The Foundations for a
New Kind of Science

An QOutline of Basic ldeas

Three centuries ago science was transformed by the dramatic new idea
that rules based on mathematical equations could be used w describe
the natural world. My purpose in this book is to initiate another such
transformation, and to introduce a new kind of science that is based on
the much more general types of rules that can be embodied in simple
COMPUtEr programs,

It has taken me the better part of twenty years to build the
intellectual structure that is needed, but I have been amazed by its
resules, For what T have found is that with the new kind of science I
have developed it suddenly becomes possible to make progress on a
remarkable range of fundamental issues that have never successfully
been addressed by any of the existing sciences before.

If theoretical science is to be possible at all, then at some level
the systems it studies must follow definite rules. Yet in the past
throughout the exact sciences it has usually been assumed that these
rules must be ones based on traditional mathematics. But the crucial
realization that led me wo develop the new kind of science in this book
is that there is in fact no reason to think that systems like those we see
in nature should follow only such traditional mathematical rules.

Earlier in history it might have been difficult to imagine what

more general types of rules could be like. Bug today we are surrounded
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by computers whose programs in effect implement a huge variety of
rules. The programs we use in practice are mostly based on extremely
complicated rules specifically designed to perform particular tasks. But
a program can in principle follow essentially any definite set of rules.
And at the core of the new kind of science that I describe in this book
are discoveries 1 have made about programs with some of the very
simplest rules that are possible.

One might have thought—as at first I certainly did—that it the
rules for a program were simple then this would mean that its behavior
must also be correspondingly simple, For our evervday experience in
building things tends to give us the intuition that creating complexity is
somehow  difficult, and requires rules or plans that are themselves
complex. But the pivotal discovery that I made some eighteen years ago is
that in the world of programs such intuition is not even close to correct,

I did what is in a sense one of the most elementary imaginable
computer experiments: I took a sequence of simple programs and then
systematically ran them to see how they behaved. And what T found—
to my great surprise—was that despite the simplicity of their rules, the
behavior of the programs was often far from simple. Indeed, even some
of the very simplest programs that T looked at had behavior that was as
complex as anything T had ever seen.

It took me more than a decade to come to terms with this result,
and to realize just how fundamental and far-reaching its consequences
are. In retrospect there is no reason the result could not have been found
centuries ago, but increasingly [ have come to view it as one of the more
important single discoveries in the whole history of theoretical science.
For in addition to opening up vast new domains of exploration, it implies
a radical rethinking of how processes in nature and elsewhere work.

Perhaps immediately most dramatic is that it yields a resolution
to what has long been considered the single greatest mystery of the
natural world: what secret it is that allows nature seemingly so
effortlessly to produce so much that appears to us so complex,

It could have been, atter all, that in the natural world we would
maostly see forms like squares and circles that we consider simple. But
in fact one of the most striking fearores of the natural world is that



across a vast range of physical, biological and other systems we are
continually confronted with what seems to be immense complexity.
And indeed throughout most of history it has been taken almaost for
granted that such complexity—Dbeing so vastly greater than in the works
of humans—could only be the work of a supernatural being.

But my discovery that many very simple programs produce great
complexity immediately suggests a rather different explanation. For all
it takes is that systems in nature operate like tvpical programs and then
it follows that their behavior will often be complex. And the reason that
such complexity is not usually seen in human artifacts is just that in
building these we tend in effect to use programs that are specially
chosen to give only behavior simple enough for us to be able to see that
it will achieve the purposes we want.

One might have thought that with all their successes over the
past few centuries the existing sciences would long ago have managed
to address the issue of complexity, But in fact they have not. And indeed
for the most part they have specifically defined their scope in order to
avoid direct contact with it. For while their basic idea of describing
hehavior in terms of mathematical equations works well in cases like
planetary motion where the behavior is fairly simple, it almost
inevitably fails whenever the behavior is more complex. And more or
less the same is troe of descriptions based on ideas like natural selection
in biology. But by thinking in terms of programs the new kind of
science that I develop in this book is for the first time able to make
meaningful statements about even immensely complex behavior,

In the existing sciences much of the emphasis over the past
century or so has been on breaking systems down to find their
underlying parts, then trving to analyze these parts in as much decail as
possible. And particularly in physics this approach has been sufficiently
successful that the basic components of everyday systems are by now
completely known. But just how these components act together to
produce even some of the most obvious features of the overall behavior
we see has in the past remained an almost complete mystery. Within
the framework of the new kind of science that I develop in this book,
howewver, it is finally possible to address such a question.
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From the tradition of the existing sciences one might expect that
its answer would depend on all sorts of details, and be quite different for
ditferent types of physical, biological and other systems. But in the
world of simple programs I have discovered that the same basic forms of
behavior occur over and over again almost independent of underlying
details. And what this suggests is that there are gquite universal
principles that determine overall behavior and that can be expected to
apply not only to simple programs but also to systems throughout the
natural world and elsewhere,

In the existing sciences whenever a phenomenon is encountered
that seems complex it is taken almost for granted that the phenomenon
must be the result of some underlying mechanism that is itself
complex. But my discovery that simple programs can produce great
complexity makes it clear that this is not in fact correct. And indeed in
the later parts of this book T will show that even remarkably simple
programs seem to capture the essential mechanisms responsible for all
sorts of important phenomena that in the past have always seemed far
too complex to allow any simple explanation.

It is not uncommon in the history of science that new ways of
thinking are what finally allow longstanding issues to be addressed. But
I have been amazed at just how many issues central to the foundations
of the existing sciences T have been able to address by using the idea of
thinking in terms of simple programs. For more than a century, for
example, there has been confusion about how thermodynamic behavior
arises in physics. Yet from my discoveries ahout simple programs I have
developed a quite straightforward explanation. And in biology, my
discoveries provide for the first time an explicit way to understand just
how it is that so many organisms exhibit such great complexity, Indeed,
I even have increasing evidence that thinking in terms of simple
programs will make it possible to construct a single truly fundamental
theory of physics, from which space, time, quantum mechanics and all
the other known features of our universe will emerge,

When mathematics was introduced into science it provided for
the first time an abstract framework in which scientific conclusions
could be drawn without direct reference to physical reality. Yet despite



all its development over the past few thousand vears mathematics itself
has continued to concentrate only on rather specific types of abstract
systems—most often ones somehow derived from  arithmetic or
geometry. But the new kind of science that T describe in this book
introduces what are in a sense much more general abstract systems,
hased on rules of essentially any type whatsoever.

One might have thought that such systems would be too diverse
tor meaningful general statements to be made about them. But the
crucial idea that has allowed me to build a vunified framework for the
new kind of science that T describe in this book is that just as the rules
for any system can be viewed as corresponding to a program, so also its
hehavior can be viewed as corresponding to a computation.

Traditional intuition might suggest that to do more sophisticated
computations would always require more sophisticated underlying
rules. But what launched the whole computer revolution is the
remarkable fact that universal systems with fixed underlying rules can
be built that can in effect perform any possible computation.

The threshold for such universality has however generally been
assumed to be high, and to be reached only by elaborate and special
systems like typical electronic computers. But one of the surprising
discoveries in this book is that in fact there are systems whose rules are
simple enough to describe in just one sentence that are nevertheless
universal., And this immediately suggests that the phenomenon of
universality is vastly more common and important—in both abstract
systems and nature—than has ever been imagined before.

But on the basis of many discoveries I have been led to a still
maore sweeping conclusion, summarized in what I call the Principle of
Computational Equivalence: that whenever one sees behavior that is
not obvicusly simple—in essentially any system—it can be thought of
as corresponding to a computation of equivalent sophistication. And
this one very basic principle has a quite unprecedented array of
implications for science and scientific thinking.

For a start, it immediately gives a fundamental explanation for
why simple programs can show behavior that seems to us complex. For
like other processes our own processes of perception and analvysis can be
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thought of as computations. But though we might have imagined that
such computations would always be vastly more sophisticated than
those pertormed by simple programs, the Principle of Computational
Equivalence implies that they are not. And it is this equivalence
between us as observers and the systems that we observe thar makes
the behavior of such systems seem to us complex.

