scalar fields belonged to a representation of §O(3), the three-
vector, but there were fermions that belonged to spinor representations
of the covering group Spin(3) = SU(2). Would the atllowed values of the
magnetic monopole moment change if we added scalar fields belonging
to the spinor representations of SU(2)? Would it change if we removed
the fermions?

The answer is that the menu of possible monopoles does not depend on
whether we say that the gauge group is a non-simply connected group G or
its covering group G, and therefore is unaffected when we add or remove
fields belonging to representations of G that are not representations of G.
As we saw in Section 23.1, in general the topologically stable monopole-
like configurations are classified according to the elements of 7,(G/H).
According to a result quoted in Appendix B of this chapter, this homotopy
group consists of those elements of n;(H) that correspond to the trivial
element of n(G) when H is embedded in G. But if we replace G with
its covering group G, we also replace H with a different subgroup H’,
because some of the loops in H do not return to the base point when H is
embedded in G. These are just the loops that do not become trivial when
H is embedded in G, so nx(G/H) = =1(H’), and thus as far as monopoles
are concerned we could just as well say that the gauge group is G rather
than G.

For instance, as far as the scalar fields are concerned, the gauge group
of the Georgi-Glashow model might be considered to be the doubly-
connected SO(3) rather than its simply-connected covering group SU(2).
The unbroken subgroup is then $0(2), in which we identify transforma-
tions that differ by a 360° rotation. Thus 7;($O(2)) includes loops that
extend from the unit element to a 360° rotation, which would not be
loops when $O(3) is embedded in SU(2). But n,(S0O(3)/S0(2)) is not the
same as 71(SO(2)), but rather excltudes the loops that are homotopically
non-trivial when SO(3) is embedded in SU(2), which are just the loops
that extend from the unit element to a 360° rotation, so m(SO(3)/S0(2))
is the U{(1) subgroup of SU(2), just as if the gauge group were taken to
be SU(2) from the beginning.

It is convenient always to consider the gauge group G associated with
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any semi-simple gauge algebra to be the simply-connected covering group,
0 that we can use the simple result that ny(G/H) = n;(H). As we have
just seen, the connectivity properties of H are then fixed by its embedding
in G, or more precisely, by the embedding of the Lie algebra of H in
the Lie algebra of G. For instance, an SU(3) gauge algebra might be
spontaneously broken either into an SU(2) subalgebra, under which the
defining representation of SU(3) transforms as a doublet plus a singlet,
or into an SO(3) subalgebra, under which the defining representation of
SU(3) transforms as a three-vector. In the first case we do not have
the option of considering the unbroken subgroup to be SO(3); since
71 (SU(2)) = 0, there are no monopoles here. In the second case the
unbroken gauge group must be regarded as SO(3), not SU(2), so the
theory does have monopole-like configurations, classified according to the
clements of m1(50(3)) = Z,. The nature of the unbroken subalgebra of H
and its embedding in the gauge algebra G may be dynamically affected
by the variety of field types that we introduce in the Lagrangian, but once
the algebra of H and its embedding in the algebra of G arc fixed, the
menu of monopoles is otherwise entirely unaffected by the variety of fields
in the theory.

In particular, the argument that led to the Dirac quantization condition
shows that, in any theory in which a Lie algebra G is spontancously
broken to a subalgebra including the electric charge operator, the allowed
magnetic monopole moments are integer multiples of the reciprocal of
the smallest clectric charge that appears in the representations of the
covering group of G, whether or not there is actually any particle that
carries that charge in the theory. If the algebra of G itself contains a
U(1) generator, then we must consider the covering group of this U(1),
which is the non-compact group of translations along the real line. If this
U(1) generator appears as a term in the electric charge operator, as in the
standard electroweak theory, then there is no minimum electric charge in
the representations of the covering group, and hence no monopoles.

23.4 The Cartan—-Maurer Integral Invariant

In understanding the topology of various compact manifolds, it is a great
help that there is often a topologically invariant quantity that can be
written as an integral over the manifold. This will be important in our
discussion of instantons in the next section, and it has already been used
in studying Wess—Zumino—Witten terms in Sections 19.8 and 22.7.
Consider a mapping of an arbitrary compact manifold .% of odd dimen-
sionality d with coordinates 8,62, -84 into a manifold .# of matrices
g(6!,0%,--- %) with Detg # 0. (For the applications that concern us here,
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& is usually a sphere Sz, and the g are the elements of a Lie group G
in some representation.) We define a functional of g(#), known as the
Cartan—Maurer form:

1) = [ a0 de* - o i

og(8 dg(f
x Tr {g—l(e) géh) —t(g) 5512) . (9)%} , (23.4.1)

where /127 is the totally antisymmetric quantity with 1?4 = 1, From
the fact that 2% = —(—1)%2"%" we sce that .#[g] vanishes where &%
is even-dimensional, so we will restrict ourselves here to the case where d
is odd. The usefulness of this quantity arises from its several remarkable
properties.

First, this integral is independent of the coordinate system used to
parameterize the manifold %. This follows rather obviously from the fact
that €'2°% is a contravariant tensor density, in the sense that

56"11 oe'r c?GW o6
irig- .. — Jufada
R 7 R i (69) o

Second, the integral (23.4.1) is also invariant under small deformations
of the mapping & — .#. Using the properties of the trace, we see that
under an infinitesimal change g — g+ dg of the function g(f), the change
in each factor g 19g/80" in (23.4.1) makes the same contribution to the
change in .£[g]:

Slgl =d f do! do* - - - do? e

xTr{ o) B 108D s (8_1(9)%?)} ‘

Now, the last factor in the trace is

dg(0 dg(o 0og(6
s (7102 ) =~ e OF + O D

%
= ¢7'(0) 55, (52027 (6)) 5(0)

When we integrate by parts, the derivative 8/36% gives no contribution
when acting on the partial derivatives dg(#)/36 because €'"2"% i3 anti-
symmetric. The remaining d — 1 terms where 8/80% acts on g~'(#) are all
equal except for an alternating sign, so since there are an even number of
them they add up to zero.

Finally, let us specialize to the case where & is the sphere §;. Because
#[g] is invariant under small variations of g(f), it can be regarded as a
function .#(c) only of the homotopy class ¢ to which g(¢/) belongs. The
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integrals .#(c) (or strictly speaking, exp{.#(c)}) furnish a representation of
the homotopy group my(.#), in the sense that

Sleq X cp) = Fcg) + I(cp) . (23.4.2)

(If g,(0) and gy(6) are elements of the homotopy classes ¢, and Cp respec-
tively, then the homotopy class ¢, x ¢, consists of mappings homotopically
equivalent to

_ | 8a(201,02---8y) 0
gar0) = { 25(20, — 1,0, - 6;)

The part of the integral #[g,;] over the hemispheres with 0 < 0y < 1/2
and 1/2 < 6; < | can be done by changing variables to ¢, = 20, and
8] = 28, — 1, respectively, yielding the terms . (¢q) and #(cp) in (23.4.2).)

In particular, this telts us that the homotopy classes ¢, ¢, ¢ X c, etc., and
¢! ¢ x ¢l ete., have

I =n.9(c). (23.4.3)

If S(c) # 0 for some ¢, then these invariants are all different, so the
classes ¢ are all different, and therefore form a subgroup Z of my(.#4).
This goes far to explain the great difference between the sizes of the
homotopy groups for odd and even dimensions shown in Appendix B of
this chapter. For instance, n;(U(1)) = Z, 73(G) = Z for all simple Lie
groups G, and ns(SU(n)) = Z for all n > 3, while for all Lic groups G,
m2(G) = 0 and 74(G) is finite.

As a simple example where #(¢) # 0, consider the homotopy group
m(U(1)), which is the same as the group 71(31) used as an example at
the beginning of the previous section. Any mapping S; — U(1) may
be characterized by v, the number of times that the phase of the U(1)
element goes counterclockwise around $; minus the number of times it
goes around Sy in the opposite direction, as the coordinate 6 goes around
S1, two mappings being homotopically equivalent if and only if they have
the same v. The vth class contains the mapping g,(8) = exp(2ivrd) with
0 < 6 < 1, for which

1
Flg] = /0 do exp(—2iv9);6 exp(2ivl) = 2ivr ,
thus verifying that =; (U(1)) = Z.

As an aid to calculating .#(g) in less simple cases, suppose that we can
continuously deform the manifold .# into a Lie group H of dimension-
ality d. The result of performing the H transformation with parameters
¢ followed by the H transformation with parameters ¢ is an H transfor-
mation, say with parameters 8'(8, ). In terms of a matrix representation
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g(8), this reads

glo)g(0) = g(0'(6, 9)) .