One can always in principle find out how a particular system will
behave just by running an experiment and watching what happens. But
the great historical successes of theoretical science have typically
revolved around finding mathematical formulas that instead directly
allow one to predict the outcome. Yet in effect this relies on being able
to shortcut the computational work that the system itself performs.

And the Principle of Computational Equivalence now implies
that this will normally be possible only tor rather special systems with
simple behavior, For other svstems will tend to perform computations
that are just as sophisticated as those we can do, even with all our
mathematics and computers. And this means that such systems are
computationally irreducible—so that in effect the only way to find their
behavior is to trace each of their steps, spending about as much
computational effort as the systems themselves,

S0 this implies that there is in a sense a fundamental limitation
to theoretical science. But it also shows that there is something
irreducible that can be achieved by the passage of time. And it leads to
an explanation of how we as humans—even though we may follow
definite underlying rules—can still in a meaningful way show free will.

Omne feature of many of the most important advances in science
throughout history is that they show new ways in which we as humans
are not special. And at some level the Principle of Computational
Equivalence does this as well. For it implies that when it comes to
computation—or intelligence—we are in the end no more sophisticated
than all sorts of simple programs, and all sorts of systems in nature.

But from the Principle of Computational Equivalence there also
emerges a new kind of unity: for across a vast range of systems, from



simple programs to brains to our whole universe, the principle implies
that there is a basic equivalence that makes the same fundamental
phenomena occur, and allows the same hasic scientific ideas and
methods to be used, And it is this that is ultimately responsible for the
great power of the new kind of science that I describe in this book.

Relations to Other Areas

Mathematics. It is usually assumed thar mathematics concerns itself
with the study of arbitrarily general abstract systems. But this book
shows that there are actually a vast range of abstract systems based on
simple programs that traditional mathematics has never considered.
And because these systems are in many ways simpler in construction
than most traditional systems in mathematces it is possible with
appropriate methods in effect to go further in investigating them.

Some of what one finds are then just unprecedentedly clear
examples of phenomena already known in modern mathematics. But
one also finds some dramatic new phenomena, Most immediately
obvious is a very high level of complexity in the behavior of many
systems whose underlying rules are much simpler than those of most
systems in standard mathematics textbooks.

And one of the consequences of this complexity is that it leads to
fundamental limitations on the idea of proof that has been central to
traditional mathematics. Already in the 19305 Godels Theorem gave
some indications of such limitations. But in the past they have always
seemed irrelevant to most of mathematics as it is actually practiced.

Yet what the discoveries in this book show is that this is largely
just a reflection of how small the scope is of what is now considered
mathematics. And indeed the core of this book can be viewed as
introducing a major generalization of mathematics—with new ideas
and methods, and vast new areas to be explored.

The framework I develop in this book also shows that by viewing
the process of doing mathematics in fundamentally computational
terms it becomes possible to address important issues about the

foundations even of existing mathematics.
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Physics. The traditional mathematical approach to science has
historically had its great success in physics—and by now it has become
almost universally assumed that any serious physical theory must be
based on mathematical equations, Yet with this approach there are still
many cominon physical phenomena about which physics has had
remarkably little to say. But with the approach of thinking in terms of
simple programs that I develop in this book it finally seems possible to
make some dramatic progress. And indeed in the course of the book we
will see that some extremely simple programs seem able to capture the
essential mechanisms for a great many physical phenomena that have
previously seemed completely mysterious,

Existing methods in theoretical physics tend to revolve around
ideas of continuous numbers and calculus—or sometimes probahility.
Yet most of the systems in this book involve just simple discrete
elements with definite rules. And in many ways it is the greater
simplicity of this underlying structure that ultimately makes it possible
to identify so many fundamentally new phenomena.

Ordinary models for physical systems are idealizations that
capture some features and ignore others. And in the past what was most
coOMmmon was to capture certain simple numerical relationships—that
could for example be represented by smooth curves, But with the new
kinds of models based on simple programs that T explore in this book it
becomes possible to capture all sorts of much more complex features
that can only really be seen in explicit images of behavior.

In the future of physics the greatest triumph would undoubtedly
be to find a truly fundamental theory for our whole universe. Yet
despite occasional optimism, traditional approaches do not make this
seem close at hand. But with the methods and intuition that T develop
in this book there is I believe finally a serious possibility that such a

theory can actually be found.

Biology. Vast amounts are now known about the details of biological
organisms, but very little in the way of general theory has ever emerged.

Classical areas of biology tend to treat evolution by natural selection as



a foundation—leading to the notion that general observations about
living systems should normally be analyzed on the basis of evolutionary
history rather than abstract theories, And part of the reason for this is
that traditional mathematical models have never seemed to come even
close to capturing the kind of complexity we see in biology, But the
discoveries in this book show that simple programs can produce a high
level of complexity. And in fact it tuwrns out that such programs can
reproduce many features of biological organisms—and for example
seem to capture some of the essential mechanisms through which
genetic programs manage to generate the actval biological forms we see,
S0 this means that it becomes possible to make a wide range of new
maodels for biological systems—and potentially to see how o emulate
the essence of their operation, say for medical purposes. And insofar as
there are general principles for simple programs, these principles should
also apply to bhiological organisms—making it possible to imagine
constructing new kinds of general abstract theories in biology,

Social Sclences. From economics to psychology there has been a
widespread if controversial assumption—no doubt from the success of
the physical sciences—that solid theories must always be formulated in
terms of numbers, equations and traditional mathematics. But I suspect
that one will often have a much better chance of capturing fundamental
mechanisms for phenomena in the social sciences by using instead the
new kind of science that T develop in this book based on simple
programs, No doubt there will quite quickly be all sorts of claims about
applications of my ideas to the social sciences. And indeed the new
intuition that emerges from this book may well almost immediately
explain phenomena that have in the past seemed guite mysterious. But
the very results of the book show that there will inevitably be
fundamental limits to the application of scientific methods. There will
be new questions formulated, but it will take time before it becomes
clear when general theories are possible, and when one must instead

inevitably rely on the details of judgement for specific cases.
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Computer Science. Throughout its brief history computer science has
focused almost exclusively on studying specific computational systems
set up to perform particular tasks. But one of the core ideas of this book
is to consider the more general scientific question of what arbitrary
computational systems do, And much of what T have found is vastly
different from what one might expect on the basis of existing computer
science. For the systems traditionally studied in computer science tend
to be fairly complicated in their construction—yet vield fairly simple
behavior that recognizably fulfills some particular purpose. But in this
book what I show is that even systems with extremely simple
construction can yield behavior of immense complexity., And by
thinking about this in computational terms one develops a new
intuition ahout the very nature of computation.

One consequence is a dramatic broadening of the domain to
which computational ideas can be applied—in particular to include all
sorts of fundamental questions about nature and about mathematics.
Another consequence is a new perspective on existing questions in
computer science—particularly ones related to what ultimate resources

are needed to perform general types of computational tasks.

Philosophy. At any period in history there are issues about the universe
and our role in it that seem accessible only to the general arguments of
philosophy. But often progress in science eventually provides a more
definite context. And I believe that the new kind of science in this book
will do this for a variety of issues that have been considered
fundamental even since antiquity. Among them are gquestions about
ultimate limits to knowledge, free will, the unigueness of the human
condition and the inevitability of mathematics, Much has been said
over the course of philosophical history about each of these. Yet
inevitably it has been informed only by current intuition about how
things are supposed to work, But my discoveries in this book lead to
radically new intuition. And with this intoition it turns oot that one
can for the first time begin to see resolutions to many longstanding
issucs—typically along rather different lines from those expected on the

basis of traditional general arguments in philosophy.



Art. It seems so easy for nature to produce forms of great beauty. Yet in
the past art has mostly just had to be content to imitate such forms. But
now, with the discovery that simple programs can capture the essential
mechanisms for all sorts of complex behavior in nature, one can
imagine just sampling such programs to explore generalizations of the
forms we see in nature. Traditional scientific intnition—and early
computer art—might lead one to assume that simple programs would
always produce pictures too simple and rigid to be of artistic interest,
But looking through this book it becomes clear that even a program that
may have extremely simple rules will often be able to generate pictures
that have striking aesthetic gualities—sometimes reminiscent of

nature, but often unlike anything ever seen before.

Technology. Despite all its success, there is still much that goes on in
nature that seems more complex and sophisticated than anything
technology has ever been able to produce. But what the discoveries in
thiz book now show is that by using the types of rules embodied in
simple programs one can capture many of the essential mechanisms of
nature, And from this it becomes possible to imagine a whole new kind
of technology that in effect achieves the same sophistication as nature,
Experience with traditional engineering has led to the general
assumption that to perform a sophisticated task requires constructing a
system whose basic rules are somehow correspondingly complicated.
But the discoveries in this book show that this is not the case, and that
in fact extremely simple underlying rules—that might for example
potentially be implemented directly at the level of atoms—are often all
that is needed. My main focus in this book is on martters of basic
science. But I have little doubt that within a matter of a few decades
what I have done will have led to some dramatic changes in the
foundations of technology—and in our basic ability to take what the
universe provides and apply it for our own human purposes.

CHAPTER
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Some Past Initiatives

My goals in this book are sufficiently broad and fundamental that there
have inevitably been previous attempts to achieve at least some of
them. But without the ideas and methods of this book there have been
basic issues that have eventually ended up presenting almost
insuperable barriers to every major approach that has been tried.

Artificial Intelligence. When electronic computers were first invented,
it was widely believed that it would not be long before they would be
capable of human-like thinking, And in the 19605 the field of artificial
intelligence grew up with the goal of understanding processes of human
thinking and implementing them on computers. But doing this turned
out to be much more difficult than expected, and after some spin-offs,
little fundamental progress was made. At some level, however, the
basic problem has always been to understand how the seemingly simple
components in a brain can lead to all the complexities of thinking, But
now finally with the framework developed in this book one potentially
has a meaningful foundaton for doing this. And indeed building on
hoth theoretical and practical ideas in the book I suspect that dramatic
progress will eventually be possible in creating technological systems
that are capable of human-like thinking,

Avrtificial Life. Ever since machines have existed, people have wondered
to what extent they might be able to imitate living systems. Most
active from the mid-1980s o the mid-1990s, the field of artificial life
concerned itself mainly with showing that computer programs could be
made to emulate various features of biological systems. But normally it
was assumed that the necessary programs would have to be quite
complex. What the discoveries in this book show, however, is that in
fact very simple programs can be sufficient. And such programs make
the fundamental mechanisms for behavior clearer—and probably come
much closer to what is actually happening in real biological systems.

Catastrophe Theory. Traditional mathematical models are normally
based on quantities that vary continuously, Yet in nature discrete

changes are often seen. Popular in the 1970s, catastrophe theory was



concerned with showing that even in traditional mathematical models,
certain simple discrete changes could still occur, In this book T do not
start from any assumption of continuity—and the types of behavior I
study tend to be vastly more complex than those in catastrophe theory.

Chaos Theory. The field of chaos theory is based on the observation
that certain mathematical systems behave in a way that depends
arbitrarily sensitively on the details of their initial conditions, First
noticed at the end of the 1800s, this came into prominence after
computer simulations in the 19605 and 1970s. Its main significance is
that it implies that if any detail of the initial conditions is uncertain,
then it will eventually become impossible to predict the behavior of the
system. But despite some claims to the contrary in popular accounts,
this fact alone does not imply that the behavior will necessarily be
complex. Indeed, all that it shows is that if there is complexity in the
details of the initial conditions, then this complexity will eventually
appear in the large-scale behavior of the system. But if the initial
conditions are simple, then there is no reason for the behavior not to be
correspondingly simple. What T show in this book, however, is that
even when their initial conditions are very simple there are many
systems that still produce highly complex behavior. And I argue that it
is this phenomenon that is for example responsible for most of the

obvious complexity we see in nature.

Complexity Theory. My discoveries in the early 1980s led me to the
idea that complexity could be studied as a fundamental independent
phenomenon. And gradually this became quite popular, But most of the
scientific work that was done ended up being based only on my earliest
discoveries, and being very much within the framework of one or
another of the existing sciences—with the result that it managed to
make very little progress on any general and fundamental issues. One
feature of the new kind of science that I describe in this book is that it
tinally makes possible the development of a basic understanding of the
general phenomenon of complexity, and its origins.
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Computational Complexity Theory. Developed mostly in the 1970s,
computational complexity theory attempts to characterize how
ditficult certain computational tasks are to perform, Its concrete results
have tended to be based on fairly specific programs with complicated
structuere vet rather simple behavior, The new kind of science in this
book, however, explores much more general classes of programs—and
in doing so begins to shed new light on various longstanding questions

in computational complexity theory,

Cybernetics. In the 1940s it was thought that it might be possible to
understand binlogical systems on the basis of analogies with electrical
machines, But since essentially the only methods of analysis available
were ones from traditional mathematics, very little of the complex
behavior of typical biological systems was successfully caprured.

Dynamical Systems Theory. A branch of mathematics that began
roughly a century ago, the field of dynamical systems theory has been
concerned with studying systems that evolve in time according to
certain kinds of mathematical equations—and in using traditional
geometrical and other mathematical methods to characterize the
possible forms of behavior that such systems can produce. But what I
argue in this book is that in fact the behavior of many systems is
fundamentally too complex to be usefully captured in any such way.,

Evolution Theory. The Darwinian theory of evolution by natural
selection is often assumed to explain the complexity we see in
biclogical systems—and in fact in recent years the theory has also
increasingly been applied outside of biology. But it has never been at all
clear just why this theory should imply that complexity 15 generated.
And indeed I will argue in this book that in many respects it tends to
oppose complexity. But the discoveries in the book suggest a new and
quite different mechanism that I believe is in fact responsible for most
of the examples of great complexity that we see in biology.

Experimental Mathematics. The idea of exploring mathematical
systems by looking at data from calculations has a long history, and has
gradually become more widespread with the advent of computers and



Mathematica. But almost without exception, it has in the past only been
applied to systems and questions that have already been investigated by
other mathematical means—and that lie very much within the normal
tradition of mathematics, My approach in this book, however, is to use
computer experiments as a basic way to explore much more general
systems—that have never arisen in traditional mathematics, and that

are usually far from being accessible by existing mathematical means,

Fractal Geometry. Until recently, the only kinds of shapes widely
discussed in science and mathematics were ones that are regular or
smooth, But starting in the late 1970s, the field of fractal geometry
emphasized the importance of nested shapes that contain arbitrarily
intricare pieces, and argued that such shapes are commaon in nature, In
this book we will encounter a fair number of systems that produce such
nested shapes, But we will also find many systems that produce shapes

which are much more complex, and have no nested structure.

General Systems Theory, Popular especially in the 1960s, general
systems theory was concerned mainly with studying large networks of
elements—often idealizing human organizations. But a complete lack
of anything like the kinds of methods T use in this book made it almost
impossible for any definite conclusions to emerge.

Manotechnology. Growing rapidly since the early 1990s, the goal of
nanotechnology is to implement technological systems on atomic
scales, But so far nanotechnology has mostly been concerned with
shrinking quite familiar mechanical and other devices. Yet what the
discoveries in this book now show is that there are all sorts of svstems
that have much simpler structures, but that can nevertheless perform
very sophisticated tasks. And some of these systems seem in many

ways much more suitable for direct implementation on an atomic scale.

MNonlinear Dynamics. Mathematical equations that have the property
of linearity are usually fairly easy to solve, and so have been used
extensively in pure and applied science. The field of nonlinear
dynamics is concerned with analvzing more complicated equations. Its
greatest success has been with so-called soliton equations for which
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careful manipulation leads to a property similar to linearity. But the
kinds of systems that I discuss in this book typically show much more
complex behavior, and have no such simplifving properties.