Differentiating with respect to 8 with ¢ fixed and multiplying on the left
with the inverse of this equation gives

a6’ g! og0) _ a0 g(6")
soi 8 (Do ) g7

The integrand of .#[g] at a point ¢’ is therefore
L _ og(d) _y .. 0g(¢ 1o 0g(8)
el Tr {g 1(9!) agg;h)g 1(9 ) agég’jz) g 1(9 ) ago,ajd }
00N iy dg(9) g0 g(o) —1 58(9)}
= 182774 . B ANE
Det(ag)e Tr{ ORIl )aerz gl 22t

Now, every Lie group H has a metric y;;(8) (not necessarily unique) which
is form-invariant in the sense that

. 86k oo’
M0) = o gy tee(0) (23.4.4)
For instance, we can take
oy = L 080 ) dg(6)
0 ==, Te {05 e 0 F . ey

For any choice of y;;(6), the determinant of Eq. (23.4.4) gives

6\  [Dety(0")
Det (aef) ~ A Dety(6) -

By replacing the coordinates 6 in Eq. (23.4.1) with ¢, we find

— eltizid 1, %80) 4 0 08(0) . dg(6)
slgl =« Tr{ O e OED g 0B
- d gy ;
Wew( f &0’ \/Dety(0) . (23.46)

Since the parameters ¢ of the second H transformation are arbitrary, we
may regard & and 6’ as independent variables, and evaluate the right-hand
side of (23.4.6) at any value of 6, say ¢ = 0. It will be convenient to
normalize the generators t; and coordinates & so that for 0 — 0,

g(0) — 1+ 2i0'; . (23.4.7)
In this case, Eq. (23.4.6) reads

j[g] _ (2i)d€i1f2---fd Tr {351 tig t’d} \/’D—— /ddef MDCt'}’ Qf)
(23.4.8)
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We will be especially interested in the case d = 3. Bott*? has shown
that for any simple Lie group G, all continuous mappings $3 — G may be
continuously deformed into mappings of S3 into a ‘standard’ SU(2) sub-
group of G. (Where G = SU(n), this standard SU(2) subgroup is the one
that acts only on the first two components of the defining representation
of $U(n). Not all SU(2) subgroups of SU(n) are equivalent to this one.)
As remarked in Section 2.7, in a 2 x 2 representation the general element
of SU(2) may be written

. 04 +i0; 07 +i0, _ ..
2(6) = ( RO ) — 0+ 2i0-t, (23.49)

where as usual

1401 L_1/0 =i _Ll(1 0
t1_2 1 0 s 2""‘2 i 0 s 3_2 0 —1 )

and 04 and @ are real, with (04> =1 — 62, (Note that Eq. (23.4.9) is
consistent with the normalization convention (23.4.7).) A straightforward
calculation gives the metric (23.4.5) as

68,

P (23.4.10)

7:(0) = d;; +

50 that

Det y(8) = - (23.4.11)

Hence Eq. (23.4.8) here reads

Jlg] = —8ie'™* Tr {ttjtk}f

v1— ﬂj‘
Using 4t;t; = i + 2ie"t; and Tr {t,t,} = 164, we see that
8% Tr {titjty} = 2ieVke* =121 .

Also, for the ‘identity’ mapping g, the integral here runs twice over the
interior of the unit ball (because 84 can be positive or negative), and gives

/ 40 2/1 dmridr 2
V1—9? J1=rr o T
For the class ¢ of mappings homotopic to g, we have then
F(c) = 24n° (23.4.12)

and so
F(") = 24n%v . (23.4.13)

The integer v is known as the winding number. This result is for a
representation and normalization conventions for which the standard
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SU(2) subalgebra has generators ¢; with structure constants €jr and
Tr (tftj) = %5;}'. More generally, if [¢;, Ij] = igeijktk and Tr (Iftj) = %Ngzﬁij,
then

F(c") = 247Ny . (23.4.14)

The results (23.4.13) or (23.4.14) show incidentally that for every simple
Lie group, m3(G) contains Z. As listed in Appendix B to this chapter,
n3(G) = Z for all simple Lie groups. Thus the homotopy ¢lass of g(#) for
any simple Lie group is entirely determined by its homotopy class when
the group is deformed into its standard SU(2) subgroup.

23.5 Instantons

As we saw in Section 23.1, the topologically non-trivial solutions of a pure
gauge theory with a simple gauge group G in d = 4 Euclidean spacetime
dimensions correspond to the elements of the homotopy group n3(G) =
These are four-dimensional field configurations, known as instantons, that
(for reasons discussed in the next section) must be included along with
their fluctuations in path integrals. After Belavin, Polyakov, Schwarz,
and Tyupkin' demonstrated the existence of these solutions, 't Hooft?
showed that the inclusion of these configurations in path integrals solved
the U(1) ptoblem outlined in Section 19.10. Here we shall first discuss the
instantons themselves, and then consider their role in path integrals.
According to Eq. (23.1.7), in order for a topologically non-trivial gauge
field to have finite action, the gauge fields must approach a pure gauge at
r — oo {where here r = \/ﬁ, with i summed over the values 1, 2, 3, 4):

idi(x) = g '(%)0ig(R) , (23.5.1)

where 4; = t,A,; and g(%) is a direction-dependent element of the gauge
group G. The topological invariant discussed in the previous section may
therefore be written in terms of the asymptotic behavior of the gauge field

Slg] = / d0" 467 403 e

xTr{ '0) 8D g10) B D) aéc)}
55@ 55&; 536;{
004 56b ao¢
where 6% with @ = 1, 2, 3 are any three parameters used to specify the

direction of the unit four-vector %. This surface integral can be evaluated
using Gauss’s theorem. In analogy with the current (22.2.29) in Minkowski

= —ilimy 1 / do' 4 do® ¢ Tr {Aid; A} . (23.5.2)
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spacetime, we can define a current in Euclidean spacetime
Gi = efje| ATy — Capy Aui Apj Age] (23.5.3)
whose divergence 1s
316Gy = LeiuFuijFa - (23.5.4)

(Here e{j,-kl is the totally antisymmetric tensor with €f,,, = 1.) We are using
a representation of the gauge group with totally antisymmetric structure
constants, so that

Tr {tatp} = INOyp, (23.5.5)

with N a constant that depends on the representation in which we calculate
the trace in Eq. (23.5.2). Hence Eq. (23.5.4) may be written

Gi = (2/N)efije Tt |AiFji+ (2i/3)A: A A . (23.5.6)

Il

For r — oo, the field strength Fy; vanishes, so
Gi — (4i/3N) el Tr [A,-A j Ak] . (23.5.7)
Hence Eq. (23.5.2) gives
Slg] = —(3N/4) f d*x 3 G = —(3N /8) by / #x Fj Fut . (23.5.8)

Thus in order to demonstrate the existence of topologically non-trivial field
configurations, we have to show that there are configurations for which
the Chern-Pontryagin density eﬁkl Fyij Fyq has a non-vanishing integral.

For this purpose, it is very useful to take advantage of what is known
as the Bogomol'nyi inequality.'® From the fact that

_ 2
0< f (Faij + %eﬁlem) d*x
(with squares indicating obvious index contractions), we have
i / Foij Foki d“X\ = |#1gll/3N , (23.5.9)

where S[A] is (up to a factor) the Euclidean action

S[4] =

S[A] = | f Foij Faij d (235.10)

The lower bound (23.5.9) is evidently reached if and only if the gauge field
is self-dual or anti-self-dual, in the sense that

Foj =% 4 €4y Faga - (23.5.11)

Hence any solution of the first-order equation (23.5.11) is a minimum of
S[A] for gauge fields of winding number unity, and hence also a solution
of the second-order Yang-Mills field equation.
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Belavin et al.! found a solution of Eq. (23.5.11) of the form
2
idi(x) = (

¥
r2 + R2
where R is an arbitrary scale factor, and g;(%) is an element of an SU(2)
subgroup of the gauge group, with

gi(X) = (

) g7 (X)digr(%) , (23.5.12)

x4+2ix-t)

. (23.5.13)

and

_1(01 1t_lO—i r_110
=510 2_2(:‘ 0 ) 3_2(0 —1)
(23.5.14)
It is clear that this solution has the asymptotic behavior (23.5.1), with
g(X) the same as the ‘identity’ mapping (23.4.9), so this solution belongs
t0 the homotopy class of the identity map, and therefore as we saw in
the previous section has winding number v = 1. From Egs. (23.4.14) and

(23.5.9) (which is here an equality) we have then
S[A] = 8=° . (23.5.15)
From Eqgs. {23.5.10) and (23.5.11) (with positive sign), we also have

b f Fuij Faq d*x = 64n? (23.5.16)

This solution is not unique, because it can be translated or subjected to a
gauge transformation, but aside from these degrees of freedom, there are
no other solutions of the field equations with winding number unity.?*

Because we have found field configurations with v = 1, we know
that there are also field configurations with any integer v. For instance,
solutions with v a positive integer A" can be constructed by superimposing
A" solutions with v = | with centers so far apart that at these distances
the non-linearities of the field equations become unimportant. A solution
with v = —1 negative can be found by replacing g, in Eq. (23.5.12)
with gl", and solutions with v a negative integer — 4" can be found
by superimposing .4 of these at large separations. For general winding
number, Eqgs. (23.5.15) and (23.5.16) become

S[A4] = 8=?|v|, (23.5.17)

e f Faij Fog d*x = 6472y | (23.5.18)

These results are for a gauge field normalized as in Egs. (23.5.11)-
(23.5.13). With this normalization, the action I[A4] is not —S{A4], but

I[A] = —S[A]/g? = —8n?|v|/2?, (23.5.19)
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where g is the conventional coupling constant. If we had used our
usual convention of including a factor g in the generators and structure
constant, then the action I [4] would be the same as —S[A4], but with A,
and F,,, carrying a factor 1/g we would have S[A] = 87°/g” instead of
Eq. (23.5.14), so in this case again the action would be —872/g?, but now
in place of Eq. (23.5.14) we would have

Eﬁu me-j Fuadix = 64:!1'2v/g2 . (23.5.20)

We shall see in the next section that in path integrals we must sum
the effects of instantons of all winding numbers. The contribution of
configurations of winding number v # 0 to Euclidean path integrals is
suppressed by a factor exp(I[A]) = exp(—S8|v|r?/g?). In Section 23.7 we
will see that the coeflicient of this exponential is a negative power —n of g:
in quantum chromodynamics, #n = 12. The function g~ exp(—8|v|n?/g?)
and all its derivatives with respect to g vanish at g = 0, so such contribu-
tions are non-perturbative — they will never be encountered in any order
of perturbation theory.