Scientific Computing. The field of scientific computing has usually
been concerned with taking traditional mathematical models—maost
often for various kinds of fluids and solids—and trying to implement
them on computers using numerical approximation schemes. Typically
it has been difficult to disentangle anything but fairly simple
phenomena from effects associated with the approximations used. The
kinds of models that I introduce in this book involve no approximations
when implemented on computers, and thus readily allow one to
recognize much more complex phenomena,

Self-Organization. In nature it is quite commaon to see systems that start
disordered and featureless, but then spontaneously organize themselves
to produce definite structures. The loosely knit field of self-organization
has been concerned with understanding this phenomenon, But for the
most part it has used traditional mathematical methods, and as a result
has only been able to investigate the formation of fairly simple structures.
With the ideas in this book, however, it becomes possible to understand
how vastly more complex structures can be formed.

Statistical Mechanics. Since its development about a century ago, the
branch of physics known as statistical mechanics has mostly concerned
itself with understanding the average behavior of systems that consist
of large numbers of gas molecules or other components. In any specific
instance, such systems often behave in a complex way. But by looking
at averages over many instances, statistical mechanies has usuvally
managed to avoid such complexity. To make contact with real
situations, however, it has often had to use the so-called Second Law of
Thermodynamics, or Principle of Entropy Increase. But for more than a
century there have been nagging difficulties in understanding the basis
for this principle. With the ideas in this book, howewver, I believe that

there is now a framework in which these can finally be resolved.



The Personal Story of the Science in This Book

I can trace the beginning of my serious interest in the kinds of scientific
issues discussed in this book rather accurately to the summer of 1972,
when I was twelve vears old. T had bought a copy of the physics
textbook on the right, and had become very curious about the process of
randomization illustrated on its cover. But being far from convinced by
the mathematical explanation given in the book, I decided to try to
simulate the process for myself on a computer.

The computer to which I had access at that time was by modern
standards a very primitive one, And as a result, T had no choice but to
study a very simplified version of the process in the book. T suspected
from the start that the system I constructed might be too simple two
show any of the phenomena I wanted, And after much programming
effort I managed to convince myself that these suspicions were correct.

Yet as it turns out, what I looked at was a particular case of one of
the main kinds of systems—cellular automata—that T consider in this
book, And had it not been for a largely technical point that arose from
my desire to make my simulations as physically realistic as possible, it
is quite possible that by 1974 T would already have discovered some of
the principal phenomena that I now describe in this book.

As it was, however, I decided at that time to devote my energies
to what then seemed to be the most fundamental area of science:
theoretical particle physics. And over the next several years I did indeed
manage to make significant progress in a few areas of particle physics
and cosmology, But after a while T began to suspect that many of the
most important and fundamental questions that I was encountering
were quite independent of the abstruse details of these fields.

And in fact I realized that there were many related questions even
about common everyday phenomena that were still completely
unanswered, What for example is the fundamental origin of the
complicated patterns that one sees in terbulent fluids? How are the
intricate patterns of snowflakes produced? What is the basic mechanism

that allows plants and animals to grow in such complex ways!?
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To my surprise, very little seemed to have been done on these
kinds of questions. At first I thought it might be possible to make
progress just by applving some of the sophisticated mathematical
techniques that I had used in theoretical physics. But it soon became
clear that for the phenomena I was studying, traditional mathematical
results would be very difficult, if not impossible, to find.

S0 what could I do? It so happened that as an outgrowth of my
work in physics T had in 1981 just tinished developing a large software
system that was in some respects a forerunner to parts of Mathemalica.
And at least at an intellectual level the most difficult pare of the project
had been designing the symbolic language on which the system was
hased. But in the development of this language [ had seen rather clearly
how just a few primitive operations that I had come up with could end up
successfully covering a vast range of sophisticated computational tasks,

S0 1 thought that perhaps I could do something similar in natural
science: that there might be some appropriate primitives that T could
find that would successfully capture a vast range of natural phenomena.
My ideas were not so clearly formed at the time, but I believe I
implicitly imagined that the way this would work is that such
primitives could be used to build up computer programs that would
simulate the various natural systems in which I was interested.

There were in many cases well-established mathematical models
for the individual components of such systems. But two practical issues
stood in the way of using these as a basis for simulations, First, the
models were usually quite complicated, so that with realistic computer
resources it was very difficult to include enough components for
interesting phenomena to occur, And second, even if one did see such
phenomena, it was almost impossible to tell whether in fact they were
genuine consequences of the underlying models or were just the result
of approximations made in implementing the models on a computer.

But what I realized was that at least for many of the phenomena I
wanted to study, it was not crucial to use the most accurate possible
maodels for individual components. For among other things there was
evidence from nature that in many cases the details of the components
did not matter much—so that for example the same complex patterns
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of flow occur in both air and water. And with this in mind, what I = =
decided was that rather than starting from detailed realistic models, 1
would instead start from models that were somehow as simple as | R
possible—and were easy to set up as programs on a computer. P 5

At the outset, I did not know how this would work, and how
complicated the programs I would need would have to be. And indeed
when I lonked at various simple programs they always seemed to vield
hehavior vastly simpler than any of the systems I wanted to study, ] LA e

But in the summer of 1981 T did what I considered to be a fairly
straightforward computer experiment to see how all programs of a
particular type behaved, T had not really expected too much from this

EEEREEFEEE Sttt

experiment. But in fact its results were so surprising and dramatic that
as I gradually came to understand them, they forced me to change my
. . ) . A raprodustion of tha computar
whaole view of science, and in the end to develop the whole intellectual printout that first gave me a
structure of the new kind of science that I now describe in this book, hint of some of the cantral
. ) . . phanornena n this ook,

The picture on the right shows a reproduction of typical output
from my original experiment. The graphics are primitive, but the
elaborate patterns they contain were like nothing I had ever seen before.
At first I did not believe that they could possibly be correct. But after a
while I became convinced that they were—and I realized that T had seen
a sign of a quite remarkable and unexpected phenomenon: that even
from very simple programs behavior of great complexity could emerge,

But how could something as fundamental as this never have been
noticed before? 1 searched the scientific literature, talked to many
peaple, and found out that systems similar to the ones [ was studying
had been named “cellular automata” some thirty years earlier. But
despite a few close approaches, nobody had ever actually tried anything
quite like the type of experiment T had.

Yet I still suspected that the basic phenomenon T had seen must
somehow be an obvious consequence of some known scientific principle.
But while I did find that ideas from areas like chaos theory and fractal
geometry helped in explaining some specific features, nothing even close
to the phenomenon as a whole seemed to have ever been studied before,

My early discoveries about the behavior of cellular automata
stimulated a fair amount of activity in the scientific community. And
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by the mid-1980s, many applications had been found in physics,
biology, computer science, mathematics and elsewhere. And indeed
some of the phenomena I had discovered were starting to be used as the
basis for a new area of research that I called complex systems theory.

Throughout all this, however, T had continued to investigate
more bhasic questions, and by around 1985 1 was beginning to realize
that what I had seen before was just a hint of something still much
more dramatic and fundamental. But to understand what T was
discovering was difficult, and required a major shift in intuition,

Yet I could see that there were some remarkable intellectual
opportunities ahead. And my first idea was to try to organize the
academic community to take advantage of them. So [ started a research
center and a journal, published a list of problems to attack, and worked
hard to communicate the importance of the direction I was defining,

But despite growing excitement—particularly about some of the
potential applications—there seemed to be very little soccess in
breaking away from traditional methods and intwition. And after a while
I realized that if there was going to be any dramatic progress made, I was
the one who was going to have to make it. So I resolved to set up the
best tools and infrastructure T could, and then just myself pursue as
efficiently as possible the research that T thought should be done.

In the early 19805 my single greatest impediment had been the
practical difficulty of doing computer experiments using the various
rather low-level tools that were availabhle. But by 1986 1 had realized that
with a number of new ideas I had it would be possible to build a single
coherent system for doing all kinds of technical computing. And since
nothing like this seemed likely to exist otherwise, I decided to build it.

The result was Mathematica.

For five wvears the process of building Mathematica and the
company around it absorbed me. But in 199]1—now no longer an
academic, but instead the CEO of a successful company—I was able to
return to studying the kinds of questions addressed in this book,

And equipped with Mathematica T began to try all sorts of new
experiments. The results were spectacular—and within the space of a
tew months T had already made more new discoveries about what



simple programs do than in all the previous ten vears put together. My
earlier work had shown me the beginnings of some unexpected and very
remarkable phenomena. But now from my new experiments I began to
see the full force and generality of these phenomena,

As my methodology and intwition improved, the pace of my
discoveries increased still more, and within just a couple of years I had
managed to take my explorations of the world of simple programs to the
point where the sheer volume of factual information T had accumulated
would be the envy of many long-established fields of science,

Quite ecarly in the process I had begun to formulate several rather
general principles, And the further T went, the more these principles were
confirmed, and the more I realized just how strong and general they were.

When I first started at the beginning of the 1980s, my goal was
mostly just to understand the phenomenon of complexity, But by the
mid-1990s I had built up a whole intellectual structure that was capable
of much more, and that in fact provided the foundations for what could
only be considered a fundamentally new kind of science,

It was for me a most exciting time. For everywhere [ turned there
were huge untouched new areas that I was able to explore for the first
time., Each had its own particular features. But with the overall
tramework T had developed I was gradually able to answer essentially all
of what seemed to be the most obvious questions that T had raised.

At first I was mostly concerned with new questions that had never
heen particularly central to any existing areas of science. But gradually I
realized that the new kind of science I was building should also provide a
tundamentally new way to address basic issues in existing areas.

So around 1994 T began systematically investigating each of the
various major traditional areas of science. I had long been interested in
fundamental questions in many of these areas. But usvally T had tended to
believe most of the conventional wisdom about them. Yet when I began
to study them in the context of my new kind of science I kept on seeing
signs that large parts of this conventional wisdom could not be correct,

The typical issue was that there was some core problem that
traditional methods or intuition had never successfully been able to
address—and which the field had somehow grown to avoid. Yet over

CHAPTER

)
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and over again I was excited to find that with my new kind of science I
could suddenly begin to make great progress—even on problems that in
some cases had remained unanswered for centuries.

Given the whole framework I had built, many of the things I
discovered seemed in the end disarmingly simple. But to get o them
often involved a remarkable amount of scientific work. For it was not
enough just to be ahle to take a few specific technical steps. Rather, in
each field, it was necessary to develop a sufficiently broad and deep
understanding to be able to identify the truly essential features—that
could then be rethought on the basis of my new kind of science.

Doing this certainly required experience in all sorts of different
areas of science. But perhaps most crucial for me was that the process
was a bit like what I have ended up doing countless times in designing
Mathematica: start from elaborate technical ideas, then gradually see
how to capture their essential features in something amazingly simple.
And the fact that T had managed to make this work so many times in
Mathematica was part of what gave me the confidence to try doing
something similar in all sorts of areas of science.

Often it seemed in retrospect almost bizarre that the conclusions
I ended up reaching had never been reached before, But studying the
history of each field I could in many cases see how it had been led astray
by the lack of some crucial piece of methodology or intuition that had
now emerged in the new kind of science I had developed.

When I made my first discoveries about cellular automata in the
early 1980s I suspected that I had seen the beginning of something
important. But T had no idea just how important it would all ultimately
turn out to be, And indeed over the past twenty years I have made more
discoveries than I ever thought possible. And the new kind of science
that T have spent so much effort building has seemed an ever more

central and critical direction for future intellectual development.



The Crucial Experiment

How Do Simple Programs Behavel

MNew directions in science have typically been initiaved by certain
central observations or experiments. And for the kind of science that I
describe in this book these concerned the behavior of simple programs.

In our everyday experience with computers, the programs that we
encounter are normally set up to perforim very definite tasks. But the key
idea that T had nearly twenty years ago—and that eventually led o the
whole new kind of science in this book—was to ask what happens if one
instead just looks at simple arbitrarily chosen programs, created without
any specific task in mind. How do such programs typically behave?

The mathematical methods that have in the past dominated
theoretical science do not help much with such a question, But with a
computer it is straightforward to start doing experiments to investigate
it. For all one need do is just set up a sequence of possible simple
programs, and then run them and see how they behave.

Any program can at some level be thought of as consisting of a set
of rules that specify what it should do at each step. There are many
possible ways o set up these rules—and indeed we will study quite a
few of them in the course of this book. But for now, I will consider a
particular class of examples called cellular automata, that were the very

first kinds of simple programs that I investigated in the early 1980s.

23
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An important feature of cellular automata is that their behavior

can readily be presented in a wisual way., And so the picture below
shows what one cellular automaton does over the course of ten steps.

& wisual reprasantation of the bahavior

ol & calular aulosmaton, svith mach o siea 1
al calls cormespording o ore stoap, At =ap I
tha first step the call in the center 15 wiap i
hlack and all othar calls ars whits. Than m_—
on each succassive step, a particular ::
cell iz made black whenevear it or either step 7
of ita neighbors weare black o the atep —
before. As the pictura shows, this leads stap &
to a simpda expanding pattern uniformly St

Tl st b Blsck

The cellular automaton consists of a line of cells, each colored
gither black or white. At every step there is then a definite rule that
determines the color of a given cell from the color of that cell and its
immediate left and right neighbors on the step betore,

For the particular cellular avtomaton shown here the rule
specifics—as in the picture below—ithat a cell should be black in all

cases where it or either of its neighbors were black on the step before.

& representation of the rule for

:E. | E_:|| tha cellilar automaton shown

— atova. The top rowy N sach box

g orie of the possible combimations of eolors tor 4 aoell and 1% immoediate aoghbors. The

oaflorm rows Then EPEEIfIEE- wehat color the center cell shoauld be on the next etep in each of thesa
cgges. |m the numbenng acheme aascnbed m Chagter 3 thia s esllular automaton ke 264

|- Cmml[m
u =

N
u

And the picture at the top of the page shows that starting with a
single black cell in the center this rule then leads to a simple growing
pattern uniformly filled with black. But modifying the rule just slightly
one can immediately get a different pattern.

As a first example, the picture at the top of the facing page shows
what happens with a rule that makes a cell white whenever both of its
neighbors were white on the step before—even if the cell itself was
black before. And rather than producing a pattern that is uniformly
filled with black, this rule now instead gives a pattern that repeatedly

alternates between black and white like a checkerboard.
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A celbdar auicmaton with a shghthy défferant rulm, Thm rube
makes & particulss cell biack if aither of its neighbors wes black
on the step befors, and makes tha cell white o both #s
naighbars wara white. Starting from a sangbs black csll, this rule
kady to a checkerboard pattern. |n the numbering scheane of
Chapter 3, thiz ig cellular sutornaton rule 250,

This pattern is however again fairly simple. And we might
assume that at least with the type of cellular automata that we are
considering, any rule we might choose would always give a pattern that
is quite simple. But now we are in for our first surprise.

The picture below shows the pattern produced by a cellular
automaton of the same type as before, but with a slightly different rule.