This does not necessarily mean that these contributions are small. As
we saw in Chapter 18, in quantum chromodynamics the coupling g is not
a fixed dimensionless parameter, but a function of a sliding energy scale,
and becomes large at low energies. The effective energy scale to use in
the coupling in Eq. (23.5.19) is determined by quantum fluctuations, the
subject of Section 23.7, but on dimensional grounds it cannot be very
different from 1/R, where R is the instanton size in Eq. (23.5.12). The
instanton size is not fixed, but must be integrated over, with some weight
function that depends on the process under consideration. In quantum
chromodynamics the running coupling constant g, is given for large p by
Eq. (18.7.7) as

2 _ 871'2
8x = Botn(u/A)’

where fio = 11 —2n¢/3 and A & 250 MeV is the quantum chromodynamic
scale factor. The factor exp(—8n°/g] ) is therefore, for small instantons,

exp ( — 87r2/gf/R) = (RA)ﬁU .

We cannot calculate this factor for large instantons, with RA > 1, but it
is clear that in this case there is no suppression of instanton effects.

Despite initial hopes, the discovery of instantons has not led to much
improvement in our ability to do quantitative calculations in quantum
chromodynamics. On the other hand, as we shall now see, it has pro-
duced spectacular qualitative changes in our understanding of quantum
chromodynamics and other gauge theories.
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The mere fact that there are solutions of the field equations for which
the integral (23.5.15) does not vanish is enough to provide a solution
of the U(l) problem discussed in Section 19.10. Under global U(1)
transformations ¢ — exp(iysa)yp, the measure for integration over quark
fields undergoes a change given by Eq. (22.2.10):

[dy][dp] — exp {ioc / (X) d4x} {dy]ldip] , (23.5.21)

where (with the matrix t here equal to unity) the anomaly function A (x)
is given by Eq. (22.2.45):

1
 16x?
The existence of this anomaly would not in itself solve the U(1) problem,
because the quantity (23.5.22) is a total derivative, and so would have
a zero integral for a non-singular gauge field that vanishes sufficiently
rapidly at infinity. The instanton solution vanishes only as 1/, and yields
a non-vanishing value for this integral, given by Egs. (23.5.22), (23.5.18),
and (23.5.5) as

5 (X) € Fija Fr g trialp . (23.5.22)

f d*x s/(x) = 2Nv (23.5.23)

showing that the anomaly does violate the U(1) chiral symmetry.

As we saw in Section 224, the currents of baryon and lepton number
also contain anomalies due to the interaction of quarks and leptons
with the SU(2) x U(l) gauge fields of the standard model. Instanton
configurations of the SU(2) gauge ficld therefore produce violations of
baryon and lepton conservation.?> As noted in Section 22.4, there are
various currents whose conservation is not violated by anomalies or
anything else, such as baryon number minus lepton number, and the
differences of electron, muon, and tau lepton numbers, so these will
be conserved in any baryon- and lepton-non-conserving process. For
instance, the decay of a proton or deuteron is forbidden, but the decay
He’® - et + put + 7, is allowed. The amplitudes for these effects are
suppressed by the same factor exp(—8|v|n?/g?) as before, but now with g
the S U(2) coupling constant e/ sin 8, evaluated not at a sliding scale but at
the natural scale for electroweak processes, roughly of order my. Taking
¢?/4n = 1/129 (see Section 18.2) and sin? 8 = 0.23, the suppression factor
for |v| = 1 is exp(—373). He? decay into three antileptons is not likely to
be observed.

* % ok

There is another approach? that illuminates some aspects of instantons.
In temporal gauge, with A(X, x4) = 0, the gauge field for x; — +oo is
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expected to approach time-independent pure gauges for x, — 4-o0:
IA(X, X3) = it Ag(X, X4) = g7 (X)Vg4(X), (23.5.24)

where gi(Xx) are group elements in the representation generated by ¢,.
Assuming that A,(x, x4) vanishes for x — oo, the group ¢lements g (x)
must approach constants g4+ for X — o, so the three-spaces at x; — o0
may be regarded as three-spheres, with the point at infinity regarded as
an ordinary point. Following the same argument that led to Eq. (23.4.13),
we then have

e [ @xTr {ggl(x) ig+(x) 22" (x) 0;8+(x) g5 (¥) g () } = 24nn,

(23.5.25)
where ny are integers. The integral over the boundary of four-space in
Eq. (23.52) may be regarded as the integral over the ‘plane’ x4 = +o0
minus the integral over the ‘plane’ x; = —oo, so from (23.5.8) and (23.5.18)
(with N = 1) we have

V=n,—n_. (23.5.26)

The exponential factor exp(—8|v|n?/g?) from Eq. (23.5.19) may therefore
be regarded as the amplitude for a transition from a configuration with
spatial winding number n_. at x, — —o0 t0 one of spatial winding number
n+ at x4, — +oo. The exponential form of this factor for v # 0 reflects the
fact that this is a runneling process; no continuous sequence of pure gauge
fields can take us from a configuration of one spatial winding number to
a configuration with a different spatial winding number.

The interpretation of the factor exp(—8|v|n?/g?) as a tunneling am-
plitude suggests that baryon- and lepton-non-conserving processes may
proceed rapidly at temperatures above about 1 TeV, where instead of
having to tunnel through the barrier, thermal fluctuations can take the
vacuum over the barrier.?’ This process may be of cosmological impor-
tance, but it is still subject to the selection rules mentioned above: thermal
fluctuations will not change the density of baryon number minus lepton
number, or the differences of the densities of the three varieties of lepton
number.

23.6 The Theta Angle

We have seen that there are configurations of arbitrary integer winding
number, but how do we know that these configurations must be included
in the path integral? To keep an open mind, suppose we add up configura-
tions with arbitrary weight factors f(v) for each winding number, leaving
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open the possibility that some or most of these weight factors might van-
ish. The expectation value of a local observable ¢ located within a large
Euclidean spacetime volume € is then

S f0) Llddlexp (Lalgl)Olg]
=y f0) f,[dg] exp (Talg])

where ¢ stands for all the fields of the theory; the subscript v on the
integrals over ¢ indicates that we are to include only configurations of
winding number v; and Ig[¢] is the integral of the Lagrangian density
over the spacetime volume Q. Now suppose that Q is divided into two
very large volumes Q and €, with ¢ in the volume Q;. The integral over
all fields with winding number v may be written as an integral over all
fields with winding number v; in volume Q; and winding number v, in
volume €, with v; and v; summed over all values with vi +v; = v, and
50 to a good approximation Eq. (23.6.1) becomes

Yy S1+v2) f, (4] exp (In,[91) OT¢] J,,[de] exp (Ia,[4])

T fO1+v2) [, ldgTexp (Ia,[41) J,, [dg] exp (Ia,[4])
(23.6.2)

(O)a

(23.6.1)

{O)a

But then for general weight factors the average is not the same as if we
omitted the volume Q,, in contradiction with our general ideas about
cluster decomposition. (See Chapter 4.) In order for the factors involving
the volume Q3 to cancel in this ratio, we must have

fvi+v2) = fvi)f(v2) .
This will be the case if and only if f(v) is of the form
flv) =exp(ifv), (23.6.3)

where 8 is a free parameter. Thus in particular we cannot arbitrarily
discard all configurations with non-zero winding number, because then an
instanton of winding number v in one region would have to be balanced
with an instanton of winding number —v in some other region, making
it impossible to calculate expectation values without considering what is
happening far from the location of the operators being measured.

The factor f(v) may be put in a more familiar form. According to
Eq. (23.5.18), with gauge ficlds normalized so that in the standard SU(2)
subgroup the structure constants are €, the winding number may be
written as an integral:

1

V= ban?

] (d*X)E €31 Faij Fuda - (23.6.4)
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This can be expressed in terms of a Minkowskian path integral; since

(d*x)p = id*x; Fyas = —iFy30; and €0 = — |, Eq. (23.6.4) may be written
1

64n?

Thus inclusion of the weighting factor (23.6.3) is therefore equivalent to
adding a term

y = f d*x e F i Fopo . (23.6.5)

Lo = K0T FiFapo (23.6.6)

642 °
to the Lagrangian density. But as mentioned at the beginning of Section
15.2, we might have included such a term in the Lagrangian of any
non-Abelian gauge theory anyway, with arbitrary real 6.

The inclusion of a term (23.6.6) in the Lagrangian density would violate
P and CP conservation. We could of course simply set 8 = 0, but this
would invalidate what in Section 18.7 was scored as one of the successes
of quantum chromodynamics: it made it automatic for P and CP to
be conserved by the strong interactions even though they are evidently
violated by the weak interactions.

To assess the physical consequences of including the term (23.6.6) in the
Lagrangian, consider the effect of redefinition of all the fermion fields

py — expliysag)yy, (23.6.7)

where f is a flavor index, and «; are a set of real phases. According to
Egs. (22.2.10) and (22.2.24), the effect on the measure for path integrals
over fermion fields is

f
(We are using generators normalized so that Tr {tutg) = 64p/2.) Comparing
this with Eq. (23.6.6) shows that this is equivalent to shifting ¢ by

0—0+2) af. (23.6.9)
-

The redefinition of the fermion fields will also change the mass terms in
the Lagrangian density. In order to take account of masses involving ys,
let us write the fermion mass term in the Lagrangian as

En =42 M (L+yhwy — 13 Mipr(L=yshyy,  (236.10)
f f

with mass parameters .# ¢ which, if complex, would violate P and CP
conservation. Then the redefinition (23.6.7) changes these parameters by

[dy)[d] — exp {52% [ @' o P FE7 S af} [dy]ld7] . (2368)
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A mere change of path integration variables cannot have any physical
effect, so observable quantities cannot depend separately on 6 or the
phases of the mass parameters .4, but only on the combination

exp(—i6) [ .#y . (23.6.12)
;

In particular, we can always define the fermion fields so that § = 0, but
at the price of perhaps introducing P and CP violating phases in the mass
parameters.