& calular sutornaton that produceas an intricate nested pattam. The ruls in thes cases &
-I1:| .EI. .ij Er Eﬂj EE. EEJ that 5 cell shoadd ke black whenaver one or the cthar, but not Both, of its neighbors
veara Badk on the step befora. Even thowgh the mle is very simple, the picture
shoyeed that the osessll patierm obtamed ovar the course of 50 steps startng from a sangle black call 15 fot o ample, Thus particular il
usad bare can ba descnbed by the tormula e’ = M-ﬁn'.l';'_l. a0 2T, o thie remdanng scherme al I:hapl-r d, it 1% cadkdar autlormalon ruike D0,
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This time the rule specifies that a cell should be black when either its
left neighbor or its right neighbor—but not both—were black on the
step before. And again this rule is undeniably quite simple. But now the
picture shows that the pattern it produces is not so simple,

And if one runs the cellular automaton for more steps, as in the
picture below, then a rather intricate pattern emerges. But one can now
see that this pattern has very definite regularity. For even though it is
intricate, one can see that it actually consists of many nested triangular
pieces that all have exactly the same form. And as the picture shows,
ecach of these pieces is essentially just a smaller copy of the whole
pattern, with still smaller copies nested in a very regular way inside it.

e

A N y s ,

r 1+*1F. S

A larger warsion of the pattarn from the previcaus page, noews showen without a grid sxplicithy mdicating each cell. The picture showes frg
huncirgd steps o cellular automalon evolulion, Thu pattmrn oblained & nincats, Bol has a delmde nested siruciure. Indesd, as the

pretun llusiratng, aach tnangular section 1S pssantialy st s smalher copy of the whale patlenn, with sl smaller copes nasted insda il
Patterns with nested strecture of ths kingd are often called “fractal™ or “self-sirmilar”

So of the three cellular automata that we have seen so far, all
ultimately yield patterns that are highly regular: the first a simple
uniform pattern, the second a repetitive pattern, and the third an
intricate but still nested pattern. And we might assume that at least for



cellular automata with rules as simple as the ones we have been using
these three forms of behavior would be all that we could ever get.

But the remarkable fact is that this turns out to be wrong.

And the picture below shows an example of this, The rule used—
that T call rule 30—is of exactly the same kind as before, and can be
described as follows. First, look at each cell and its right-hand neighbor.
If both of these were white on the previous step, then take the new
color of the cell to be whatever the previous color of its left-hand
neighbor was, Otherwise, take the new color to be the opposite of that.

CHAPTER

A

exampla of tha fundamental phancmanca that svan with simpla undsrbing rulss and smpls mital conddn
precuc babavior of grest cormpleaty, In the membenng schemae of Chapter 3, the aallular automatcn shoan here 5

The picture shows what happens when one starts with just one
black cell and then applies this rule over and over again. And what one
sees is something quite startling—and probably the single most
surprising scientific discovery I have ever made. Racher than getting a
simple regular pattern as we might expect, the cellular automaton

instead produces a pattern that seems extremely irregular and complex.

O callular autamatan with & segds rube that genseratng a patiem
? 1:' .|:|. .a: :.- :=: :E. Ij|:|D N Many respecis fandom. The rule usad is of the same Typa ag in o
provious exarnples, and the cellulsr automaton i sgain starbed from & single

black call. But now the pattem that is obtained is heghly complex, and shows almost no ovarall regularity. This picters is gur first

wihneh seerms

it is possibla 1o
ey 30

¥
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But where does this complexity come from? We certainly did not
put it into the system in any direct way when we set it up. For we just
used a simple cellular automaton rule, and just started from a simple
initial condition containing a single black cell.

Yet the picture shows that despite this, there is great complexity
in the behavior that emerges. And indeed what we have seen here is a
first example of an extremely general and fundamental phenomenon
that is at the very core of the new kind of science that T develop in this
book. Over and over again we will see the same kind of thing: that even
though the underlying rules for a system are simple, and even though
the system is started from simple initial conditions, the behavior that
the system shows can nevertheless be highly complex. And 1 will argue
that it is this basic phenomenon that is ultimately responsible for most
of the complexity that we see in nature,

The next two pages show progressively more steps in the
evolution of the rule 30 cellular automaton from the previous page. One
might have thought that after maybe a thousand steps the behavior
would eventually resolve into something simple. But the pictures on
the next two pages show that nothing of the sort happens.

Some regularities can nevertheless be seen. On the left-hand side,
for example, there are obvious diagonal bands, And dotted throughout
there are various white triangles and other small structures. Yet given
the simplicity of the underlying rule, one would expect vastly more
regularities. And perhaps one might imagine that our failure to see any
in the pictures on the next two pages is just a reflection of some kind of
inadequacy in the human visual system,

But it turns out that even the most sophisticated mathematical
and statistical methods of analysis seem to do no better. For example,
one can look at the sequence of colors directly below the initial black cell.
And in the first million steps in this sequence, for example, it never
repeats, and indeed none of the tests I have ever done on it show any
meaningful deviation at all from perfect randomness.

In a sense, however, there is a certain simplicity to such perfect
randomness. For even though it may be impossible to predict what
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Fiftean hundred steps of rule 30 evolution. Some regularities ara evident, particularly on the keft. But evan after 58 thesa steps thare are
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color will occur at any specific step, one still knows for example that
black and white will on average always occur equally often.

But it turns out that there are cellular automata whose behavior
is in effect still more complex—and in which even such averages
become very difficult to predict, The pictures on the next several pages
give a rather dramatic example. The basic form of the rule is just the
same as before. But now the specific rule used—that I call rule 110—
takes the new color of a cell to be black in every case except when the
previous colors of the cell and its two neighbors were all the same, or
when the left neighbor was black and the cell and its right neighbor
were both white,

The pattern obtained with this rule shows a remarkable mixture
of regularity and irregularity. More or less throughout, there is a very
regular background texture that consists of an array of small white
triangles repeating every 7 steps, And beginning near the lefe-hand edge,
there are diagonal stripes that ocouor at intervals of exactly 80 steps.

But on the right-hand side, the pattern is muoch less regular,
Indeed, for the first few hundred steps there is a region that seems
essentially random. But by the bottom of the first page, all that remains
of this region is three copies of a rather simple repetitive structure,

Yet at the top of the next page the arrival of a diagonal stripe from
the left sets off more complicated behavior again, And as the system
progresses, a variety of definite localized structures are produced.

Some of these structures remain stationary, like those at the
hottom of the first page, while others move steadily to the right or left
at various speeds. And on their own, each of these structures works
in a fairly simple way, But as the pictures illustrate, their various
interactions can have very complicated effects.

And as a result it becomes almost impossible to predict—even
approximately—what the cellular automaton will do.

Will all the structures that are produced eventually annihilate
each other, leaving only a very regular pattern? Or will more and more
structures appear until the whole pattern becomes quite random?

The only sure way to answer these questions, it seems, is just to
run the cellular automaton for as many steps as are needed, and w
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THE CRUVCIAL EXPERIFMEMT

watch what happens. And as it turns out, in the particular case shown
here, the outcome is finally clear after about 2780 steps: one structure
survives, and that structure interacts with the periodic stripes coming
from the left to produce behavior that repeats every 240 steps,

However certain one might be that simple programs could never
do more than produce simple behavior, the pictures on the past few
pages should forever disabuse one of that notion. And indeed, what is
perhaps most bizarre about the pictures is just how little trace they
ultimately show of the simplicity of the underlying cellular automaton
rule that was used to produce them.

One might think, for example, that the fact that all the cells in a
cellular automaton follow exactly the same rule would mean that in
pictures like the last few pages all cells would somehow obviously be
doing the same thing. But instead, they seem to be doing quite different
things. Some of them, for example, are part of the regular background,
while others are part of one or another localized structure. And what
makes this possible is that even though individual cells follow the same
rule, different configurations of cells with different sequences of colors
can together produce all sorts of different kinds of behavior.

Looking just at the original cellular automaton rule one would
have no realistic way to foresee all of this, But by doing the appropriate
computer experiments one can easily find out what actually happens—
and in effect begin the process of exploring a whole new world of
remarkable phenomena associated with simple programs.

The Need for a New Intuition

The pictures in the previous section plainly show that it takes only very
simple rules to produce highly complex behavior. Yet at first this may
seem almost impossible to believe, For it goes against some of our most
basic intuition about the way things normally work.

d A& single picture of the behavior from the previcus five pages. A total of 2200 steps
ara shoam. Mots that this is more than teice as many as m the picture on page 30,
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For our everyday experience has led us to expect that an object
that looks complicated must have been constructed in a complicated
way, And so, for example, if we see a complicated mechanical device,
we normally assume that the plans from which the device was built
must also somehow be correspondingly complicated,

But the results at the end of the previous section show that at
least sometimes such an assumption can be completely wrong. For the
patterns we saw are in effect built according to very simple plans—that
just tell us to start with a single black cell, and then repeatedly to apply
a simple cellular automaton rule. Yet what emerges from these plans
shows an immense level of complexity.