This discussion shows that if any of the quark masses were to vanish,
then the theta angle would have no effect and there would be no P or
CP non-conservation in quantum chromodynamics. The analysis of quark
mass ratios in Section 19.7 indicates that the quarks all have non-zero
masses, though it is sometimes suggested that the inclusion of terms of
second order in m, in this analysis might allow m, to vanish.?® But there
is no question that the u and d quarks are quite light, which leads to some
suppression of the effects of a non-zero theta angle. We saw in Section
19.4 that m, and my are roughly of order m? /my (where my is used here
as a typical quantum chromodynamic mass scale), so we might expect
the effects of the theta angle to be suppressed by four factors of m,, but
this is not quite correct. With P and CP not conserved there would be a
non-zero amplitude for the n° to disappear into the vacuum, proportional
to m?, but the ‘tadpole’ graphs with pion lines ending in such vacuum
transition vertices would be enhanced by a factor m_? from the pion
propagator, giving a net effect proportional to m2, not m2. In particular,
if we define fermion fields so that all .4 are real, then a non-zero theta
angle would produce a P- and T-non-conserving neutron electric dipole
moment proportional to |6 and m2, and hence on dimensional grounds
of order?

dy = |OlemZ /my =~ 107 %10l ecm . 236.13
n N I

The neutron electric dipole moment is known to be less than about 10725 ¢
cm, so A < 1077,

In order to explain in a natural way why 8 is so small, Peccei and
Quinn®® proposed a theory in which # became in effect a dynamical
variable, which could relax to a minimum of the effective potential, at
which P and CP would be conserved. Their idea was taken up by Wilczek
and myself3! who noted that it would require the existence of a light
spinless particle, the axion. The axion that appeared in the original
Peccei-Quinn model has been ruled out by experiment, but there are more
general possibilities,’? in which the axion couples too weakly to ordinary
matter to have been obscrved.

The common feature of all versions of the axion theory is that there
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is some U(1) Symmetry that is spontancously broken at energies much
higher than those associated with quantum chromodynamics, and is also
broken by an anomaly involving the gluon fields, According to the
general formalism of Chapters 19 and 22, the low energy effective field
theory will contain a Goldstone boson field ¢, so that, under the symmetry
transformation

¢ — ¢+ Fye, (23.6.14)

the effective Lagrangian undergoes the transformation
€A v
5$€ﬂ' = %@eﬂw.‘m F;Ct Fé)g » (23.6.15)

where A is a dimensionless constant of order unity, characterizing the
anomaly, and Fy is a constant of the order of the energy scale at which
the symmetry is spontaneously broken (with ¢ defined to be canonically
normalized.) Then the terms in the effective Lagrangian involving ¢ are

ﬁlnz%em FI RS 4. (23.6.16)
where M = Fy/A and * - denotes possible interactions involving deriva-
tives of ¢. Comparing Egs. (23.6.16) and (23.6.6), we see that, for
a constant ¢, all observables will be functions not of ¢ and ¢ sepa-
rately, but only of § + ¢/M (This is with fermion fields defined to make
the mass parameters Ay all real; otherwise observables will depend on
0 — 2 Arg s+ p/M) If everything in the theory but the theta term
(23.6.6) and the ¢ interaction in Eq. (23.6.16) conserves P or CP, then the
effective potential will be even in 0 + ¢/M, s0 it will have a stationary
point at 0 + ¢/M = 0, preserving the conservation of both P and CP. In
the real world P and CP are not exact, but the only observed violations
are in the weak interactions, and would shift the expectation value of ¢
only a small way®? from —Mg,

Even without specifying the underlying theory, by using effective field
theory techniques it is possible to say a fair amount about the general
properties of the axion. The most general Lagrangian for the axion field
¢, now including the theta term and all interactions with u and d quarks
up to order 1/M, is of the form

1
Ly =30, —

1 1
Ly =—30u00" + —— [ ¢ 9} €po FIY FP°

64n2 | M
ifu o ifa . 5
Y Ouitysy*u — i Cu@ dysyHd (23.6.17)

where f, and f; are dimensionless coupling constants, expected to be of
order unity. As shown by Eq. (23.6.8), the redefinition (23.6.7) of the
quark fields has the effect of subjecting the quantity @(x)/M + 0 in the
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second term of the Lagrangian (23.6.17) to the replacement
¢ox) o, o)
m 07

By choosing ay = —(68 4+ ¢/M)ecy /2 with constant cocfficients ¢y satisfying
cy+cg = 1, we eliminate the term in the Lagrangian involving e, o 4" F{°,
and change the mass term in the low energy quantum chromodynamic
Lagrangian density to

Fm = —my,uexp {— ic, (8 + qb/M)y:;]u— myd exp [— ics(0 + qb/M)y:;}d
(23.6.19)

+ 042 [ocu(x) +og(x)] - (23.6.18)

In addition, from the kinematic part of the quark Lagrangian we pick up
a derivative interaction term

Lic, (Uy*ys)udd/M + licg(dy'ys)ddp/M , (23.6.20)

so that f, and f; in Eq. (23.6.17) are replaced with f] = f, — ¢,/2 and
fiy = fa— ca/2. To derive an effective Lagrangian for low-energy pions
and axions, we follow the procedure of Section 19.5 (but now with u and
d quarks in place of protons and neutrons), and make the replacements:

i — veos(n’/Fy), dd — vcos(n®/F;),
aysu — ivsin(z®/Fy), dysd — —ivsin(n?/F;), (23.6.21)
fuytys — %FnO”TEO +---, it_fy‘”'y5 — %Fna“n" e,

where v is the constant v = (i) = {dd), and * -~ denotes terms that do
not have the one-pion pole. From Egs. (23.6.19) and (23.6.20) we find the
effective pion—axion Lagrangian

t  cgd 0 ey’
—HM,v COS (F—x vl R cos F. + M ,(23.6.22)

where ¢’ is the difference between the axion field and its expectation value

¢ =¢—(¢)=¢+M0. (23.6.23)

Since ¢, and ¢4 are arbitrary except for the condition that ¢, + ¢4 = 1, we
are free to climinate the 8,,¢p#n® cross term by taking ¢, = 1 +f,—f, and
¢y = i+ fa— fu so that f, = f. The quadratic part of the Lagrangian
(23.6. 22) is

L quad = faﬂn(’a“n — a L — ( (; )TMO( dw(’)) . (23.6.24)
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where

2 _ (mu +md)v/F§ (hmucu‘i‘md('d)U/FnM
MO - ( (_mucu + ded) U/F—EM (mucﬁ + mdci) U/M2 . (23625)

For M > F; one eigenvalue of M3 is (m, + mg)v/F2, which according
to Eq. (19.7.20) is the n° squared mass. The other eigenvalue is then the
axion mass

2
2 v owmgmy,  Fp mgm, 2
a

Ma = Mimg+m, M2 (md+mu)2m“'

(23.6.26)

For the quark mass ratio derived in Section 19.7, this gives m, =
13 MeV /M(GeV).

We can also use this formalism to say something about the interactions
of axions with hadrons. The eigenvector of M? with eigenvalue m? has a
component along the original z” direction equal to (m,c, — mgcy)Fr /(my, +
mg)M. As mentioned earlier, because of the one-pion pole this is the
dominant axjon-hadron coupling. We see that the ratio of the axion and
pion production interaction amplitudes will typically be of order F, /M.
The fact that axions are not observed in such collisions indicates that
M > 3 TeV, in contradiction with the original expectation®®3! that the
anomalous U(1) symmetry is spontaneously broken by the same scalar
vacuum expectation values of order 0.3 TeV that break the electroweak
SU(2) x U(1) symmetry. It is possible to explain why axions are not found
in reactor or accelerator experiments by taking M as an independent
parameter,’?> much larger than the electroweak breaking scale, but there
are still astrophysical limitations. Limits on the rate of cooling of red giant
stars give™ M > 107 GeV, while observations of the supernova SN1987A
indicate® that M > 10! GeV.* Cosmological arguments suggest’® an
upper bound M < 102 GeV, leaving an open but narrow window of
allowed axion parameters.

" For M > 107 GeV the axion mass would be less than about 1 eV, so that stars are hot
enough to produce axions. The ralio of the axion and #° decay rates into two photons
is expected to be of order (F,/M)? times a phase space ratio of order (m,/m,), or

= () ()~ (%)
N> y+y) \M me) A\M
Hence for M > 107 GeV the axion lifetime is expected to be longer than about 10%

s, which is ample time for the axion to travel even cosmological distances before
decaying.

5



462 23 Extended Field Configurations
23.7 Quantum Fluctuations around Extended Field Configurations

Topologically non-trivial four-dimensional field configurations such as in-
stantons provide only zeroth-order contributions to path integrals. Now
we must consider the effect of quantum fluctuations around these config-
urations.

To start in a very general way, consider a set of fields, collectively called
¢(x), whose dynamics is described by the Euclidean action I[¢], and
suppose we have a set of configurations ¢,, at which I[¢] is stationary,
where v labels the topological type of the configuration, and « represents
a set of continuous collective parameters on which the configuration
depends. For instance, for instantons v is the winding number, an integer,
and u includes the position and scale as well as its “direction’ in the gauge
group. Euclidean path integrals may then be written

g exo (11410 / du [ g1 exp (11puu+ #1)0, (237.1)

where the subscript on the mtegral over the fluctuation ¢’ indicates that
we are to integrate only over fluctuations that do not entail changes in
the collective parameters, and (7 stands for any product of local functions
of field operators, Because I [¢] is stationary at ¢ = ¢,,,, its expansion to
second order in the fluctuations takes the form

Hvu+¢ 11— | f d*xd*y Kaym(v,u) $i(x) d(y),  (23.7.2)

where [ and m here include spin and species indices, and I, = [[¢,,]
is a function of v alone because the action is supposed to be stationary
at all field configurations ¢,,. The integral over the fluctuation ¢’ in
Eq. (23.7.1) will then yield a sum of terms from contractions of the fields
in O, times (for real bosonic fields} an over-all factor [Det K (v,u)]~1/2, it
being understood that K now acts only in the subspace of fluctuations
that do not entail changes in the collective parameters u. This factor
can be written as a product over the eigenvectors A,(v,u) of the ‘matrix’
K(v,u):

(Det K(v,w) " = ] 42w, (23.73)

the prime here indicating that we are to exclude the ‘zero modes’, the zero
eigenvalues of K, for which the eigenfunctions correspond to changes in
the collective parameters.

These remarks allow us to refine the results given in Section 23.5 for the
coupling-constant dependence of instanton contributions with different
winding numbers. Suppose we define the fields of our theory in such
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a way that the action takes the form I[¢,g] = g 2Ii[¢] where I,[¢] is
independent of coupling constants. (For instance, as discussed at the end
of Section 15.2, in Yang-Mills theories we would use as a gauge field the
canonically normalized gauge field times a factor g.) Then all eigenvalues
of K are proportional to g=2, and the factor (23.7.3) is proportional to g to
a power equal to the number of non-zero eigenvalues of K. This power is
of course infinite, but it can be written as the number of alf eigenvalues of
K, which is also infinite but is independent of v, minus the number A4 (v)
of zero modes, equal to the number of collective parameters, which is finite
and dependent on v. We conclude then that aside from factors that do
not depend on v, the contribution of fluctuations around configurations
of topological type v is a factor with a coupling-constant dependence that
is given in terms of the number A47(v) of collective parameters by

g, (23.7.4)

This estimate is based on the approximation (23.7.2), which corresponds
to a one-loop approximation, so when higher-order terms are taken into
account the factor (23.7.4) will be multiplied with a power series in g,
whose details depend on the operators (7 appearing in the path inte-
gral.

Let’s see how this applies to instantons. The configuration with v = 0
of course has no collective parameters, and so its contribution to path
integrals 1s just a power series in g. The configuration with v = 1 has
four collective parameters giving the spacetime location of the instanton,
one collective parameter giving the scale of the instanton, and a number
Ny of collective parameters corresponding to the rotations and/or global
gauge group transformations that do not leave the instanton invariant,
so (now including the factor exp(1,) given by Eq. (23.5.19)), the coupling-
constant dependence for v = 1 instantons is g=>~M exp(—8n2/g2). For
the v = 1 instanton (23.5.12) in an SU(2) Yang-Mills theory, there are
three independent rotations and three independent SU(2) transformations,
but since the instanton is invariant under three combined rotations and
SU(2) transformations, we have N = 3, so fluctuations around the v = 1
instanton yield a coupling-constant dependence g~® exp(—8n2/g?). In an
SU(3) Yang-Mills theory we have three independent rotations and eight
independent SU(3) transformations, but again the instanton is invariant
under three independent combined rotations and SU(3) transformations
in the standard SU(2) subgroup (say, acting on the first two components
of the defining representation of SU(3)), and now also invariant under one
additional SU(3) transformation that (like hypercharge) commutes with all
generators of the standard SU(2) subgroup. Hence Ny = 3+8—3—1=7,
and the v = 1 instanton yields a factor proportional to g =% exp(—8n?/g?).
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Now suppose that the action I also contains a term

—fd4x /d4y VI(X) X emy (V. 1) Yml(Y)

involving independent fermion fields v and . If none of these fields
appear in ¢ then the integral over these fields yields a factor Det 4 (v, u),
which vanishes if (v, #) has any zero modes. This result can be simply
understood in terms of the rules for integration over fermionic parameters.
By expanding w(x} and {(x) in the eigenmodes of %', we can write the
integral over y(x) and P(x) as an integral over the coefficients in these
expansions. The coeflicients of the zero modes do not appear in the
quadratic approximation to the action, so for each such fermionic zero
mode we have an integral over a fermionic parameter that does not appear
in the integrand, which vanishes according to the general rules of Section
9.5. The only terms in an integral over fermionic variables that do not
vanish are those for which the integrand contains a single factor of each
integrated variable. Hence the integral over fermionic fields in Eq. (23.7.1)
will not vanish only if there is a single fermionic field in ¢ for each
zero mode of X#'. For instantons there are fermionic zero modes whose
numbers and chiralities are governed by index theorems, like the Ativah—
Singer index theorem derived in Section 22.2, so only certain processes are
allowed for a given winding number. It was on this basis that ’t Hooft?’
showed that the baryon- and lepton-nonconserving effective interaction
produced by v = 1 instantons in the electroweak standard model must
involve just one of each lepton flavor.

23.8 Vacunm Decay

A vacuum state i1s stable if its scalar field expectation values are at a
true minimum of the effective potential. But if the scalar field expectation
values are at a local minimum that is higher than the true minimum
then this vacuum will be metastable. A metastable ‘false’ vacuum state
corresponding to a local minimum will decay into the stable ‘true’ vacuum
corresponding to the true minimum by a process of barrier penetration,
analogous to nuclear alpha decay or spontaneous fission. This is not
a process that can be observed in our laboratories, but it has presum-
ably occurred several times in the history of the universe as various
symmetries have become spontaneously broken, so it is important to be
able to calculate the rate of such false vacuum decay. As we shall now
see, this calculation involves consideration of yet another extended field
configuration.®

Let us concentrate on the component ¢ of the scalar field multiplet that
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acquires an expectation value {¢) in the true vacuum. For instance, in
the theory of broken chiral symmetry discussed in Section 19.5, ¢ would
be the fourth component of a chiral four-vector. It will turn out that,
where barrier penetration is strongly suppressed, the other scalar fields
(including those of any Goldstone bosons) do not affect the dominant
suppression factor in the decay rate. For definiteness, we will take the
Lagrangian density in the form

L == 10, %) — V(g). (238.1)

We assume that the lowest-order effective potential V($) has a true
minimum at ¢ = (¢) and a local minimum at ¢ = 0, and we adjust an
additive constant in the Lagrangian density so that V(0) = 0, in which case
V({#)) < 0. We want to calculate the rate at which the false vacuum state
with scalar field expectation value zero will decay into the true vacuum
state with scalar field expectation value (¢).

The results of Appendix A of this chapter (Egs. (23.A.6), (23.A.21), and
(23.A.23)) show that the energy Ey of the false vacuum state in which the
scalar field vacuum expectation value vanishes is given by

: 1 )
Ey = _hmT_'“’:F_ In {/ exp (— Sle; T]) lx_!dq&(x, t)] , (23.8.2)
where S[¢; T] is the Euclidean action derived from Eq. (23.8.1)

+T/2 1/786\2 1
sl = [ [ !— (%) +-(V¢)2+V(¢)] . (2383)

-T2 2\ 0t 2
and the integral in Eq. (23.8.2) is over all fields ¢(x,t) satisfying the
conditions

b(x, T/2) = p(x,—T/2)=0. (23.8.4)

The energy (23.8.2) is complex; its imaginary part will give us the decay
rate.

To calculate the functional integral in Eq. (23.8.2), we look for a
stationary ‘point’ of the Euclidean action S[¢, T]. The fields at which
(23.8.3) is stationary satisfy the field equations

3 _ B¢, dV(¢)
- _-_Z%_ , 2385
R R AL (238.3)
subject to the boundary conditions (23.8.4). Because of these boundary
conditions, such a solution is known as a bounce.

We shall look for these bounce solutions by making the ansatz that

¢(x, t) 1s invariant under rotations around a point Xy, ; in four dimensions:

$(X,1) = dlp) where p=\/(x—Xo) +(t—1o)2. (23.8.6)
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There are solutions that are not rotationally invariant in four dimensions,
but these other solutions have higher values’” of S, and so become
negligible for large T. Using Eq. (23.8.6) in Eq. (23.8.5) yields the ordinary
differential equation

£o  3dp

2 T odp = V'(g). (23.8.7)
Strictly speaking, a solution of this form is consistent with the boundary
conditions (23.8.4) only when T is very large compared with the char-
acteristic time associated with V(p), in which case we can take T to be
infinite in Eq. (23.8.4), which then becomes the condition that ¢(p) must
vanish when p — co. Also ¢(x,t) must be an analytic function of x near
x =0 at all ¢ including at ¢ = 1y, so ¢(p) is a power series in p? for p — 0,
and in particular d¢/dp = 0 at p = 0. With these conditions, Eq. (23.8.7)
is the equation of motion of a particle of unit mass with ‘position’ ¢ at
“ime’ p, moving under the influence of a potential —V(¢) and a viscous
force —(3/p)d¢p/dp, that travels from rest at some finite initial value b0
of ¢ at p =0, and just reaches ¢ = 0 at p — o, losing its initial ‘energy’
—V(¢o) > 0 to viscosity along the way. The Euclidean action (23.8.2) for
such a solution is

__ @ 2.3 1 dd) 2
B =f0 2n?pidp [5 (%) + V(d))} . (23.8.8)

It is crucial to determine the sign of B. For this purpose,® we use the
same device that was used to prove Derrick’s theorem in Section 23.1,
and consider the action (23.8.8) for a modified ficld ¢r(p) = ¢(p/R). By
rescaling the variable of integration, we find

o0 2 2
S[pr] = /O 2n2p3dp [R? (‘;ﬁ) +R4V(¢)} . (23.89)

If ¢(p) is the solution of Eq. (23.8.7) then the action must be stationary
with respect to any variation in ¢, so that dS[¢g]/dR must vanish at
R =1, and therefore

/Ow pdp (%)2 = —4/:0 pdp Vig). (23.8.10)

It follows then that

n? dgp\?
B=— 3 : 23.8.11
3 pdp(dp) >0 (23.8.11)
We will come back later to an exphclt approximate solution for ¢(p), but

first let’s consider how such solutions are to be used.
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We have here not just a single one-bounce configuration at which the
Euclidean action is stationary, but a continuum, characterized by the
collective coordinates x; and ty. According to the results of Section 23.7,
we must integrate over these parameters, which, since B is independent of
xo and ty, yields factors of ¥ and T in a box of spatial volume ¥". The
contribution of all one-bounce configurations to the functional integral in
Eq. (23.8.2) is given in one-loop order by

¥ TAexp(—B) . (23.8.12)

The coefficient A is proportional® to a product [, A1, where the A,
are the eigenvalues of the kernel 62S[¢]/d¢(x,t)0p(x', 1), and the prime
indicates that we are to omit the zero eigenvalues, which correspond to
changes in the collective coordinates xq and #;. Using Eq. (23.8.10), we
can se¢ that the second derivative of Eq. (23.8.9) with respect to R is
negative at R = 1, so there is at least one (and in fact just one®”) negative
eigenvalue, and hence to this order A4 is imaginary. We will not attempt to
calculate A here, but will just note that 4 unlike exp(—B) does not have
a dramatic dependence on the parameters of the theory, so that we can
estimate it on dimensional grounds to be roughly of order iM—*, where
M is some characteristic mass scale of the theory.