S0 what is it that makes our normal intuition fail? The most
important point seems to be that it is mostly derived from experience
with building things and doing engineering—where it so happens that
one avoids encountering systems like the ones in the previous section.

For normally we start from whatever behavior we want to get,
then try to design a system that will produce it. Yet to do this reliably,
we have to restrict ourselves to systems whose behavior we can readily
understand and predict—for unless we can foresee how a system will
behave, we cannot be sure that the system will do what we want.

But unlike engineering, nature operates under no such constraint.
So there is nothing to stop systems like those at the end of the previous
section from showing up. And in fact one of the important conclusions
of this book is that such systems are actually very common in nature.

But because the only situations in which we are routinely aware
both of underlying rules and overall behavior are ones in which we are
building things or doing engineering, we never normally get any
intuition about systems like the ones at the end of the previous section.

S0 is there then any aspect of evervday experience that should
give us a hint about the phenomena that occur in these systems?
Probably the closest is thinking about features of practical computing.

For we know that computers can perform many complex tasks. Yet
at the level of basic hardware a typical computer is capable of executing just
a few tens of kinds of simple logical, arithmetic and other instructions. And
to some extent the fact that by executing large numbers of such



instructions one can get all sorts of complex behavior is similar to the
phenomenon we have seen in cellular automata.

But there is an important ditference. For while the individual
machine instructions executed by a computer may be quite simple, the
sequence of such instructons defined by a program may be long and
complicated. And indeed—much as in other areas of engineering—the
typical experience in developing software is that to make a computer do
something complicated requires setting up a program that is itself
somehow correspondingly complicated,

In a system like a cellular automaton the underlying rules can be
thought of as rough analogs of the machine instructions for a computer,
while the initial conditions can be thought of as rough analogs of the
program. Yet what we saw in the previous section is that in cellular
automata not only can the underlying rules be simple, but the initial
conditions can also be simple—consisting say of just a single black
cell—and still the behavior that is produced can be highly complex.

S0 while practical computing gives a hint of part of what we saw
in the previous section, the whole phenomenon is something much
larger and stronger. And in a sense the most puzzling aspect of it is that
it seems to involve getting something from nothing,

For the cellular automata we set up are by any measure simple to
describe, Yer when we ran them we ended with patterns so complex
that they seemed to defy any simple description at all.

And one might hope that it would be possible to call on some
existing kind of intuition to understand such a fundamental
phenomenon. But in fact there seems to be no branch of evervday
experience that provides what is needed. And so we have no choice but
to try to develop a whole new kind of intuition.

And the only reasonable way o do this is to expose ourselves to a
large number of examples. We have seen so far only a few examples, all
in cellular automata. But in the next few chapters we will see many
more examples, both in cellular automata and in all sorts of other
systems. And by absorbing these examples, one is in the end able to
develop an intuition that makes the basic phenomena that T have
discovered seem somehow almost obvious and inevitable,
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Why These Discoveries Were Not Made Before

The main result of this chapter—that programs based on simple rules
can produce behavior of great complexity—seems so fundamental that
one might assume it must have been discovered long ago. But it was
not, and it is useful to understand some of the reasons why it was not.

In the history of science it is fairly common that new
technologies are ultimately what make new areas of basic science
develop. And thus, for example, telescope technology was what led to
modern astronomy, and microscope technology to modern biology. And
now, in much the same way, it is computer technology that has led to
the new kind of science that T describe in this book,

Indeed, this chapter and several of those that follow can in a sense
be viewed as an account of some of the very simplest experiments that
can be done uwsing computers. But why is it that such simple
experiments were never done before?

One reason is just that they were not in the mainstream of any
existing field of science or mathematics. But a more important reason is
that standard intuition in traditional science gave no reason to think
that their results would be interesting,

And indeed, if it had been known that they were worthwhile,
many of the experiments could actually have been done even long
betore computers existed, For while it may be somewhat tedious, it is
certainly possible to work out the behavior of something like a cellular
automaton by hand, And in fact, to do so requires absolutely no
sophisticated ideas from mathematics or elsewhere: all it takes is an
understanding of how to apply simple rules repeatedly.

And looking at the historical examples of ornamental art on the
tacing page, there seems little reason to think that the behavior of many
cellular automata could not have been worked out many centuries or even
millennia ago. And perhaps one day some Babylonian artifact created using
the rule 30 cellular automaton from page 27 will be unearthed. But T very
much doubt it. For I tend to think that if pictures like the one on page 27
had ever in fact been seen in ancient times then science would have been

led down a very different path from the one it actually took.
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Even early in antiguity attempts were presumably made to see
whether simple abstract rules could reproduce the behavior of natural
systems. But so far as one can tell the only types of rules that were tried
were ones associated with standard geometry and arichmetic, And using
these kinds of rules, only rather simple behavior could be obtained

adequate to explain some of the regularities observed in astronomy, but
unable to capture much of what is seen elsewhere in nature.

And perhaps because of this, it typically came to be assumed that
a great many aspects of the natural world are simply beyond human
understanding, But finally the successes based on calculus in the late
16005 began to overthrow this belief, For with calculus there was finally
real success in taking abstract rules created by human thought and
using them to reproduce all sorts of phenomena in the natural world.

But the particular rules that were found to work were fairly
sophisticated ones based on  particular kinds of mathematical
equations, And from seeing the sophistication of these rules there began
to develop an implicic belief that in almost no important cases would
simpler rules be useful in reproducing the behavior of natural systems.

During the 1700s and 1800z there was ever-increasing success in
using rules based on mathematical equations to analyze physical
phenomena. And after the spectacular results achieved in physics in the
early 19005 with mathematical equations there emerged an almost
universal belief that absolutely every aspect of the natural world would
in the end be explained by using such equations.

Meedless to say, there were many phenomena that did not readily
vield to this approach, but it was generally assumed that if only the
necessary calculations could be done, then an explanation in terms of
mathematical equations would eventually be found.

Beginning in the 1940s, the development of electronic computers
greatly broadened the range of calculations that could be done. But
disappointingly enough, most of the actual calculations that were tried
vielded no fundamentally new insights. And as a result many people
came to believe—and in some cases still believe today—that computers
could never make a real contribution to issues of basic science.



But the crucial point that was missed is that computers are not
just limited to working out consequences of mathematical equations,
And indeed, what we have seen in this chapter is that there are
fundamental discoveries that can be made if one just studies directly
the behavior of even some of the very simplest computer programs,

In retrospect it is perhaps ironic that the idea of using simple
programs as models for natural systems did not surface in the early days
of computing. For systems like cellular automata would have been
immensely easier to handle on early computers than mathematical
equations were, But the issue was that computer time was an expensive
commaodity, and so it was not thought worth taking the risk of trying
anything but well-established mathematical models.

By the end of the 1970s, however, the situation had changed, and
large amounts of computer time were becoming readily available. And this
is what allowed me in 1981 to begin my experiments on cellular automata,

There is, as I mentioned above, nothing in principle that requires
one to use a computer to study cellular automata, But as a practical
matter, it is difficult to imagine that anyone in modern times would
have the patience to generate many pictures of cellular automata by
hand. For it takes roughly an hour to make the picture on page 27 by
hand, and it would take a few weeks to make the picture on page 29,

Yet even with early mainframe computers, the data for these
pictures could have been generated in a matter of a few seconds and a
few minutes respectively. But the point is that one would be very
unlikely to discover the kinds of fundamental phenomena discussed in
this chapter just by looking at one or two pictures, And indeed for me to
do it certainly took carrying out quite large-scale computer experiments
on a considerable number of different cellular automata.