For large T and ¥~ we can find additional stationary configurations by
superimposing any number N of these bounce configurations, yielding a
contribution that is the Nth power of the quantity (23.8.12), divided by
N'! to take account of the fact that in integrating over N of the xy and tg
we are summing over configurations that only differ by permutations of
the N identical bounces. Summing over N then gives the exponential of
the quantity (23.8.12), so the energy (23.8.2) is just the quantity (23.8.12)
divided by —T

Eg=—v Aexp(—B) . (23.8.13)

Since 4 is of order iM~*, the decay rate per volume of the false vacuum
is thus of order

/v ~ M *exp(—B) . (23.8.14)

Note that this is a decay rate per volume, because the decay does not occur
by a change in the scalar field simultaneously everywhere in space, but by
the occurrence of bubbles of true vacuum in a false vacuum background.

" Where a continuous symmetry G is spontaneously broken to a subgroup H, there are
additional collective coordinates giving the orientation of H within G. The intcgration
over these paramcters yields an additional factor in 4 equal to the volume of the coset
space G/H.
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The result {23.8.14) is chiefly useful in the case where B is large, so
that barrier penetration is strongly suppressed, and we can estimate the
suppression factor as simply exp(—B). Fortunately, the most natural
circumstance in which B is large is one in which it is possible to calculate
B in closed form. This is the case in which the energy V({¢)) = —e¢ of the
true vacuum is only slightly below the zero energy of the false vacuum,
but V(¢) is positive and not small between ¢ = 0 and ¢ = (¢). To
minimize the Buclidean action (23.8.3) in this case, we must take ¢ to be
near {¢) within a four-dimensional ball with a large radius R, at which ¢
drops to zero within a shell of thickness given by some length L ~ M -1
characteristic of the potential in the limit ¢ — 0. (This is sometimes called
the ‘thin wall approximation,” but perhaps a better term would be the big
bubble approximation.) The action (23.8.3) in this approximation is

S(R) ~ — in*R* 4+ 2n°R37 (23.8.15)

where .# is a surface tension, equal to the shell contribution to the action
per area. The second term on the left-hand side of Eq. (23.8.7) becomes
negligible for p = R, so this is now essentially a one-dimensional problem.
We can therefore take the surface tension from Eq. (23.1.4), which for a
solution of the field equations is an equality, and in present notation reads

(@
> = / V(S . (23.8.16)
0
The action (23.8.15) is stationary at a radius
R~3%/e, (23.8.17)
so the action at its stationary point has the value
27?4
~ 23.8.1
B 53 (23.8.18)

Note that B is large for small ¢, so in this case the decay rate of the false
vacuum is strongly suppressed. After the barrier has been penetrated the
bubble of true vacuum will grow at the speed of light, colliding eventually
with other bubbles, until all space is in the state of lowest energy.

Appendix A Euclidean Path Integrals

This appendix will outline the use of Euclidean path integrals in quantum
field theory. As mentioned in Section 9.1, it is possible to formulate
quantum field theory in a four-dimensional Euclidean spacetime. Instead
of going into the non-trivial analytic continuation needed to calculate
S-matrix elements in this approach, here we shall illustrate the use of
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Euclidean path integrals by addressing a problem for which they are
naturally suited.

We consider a set of Hermitian canonical variables Q, and P,, with
commutation relations

[Qu, Po] = i (23.A.1)

[Qa, Q] = [Pa, Ps] =0. (23.A.2)

In quantum field theory the index a is understood, as in Section 9.1,
to consist of a spatial position x and any discrete Lorentz and species
indices m, and the Kronecker delta in Eq. (23.A.1) is understood as
Sxm,yn = 63(X ~ ¥)Omn. We define eigenstates of the 0,

Qalq) = gala) (23.A.3)

normalized so that

dlgy=9(¢ —q)= Hb(qa da) » (23.A.4)

and likewise for ¢igenstates [p) of the P,.
The problem we consider is the calculation of the matrix element

Fiq.a;T)=(¢'lexp ( —HIQ, PIT)lq) , (23A5)

where H i1s the Hamiltonian, and 7 is an arbitrary positive constant.
One application is to the study of ground-state energies. If the smallest
eigenvalue of H is Ey, with eigenvector |0), then for T — oo

F(q',q;T) — (4'10){0lg) exp(—EyT),

80

T

Also, we can calculate the partition function of statistical mechanics from
the trace:

2(p) = e exp(—pH) = [ [[Tdas] #1a.0:8), (23A7)

! .
Eo = —limy_..0 (li’f(_q-q—m) | (23.A.6)

where 1/8 is the temperature.
To derive a path integral formula for F(q',q;T) we define Euclidean
time dependent operators

Qut) = ™' Que™ | Py(t)y= P, (23.A.8)
and corresponding left- and right-cigenstates

lg,t) = exp(H1)lg), (g, = (qlexp(—H?1), (23.A.9)
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p,t) = exp(H1)Ip) (p.t| = (plexp(—Ht), (23.A.10)
such that

QaltNg: 1) = qala, 1), (4,11Qa(1) = galg. 1l , (23.A.11)
and

Pa@®)lp. 1) = palp,ty . (P, UPa(t) = palp.t] . (23.A.12)

One difference between this and the usual Minkowskian formalism is that
the ‘time’ evolution of the operators is governed by a non-unitary similarity
transformation (23.A.8), so there is no simple relation between the right-
eigenstates (g, | of Q(t) and the Hermitian adjoint of the left-eigenstates
lg,t}, except at t = 0.

In this language, the definition (23.A.5) of F(q',q; T) may be rewritten

F(g',q;T)y=1(q,T/2lq.—T/2). (23.A.13)

Let us first calculate (¢',1 + dt|q,t) for infinitesimal dt. Adopting the
convention that H(Q, P) is written with all Qs to the left of all Ps, we
have

(q',t +dilg,t) = (¢, tlexp ( — Hg', P)dt)lq.1)

Let us expand |q,1) in a complete set of eigenstates of the P,(t) operators.
From Eq. (23.A.1) we have as usual

(g.1lp,1) = HEEP\(/*%M . Aptlgn) = HM\/%“ :

a da

(q',t +dilg, 1) = / ( )exp( > pald, —Hig, p)dt)

(The summation convention is suspended here.)

As in Section 9.1, we divide the time interval from —7T /2 to T/2 into a
large number of very small intervals and insert a sum over () eigenstates
for each interval. Defining functions ¢(¢) and p(t) that interpolate between
the values of the Q and P eigenvalues at each interval, we obtain the path
integral expression for F in its most general form
F(q,q;T) = /

dpa(t)
Ja~T/24.4(T /2 (qu"(r)/ (H 2n )
X exp (]T/z [ an Hpalt) — (q(t), p(!))]) {(23.A.14)

S0

ad
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To calculate the partition function (23.A.7) we would integrate over the
ps and gs subject only to the condition that ¢(¢) is periodic with period
equal to the inverse temperature f3:

dp,
Zh = / a8/ D=a(—/2) (qua ) j (E,I l;;”)
X exp (/ " ali Y autopat — H (), p(r))}) . (23A15)

—6/2 a

Egs. (23.A.14) and (23.A.15) look a little odd, with one term in the
exponent real, and the other imaginary. These formulas begin to look
more familiar after we do the path integral over the p,(¢)s. This integral
is trivial in the important class of theories where Hiq, p) is quadratic in
the Ps:

H{q,p)= Z Awp(q)Papr + ZB (9)pa + Clq) . (23.A.16)

As shown in the appendlx to Chapter 9, the integral over the ps in
Eq. (23.A.14) yields

F(q’,q;T)—/

(=T /2)=4,q(T/2)=

(L) (o ]

X exp ( / Zi dt]i'3 dul00P1) — H g1}, ﬁ(r))]), (23.A17)

a

where .&/(g) is the ‘matrix’
AL (@)ay gy = O(t' — ) Aap(q(t)) , (23.A.18)

and p(f) is the stationary ‘point’ of the argument of the exponential in
Eq. (23.A.17) — that is, the solution of the equation

0H (q(f), p)

iga(r) = — 5 (23.A.19)

p=plt)
The factor i here should not be surprising, because Eq. (23.A.19) is the
same equation that is satisfied by the non-Hermitian operators (23.A.8):

L SH(Q(1), P(1))
iQa(t) = i[H,Qu(1)] = 3P(0)

For a Hamiltonian in the general quadratic form (23.A.16), the solution
of Eq. (23.A.19} is

P.=3_ (47" @] (i — Bola)) . (23.A.20)

b
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and so Eq. (23.A.17) takes the form

Fiq,q;T) = fq{m_qq (qua }) (Det [2imf(q)])_”2exp (—-Slal).

(23.A.21)
where S[q] is the action
T/2
S[q]E/ { ZAab(q Madn + 1) Az (0)Bald)s
-T2 p
1 —1
—3 D43 (0)Bala)Byla) + C(q)] . (23.A.22)
ab
In the special (but common) case where B,(q) = 0, this simplifies to
T/2 1 1 o
Slal= [ " dt |33 Azt @iuds + C(@)| (23.A23)
—T/2 ab

Thus in this case the ‘Lagrangian’ appearing in the path integral is equal
to what the Hamiltonian would be in Minkowskian spacetime when the
ps are expressed in terms of ¢s and gs.

Appendix B A List of Homotopy Groups

This appendix presents a list of homotopy groups* for various manifolds.
Here Z denotes the group of the integers, with group composition defined
by addition, so that zero is the unit element. Also, Z, is the group of
the integers modulo n. The trivial group, consisting of the element 0, is
denoted 0. Homotopy groups for direct products of manifolds may be
obtained from the homotopy groups of the manifolds themselves by the
product rule:

(A X A2} = my( M) X TP A7) .
Spheres

Tn(Sm)} =10 for n<m
Tu(Sp) =2
Tnt1(Sp) = Z7 except ma(Sy) =
Tp2(Sn) = Z> except m3(S1) =0
Tn3(Sp) = Zog except ma(S1) = 0; ns(S2} = Z2; 76(S3) = Z1o;
(84} =Z X Zy;
(51} =0 except mi($1)=2Z

0; m3(S2)=2Z
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Lie Group Manifolds

Z G=U(1
n(GY=<4 Zy G=350(n)(n=3)

0  other simple compact connected Lie groups
m(Gy=0 G any compact connected Lie group

m(GY=2Z G any compact connected simple Lie group
Zyx Z> G =S50(4), Spin(4)

a(G)= ¢ Z» G = USp(2n), SU(2), SO(3), Spin(5), SO(5)
0 G=S8U(n) (n=3), SOn)(n=6), Gz, Fy, E,

Z(2n+2)g 1 €vEn

Zyons2y nodd mon(SU(n)Y) = Zny

Tans2(USp(2n)) = {

Bott Periodicity Theorems
Forn>=(k—1}/4,k = 2,

Z k=3,7(mod8)
m(USp(2n)y =< Zy k =4,5(mod 8)
0 k=0,1,2,6 (mod8)
Forn=k+2 k=2,
Z k=23,7(mod8)
m(SOm) ={ Z» k=01 (mod 8)
0 k=24,56(mod8)
Fornz=k-+1)/2,k =2,
Z kodd
m(SU) = { 0 keven

Coset Spaces
For any Lie group G and any Lie subgroup H < G,

m2(G/H) = ker{m (H) > m(G) } .

That is, m(G/H) is the subgroup of m(H) that maps into the trivial
element of 7;(G) when H is embedded in G. As a special case,

n2(G/H) = mi(H) for n1(G)=0.

Problems

1. What sort of term would need to be added to the action for Goldstone
boson fields in four-dimensional Fuclidean spacetime to make it
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possible to have topologically non-trivial field configurations at which
the action is stationary?

Consider a theory of scalar fields in six space dimensions in which
the chiral symmetry SU(2) x SU(2) of the Lagrangian is sponta-
neously broken to the SU(2) of isospin. Suppose that enough higher
derivative terms arc added to the Lagrangian so that skyrmions are
stabilized. What sort of conservation law do these skyrmions obey?
(Hint: Note that, as shown in Section 2.7, SU(2) is topologically the
same as S3.}

Show that all m,(.#) for n > 1 and arbitrary manifolds .# are
Abelian.

What is the coupling-constant dependence of the contribution of
instantons of unit winding number in an SU(4) gauge theory?

Derive a formula for the axion mass in the case in which m,, my,
and m;, are all small.

Consider the theory of a real scalar field ¢ with Lagrangian density
¥ == 10,00+ tm'e? — (gt — g9,

where m* and A are positive, and g is very small. Calculate the
exponential suppression factor exp(—B) in the rate of decay of the
metastable vacuum state in terms of m?, 4, and g.
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¢ meson, 271
accidental symmetries, 155
in quantum chromodynamics, 155
in standard model, 317-18, 326

adjoint representation, defined, 3

Adler-Bell-Jackiw anomaly, see anoma-
lies in symmetries

Adler zero, 175

Adler-Bardeen theorem, 380- 1

Adler-Weisberger sum rule, 191, 210-
11, 248

affine connection, 6-7

Altarelli-Parisi equations, 280-2

anomalies in symmetries, 42, 359416,
454, 459

anomalous dimensions, 133

anomaly constant D,g,, defined, 373

antibrackets, 45-7, 82; also see Batalin—
Vilkovisky formalism, anficanoni-
cal transformations

anti-BRST transformations, 41, 62

anticanonical transformations, 47, 93

antifields, 42-3, 92, 405

antighosts, see ghost and antighost fields

antighost translation invariance, 88

asymptotic freedom, 133-6, 153

Atiyah—Singer index theorem, 370. 464

axial coupling constant g4, 187, 203 -4

axial gauge, 5, 15-18, 35, 41

axions, 458-61

b quark, 154, 31315
background field gauge, 35-100
Bardeen formula, 379-80, 398, 414

484

Bardeen—Cooper—Schrieffer theory, 342-
52
barrier penetration, see tunneling
baryon number, 239, 436, 443, 454-5,
464
baryons, 225-6; also see nucleons
base point, defined, 430
Batalin—Vilkovisky formalism, 42-350,
91-5, 404 -7
beta-function
defined, 120-1
dependence on coupling definition,
138-9, 141
for electrodynamics, 126-7, 150
for minimum subtraction, 150
for multiple couplings, 140 2
for quantum chromodynamics, 152—
3
for scalar field theory, 121, 129
also see renormalization group
Bianchi identity (for gauge fields), 13,
58
Bjorken scaling, 273-5, 280, 283
Bogomol'nyi inequalities, 425, 440, 451
Borel transform, defined, 283
Bott periodicity theorems, 473
bounce, 421-2, 465-468
bound states, 238-9, 389-66
BPS monopoles, 441
BRST quantization, 35-6, 41, 91
BRST symmetry, 27-41, 46, 81, 398
404
bubble formation, 467-8

¢ quark, 152, 312-15



Subject Index

Cabibbo angle, 185, 312-13
Callan-Gross relation, 275, 280
Callan-Symanzik equation, 121; also
see renormalization group
canonical transformations (in Batalin-

Vilkovisky formalism), see anticanon-

ical transformations
Cartan decomposition, 215
Cartan -Maurer integral invariant, 445—
450
charge conjugation invariance, 155, 240
Chern-Pontryagin density, 365, 451
Chern -Simons form, 366, 402
chiral symmetry, 182-5, 151; also see
SU(2) x SU2), SU(3) x SU(3)
cluster decomposition principle, 167,
456
cohomology,
antibracket, 94-5, 4057
anti-BRST, 61
BRST, 32-3, 41, 399
de Rham, 238
collective parateters, 462-4, 467
color, defined, 152
compact Lie algebras, defined, 9
compact Lie groups, 10

consistency conditions, see Wess- Zumino

consistency conditions
constraints, 135
convexity of effective potential, 74
correlation length, 337-8
cosets, defined, 214
cosmic strings, 429
cosmology, 426, 443, 455, 461, 464
Coulomb gauge, 15
coupling constanis
clectroweak, 305-10, 325-6, 329-30,
464
for non-Abelian gauge fields, 11-12,
100, 108-9, 297
for scalar fields, 120
covariant derivatives
in gauge theories, 4
in general relativity, 6
in spontaneous symmetry breaking,
195, 219, 321

485

covering groups, 58, 443-4
CP non-conservation, 7-8, 315, 457-61
critical exponents, phenomena, 145-8
currents,
axial-vector, 185-90, 199
in gauge theories, 12-13
in superconductors, 323, 336
of anomalous symmetries, 365-7, 377-
8, 380
of broken symmetries, 169-70
of semileptonic weak interactions, 311-
13
used to define effective action, 63-5
vector (of isospin) 185
curvature, see Riemann—Christoffel cur-
vature tensor
custodial symmetry, 326
cut-off, 108, 112, 364-5

d quarks, see u and d quarks

Debye frequency, 351

deep inelastic scattering, 153, 252, 272-
83

A operator, defined, 49

A -function, defined, 170

Derrick’s theorem, 424, 428-9, 466

descent equations, 4024

De Witt notation, 37

De Witt-Faddeev—Popov method, see
Faddeev-Popov—De Witt method

differential forms 36, 38-9, 400

dimensional regularization, 108-9, 122,
148-9; also see minimum subtrac-
tion

Dirac quantization conditions, 441-2,
445

direct sums, defined, 9, 52

domain boundaries, 421, 425-6

effective action, see quantum effective
action
effective field theory, 145
general broken global symmetry, 211-
25, 425
pions and nucleons, 152211
superconductivity, 342 -52
also see Wess—Zumino—Witten terms



486

effective potential, 68-74, 127-30, 168,
347-50

eightfold way, see SU(3) x SU(3)

electric dipole moment of neutron, 458

electrodynamics, 1, 33-4, 108, 118-19,
125-7, 150, 157-8

electron, 305-11, 385

e~ e annihilation, 127, 154, 272,
273, 287, 316
also see deep-inelastic scattering, elec-

trodynamics

electroweak mixing angle 0, 307-8, 310—
11, 330

eleciroweak theory, 305-18, 325-7, 454,
464

electroweak—strong unification, 327-32

energy—momentum tensor, 13-14, 283,
391

n mecson, 225 -6, 229-31, 2445, 361

Euclidean path integrals, 240, 362, 368—
70, 451, 468—472

exceptional Lie groups and algebras,
11, 57, 384

extended technicolor, 327

exterior derivative, defined, 36, 400

external fields K,,, 80-1

F parameter for broken symmetry, de-
fined, 172

Faddeev-Popov-De Witt method, 2,
19 24, 43

Fermi coupling constant, 185, 316

Fermi surface, 343

ferromagnetism, 147

Feynman gauge, 23

field strength tensor F,,, defined, 5

fixed point, 133, 145-8

flavor, defined, 152

flux quantization, 335, 338, 340, 342,
429

free energy, 147

Fujikawa-1.ee-Sanda gauge, 3014

fundamental group, 430

gap tunction, 348-9
Gasser—Leutwyler parameters, 232-3
gauge fixing functional, 19, 43, 48, 301

Subject Index

gauge invariance, 2 7, 319, 332

Gell-Mann-Low funciion, see beta-function

general relativity, see gravitation

generalized Feynman (&) gauge, 23-4

generators (of symmetries), 14

Georgi-Glashow electroweak model, 305,
436, 442, 444

ghost and antighost fields, 24-7, 38,
302-4

ghost number, 25, 43, 88

ghosts of ghosts, 39

GIM mechanism, 312

Ginzburg-Landau theory, 337, 341

gluons, 154-6, 278

Goldberger-Treiman relation, 187, 190—
1, 204, 360

Goldstone bosons, 167-91, 215-25, 295
6, 408-16; also see mesons, pions,
skyrmions

grand unification, see electroweak—strong
unification

gravitation, 1, 6-8, 13-14, 36, 43, 91,
386

Gribov ambiguity, 15

Haar measure, 22

hadrons, see mesons, baryons

Higgs boson, 316

Higgs mechanism, defined, 295

Hodge operator, 40, 62

homotopic equivalence, defined, 430-1

homotopy groups, 235, 423-5, 427-36,
444-17, 472-3

Hubbard-Stratonovich transformation,
345

hypercharge y, defined, 306

infrared divergences, 113 14, 154

infrared-safe, defined, 114

instantons, 286, 421, 4267, 436, 450
64

irreducible, defined, 512

irrelevant interactions, 1435, 148, 344

isotopic spin, 3, 163, 182-3, 243

J /yp particle, 313
Jacobi identity, 3, 39, 45, 46



Subject Index

jets, 114, 154-5
Josephson junction, 335-6

K mesons, 228-31, 236, 312-13
Kobayashi-Maskawa matrix, 313
Kronecker index, 438

KSFR formula, 271

/. matrices, defined, 226

A parameter in quantum chromody-
namics, 155-7

Landau (or Lorentz) gange, 23, 301

Landau ghost, 132, 136

lattice approximation, 22, 37-8, 112,
136-9, 238, 239

Legendre transformation, 63, 81

lepton number, 306, 317-18, 464

Lie algebras, see compact Lie algebras,
semisimple Lie algebras, simple Lie
algebras, U(1) Lie algebras

Lie groups, see compact Lie groups,
exceptional Lie groups, orthogonal
groups, symplectic groups, unitary
groups

magnetic monopoles, 225, 421, 429,
43545
Mandelstam variables, defined, 114
marginal interactions, 145
master equation, 43, 45, 82; also see
quantum master equation
measure
for integration over fermion fields,
361-70, 454
for integration over gauge fields, 18
Meissner effect, 334
mesons, 225- 34, 236, 243-6, 271, also
see pions
metric
for gauge groups, 7-12, 50-3
for Goldstone boson fields, 423
for Lie groups, 448
minimal variables, 44
minimum subtraction, 122, 146-51, 157
modified minimum subtraction, see min-
imum subtraction
Mott cross section, defined, 273

487

muon, 309-11, 389

Nakanishi -Lautrup field, 28
Nambu- Goldstone bosons, see Gold-
stone bosons
neuiral currents, 311 13, 315, 327
neutrinos, 305-11, 385
y—e and v—e reactions, 272, 311
masses and oscillations, 317-18
neutron, see electric dipole moment of
neutron, nucleon
non-Abelian gauge theories, 1-58, 86—
91, 152-7, 426-30, 436; also see
electroweak theory, quantum chro-
modynamics, electroweak-strong
unification
non-linear realizations, 195, 215-24
nucleon
as skyrmion, 436
axial form factors, 1867, 190
interaction with pions, 202-9
masses 209, 233-4

@ meson, 232

one-particle-irreducible graphs, 65-7

open gaunge algebras, 42, 44, 48-50

operator product expansions, 252-83,
287-92

order parameters, 2245, 336-7, 429

orthogonal groups, 11, 55-8, 384, 473

140 decay, 185, 312

p-form fields, see differential forms

parity conservation, 155, 240, 315, 416,
457-61

partial conservation of axial current
(PCAC), 191

partition function, 469, 471

parton model, 274-5

Peccei-Quinn symmetry, 458-61

penetration depth, 334, 337, 352

persistent currents, 335-6

persistent mass condition, 238-9, 395-
6

phase transitions, 148

¢ meson, 236
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pions
as Goldstone bosons, 182-211
coupling to nucleon G, 187
7t decay, 185-6, 189
n® decay, 35961, 368
mass, 189, 201
scattering on nucleons, 206-9
scattering on pions, 198-202, 249
tadpoles, 458
power counting, 197-8, 200, 205-6,
203-4, 323, 344
proton decay, 318,
pseudo-Goldstone bosons, 177-82, 324
pseudo-rea] representations, defined, 384
pure gauge fields, 6, 334, 412, 427, 428,
449, 455

quantum chromodynamics, 152-7, 181,
192, 225, 238, 239, 2878, 421, 453;
also see quarks, gluons, asymptotic
freedom, deep inelastic scattering

quantum effective action, 63-8, 75-7,
164, 167, 346-7, 352

quantum electrodynamics, see electro-
dynamics

quantum master equation, 49, 92, 407

quarks, 152-7, 194, 225-7, 275, 31215

masses, 231-2, 243, 457-61
also see anomalies

real and pseudoreal representations, 384
reducible gauge algebras, 38-9
relevant interactions, 145, 148
renormalization
at sliding scale, 111-12, 119-30
in general theories, 91-5, 141-2
in ‘renormalizable’ gauge theories, 82
91
of electron-electron potential, 349
of fields, 99-100, 118-19
of gauge coupling constants, 100,
108-9, 119
of general operators, 115-18, 123,
255, 260, 291
of masses, 99, 1434
of pion self-interaction coupling con-
stants, 199

Subject Index

of scalar coupling constants, 114-15

renormalization group, 111-58, 263—
5, 329-32, 349--50, 453; also see
anomalous dimensions, asymptotic
freedom, asymptotic safety, beta
function, critical phenomena, fixed
point, Landau ghost

renormalons, 2838

p mesons, 232, 271

Riemann—Christoffel curvature tensor,
6, 386

Riemann-Lebesgue theorem, 166

right cosets, defined, 214

runmng coupling constant, see cou-
pling constants, beta-function

s quark, 152, 226, 244, 312-15
Schwinger terms, 4034
second class currents, 186
o model, 193-6
g term, 209
simple Lie algebras, defined, 9
skyrmions, 421, 423-6
Slavnov operator, defined, 39
Slavnov—Taylor identities, 76-7, 81, 407
S0(10) (or Spin(10)) symmetry, 328,
386
spectral function sum rules, 266-72
sphalerons, 476
Spin(n) group, 436, 444
spontaneous symmetry breaking 63
approximate symmetries, 177-82
dynamical symmetry breaking, 318-
27
global symmetries, 163-246, 265-6
in superconductivity, 332
local symmeiries, 2, 295-352
standard model, 384-88; also see elec-
troweak theory, quantum chromo-
dynamics
standard SU(2) subgroup, 449
Stora-Zumino descent equations, see
descent equations
strangeness, 155, 239
string theories, 36, 37, 38, 39, 41



Subject Index

structure constants, 2-3, 8-11, 39, 50—
3, 89

structure functions, 272-80

subalgebras, defined, 9

superconductivity, 225, 332-52

supergravity, 42

supersymmetry, 331

surface tension, 426, 468

SU(2)x U(1) symmetry, see electroweak
theory

SU(2) x SU(2) symmetry, 182-5, 191,
271, 360-1

SU(3) and SU(3) x SU(3) symmetry,
225-38, 243, 273

SU(4) x SU(4) symmetry, 328

SU(5) symmetry, 328

symmetric space, defined, 215

symplectic groups, 9, 56-8, 384, 473

t quark, 152, 154, 313-16

7 lepton, 272, 313

technicolor, 239, 326 -7

temperature effects, 146-7, 455, 469,
471

temporal gauge, 427-8, 437, 454

theta angle, 455-61

thin wall approximation, 468

threshold corrections, 358

time reversal invariance, 240, 315

topology, 422-30; also see homotopy,
cohomology

totally reducible, defined, 52

trapping, 2, 153-5

tree graphs, defined, 66

trivial pairs, 44

triviality, 137-8

tunneling, 165, 455, 464, 468

twist, 277

489

wand d quarks, 152, 182, 226, 244, 275,
312-15, 367, 385

U(1) Lic algebras, defined, 9

U(1) problem, 243-6, 454

unbroken symmetries, 23843

unitarity gauge, 295-301, 324, 352-3,
473

unitary groups and algebras, 11, 54-5,
58, 384, 433, 473

universality classes, 148

vacuum alignment, 179, 181, 188-9
vacuum decay, 126-30, 421-2, 464-8
vacuum degeneracy, 1637

vortex lines, 225, 338-42, 421, 429

W particles, 307-11, 316

weak interactions, 185

Wess—Zumino consistency conditions,
396-407, 409, 411

Wess—Zumino—Witten terms, 234-8, 413
15

Wilson-Fisher expansion, 147-8

winding number, 435-6, 449, 452-3,
455-7

YangMills theory, see non-Abelian
gauge theories
Yukawa interactions, 308-10

Z and Z, groups, defined, 433, 472

Z" particle, 127, 157, 307-11, 316

zero mass singularities, see infrared di-
vergences

zero modes, 426. 462, 464, 467, 476

Zinn-Justin equation, 42, 80-2, 93, 405-6
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