If one already has a clear idea about the basic features of a
particular phenomenon, then one can often get more details by doing
fairly specific experiments. But in my experience the only way to find
phenomena that one does not already know exist is to do wery
systematic and general experiments, and then to look at the results with
as few preconceptions as possible, And while it takes only rather basic
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computer technology to make single pictures of cellular automata, it
requires considerably more to do large-scale systematic experiments,

Indeed, many of my discoveries about cellular automata came as
direct consequences of using progressively better computer technology,

As one example, T discovered the classification scheme for
cellular automata with random initial conditions described at the
heginning of Chapter 6 when I first looked at large numbers of different
cellular automata together on  high-resolution graphics displays.
Similarly, I discovered the randomness of rule 30 (page 27} when I was
in the process of setting up large simulations for an  early
parallel-processing computer. And in more recent years, T have
discovered a vast range of new phenomena as a result of easily being
ahle to set up large numbers of computer experiments in Mathemuatica.

Undoubtedly, therefore, one of the main reasons that the
discoveries I describe in this chapter were not made before the 1980s is
just that computer technology did not vet exist powerful enough to do
the kinds of exploratory experiments that were needed.

But beyond the practicalities of carrying out such experiments, it
was also necessary to have the idea that the experiments might be
worth doing in the first place, And here again computer technology
plaved a crucial role, For it was from practical experience in using
computers that I developed much of the necessary intuition,

As a simple example, one might have imagined that systems like
cellular automata, being made up of discrete cells, would never be able
to reproduce realistic natural shapes. But knowing about computer
displays it is clear that this is not the case. For a computer display, like
a cellular automaton, consists of a regular array of discrete cells or
pixels. Yet practical experience shows that such displays can produce
quite realistic images, even with fairly small numbers of pixels.

And as a more significant example, one might have imagined that
the simple structure of cellular automaton programs would make it
straightforward to foresee their behavior. But from experience in
practical computing one knows that it is usually very difficult to
foresee what even a simple program will do. Indeed, that is exactly why
bugs in programs are so commeon. For if one could just look at a program



and immediately know what it would do, then it would be an easy
matter to check that the program did not contain any bugs.

Motions like the difficulty of finding bugs have no obvious
connection to traditional ideas in science. And perhaps as a result of
this, even after computers had been in uwse for several decades,
essentially none of this type of intuition from practical computing had
found its way into hasic science. But in 1981 it so happened that I had
tor some years been deeply involved in both practical computing and
basic science, and I was therefore in an almost unique position to apply
ideas derived from practical computing to basic science,

Yet despite this, my discoveries about cellular automata still
involved a substantial element of luck. For as I mentioned on page 19,
my very first experiments on cellular automata showed only very
simple behavior, and it was only because doing further experiments was
technically very easy for me that I persisted,

And even after T had seen the first signs of complexity in cellular
automata, it was several more vears before I discovered the full range of
examples given in this chapter, and realized just how easily complexity
could be generated in systems like cellular automata.

Part of the reason that this took so long is that it involved
experiments  with progressively more  sophisticated  computer
technology., But the more important reason is that it required the
development of new intuition. And at almost every stage, intuition
from traditional science took me in the wrong direction. But I found
that intuition from practical computing did better. And even though it
was sometimes misleading, it was in the end fairly important in putting
me on the right track.

Thus there are two quite different reasons why it would have
been difficult for the results in this chapter to be discovered much
hefore computer technology reached the point it did in the 1980s. First,
the necessary computer experiments could not be done with sufficient
ease that they were likely to be tried. And second, the kinds of intuition
about computation that were needed could not readily have been
developed without extensive exposure to practical computing.

CHAPTER

¥

47



STEPHEMNM WOLFRE AM

But now that the results of this chapter are known, one can go
back and see quite a number of times in the past when they came at
least somewhat close to being discovered.

It turns out that two-dimensional versions of cellular automata
were already considered in the early 19505 as possible idealized models
for hiological systems. But until my work in the 1980s the actual
investigations of cellular automata that were done consisted mainly in
constructions of rather complicated sets of rules that could be shown to
lead to specific kinds of fairly simple behavior,

The question of whether complex behavior could occur in
cellular automata was occasionally raised, but on the basis of intuition
from engineering it was generally assumed that to get any substantial
complexity, one would have to have very complicated underlying rules.
And as a result, the idea of studying cellular automata with simple rules
never surfaced, with the result that nothing like the experiments
described in this chapter were ever done.,

In other areas, however, systems that are effectively based on
simple rules were quite often studied, and in fact complex behavior was
sometimes seen. But without a framework to understand its significance,
such behavior tended either to be ignored entirely or to be treated as some
kind of curiosity of no particular fundamental significance.

Indeed, even very early in the history of traditional mathematics
there were already signs of the basic phenomenon of complexity. One
example known for well over two thousand years concerns the
distribution of prime numbers (see page 132]. The rules for generating
primes are simple, vet their distribution seems in many respects
random. But almost without exception mathematical work on primes
has concentrated not on this randomness, but rather on proving the
presence of various regularities in the distribution.

Another early sign of the phenomenon of complexity could have
been seen in the digit sequence of a number like 7= 3.141592653 ...
{see page 136), By the 1700s more than a hundred digits of # had been
computed, and they appeared quite random. But this fact was treated
essentially as a curiosity, and the idea never appears to have arisen that



there might be a general phenomenon whereby simple rules like those
tor computing » could produce complex results.

In the early 1900s various explicit examples were constructed in
several areas of mathematics in which simple rules were repeatedly
applied to numbers, sequences or geometrical patterns. And sometimes
nested or fractal behavior was seen. And in a few cases substantially
maore complex behavior was also seen. But the very complexity of this
behavior was usually taken to show that it could not be relevant for real
mathematical work—and could only be of recreational interest,

When electronic computers began to be used in the 1940s, there
were many more opportunities for the phenomenon of complexity to be
seen. And indeed, looking back, significant complexity probahly did
pccur in many scientific calculations. But these calculations were
almost always based on traditional mathematical models, and since
previous analyses of these models had not revealed complexity, it
tended to be assumed that any complexity in the computer calculations
was just a spurious consequence of the approximations used in them,

One class of systems where some types of complexity were
noticed in the 1950s are so-called iterated maps. But as I will discuss on
page 14%, the traditional mathematics that was used to analyze such
systems ended up concentrating only on certain specific features, and
completely missed the main phenomenon discovered in this chapter,

It is often useful in practical computing to produce sequences of
numbers that seem random. And starting in the 1940s, several simple
procedures for generating such sequences were invented. But perhaps
because these procedures always seemed quite ad hoc, no general
conclusions about randomness and complexity were drawn from them.

Along similar lines, systems not unlike the cellular automata
discussed in this chapter were studied in the late 1950s for generating
random sequences to be used in cryptography. Almost all the results
that were obtained are still military secrets, but I do not believe that
any phenomena like the ones described in this chapter were discovered.

And in general, within the context of mainstream science, the
standard intuition that had been developed made it very difficule for
anyone to imagine that it would be worth studving the behavior of the
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very simple kinds of computer programs discussed in this chapter. But
outside of mainstream science, some work along such lines was done.
And for example in the 19605 early computer enthusiasts tried running
various simple programs, and found that in certain cases these programs
could succeed in producing nested patterns,

Then in the early 1970s, considerable recreational computing
interest developed in a specific two-dimensional cellular automaton
known as the Game of Lite, whose behavior is in some respects similar
to the rule 110 cellular automaton discussed in this chapter. Great
effort was spent trying to find structures that would be sofficiently
simple and predictable that they could be used as idealized components
for engineering. And although complex behavior was seen it was
generally treated as a nuisance, to be avoided whenever possible.

In a sense it is surprising that so much could be done on the
Game of Life without the much simpler one-dimensional cellular
autoimata in this chapter ever being investigated. And no doubt the lack
of a connection to basic science was at least in part responsible,

But whatever the reasons, the fact remains that, despite many
hints over the course of several centuries, the basic phenomenon that I
have described in this chapter was never discovered before,

It is not wncommon in the history of science that once a general
new phenomenon has been identified, one can see that there was
already evidence of it much earlier. But the point is that without the
framework that comes from knowing the general phenomenon, it is
almost inevitable that such evidence will have been ignored.

It is also one of the ironies of progress in science that results
which at one time were so unexpected that they were missed despite
many hints eventually come to seem almost obvious, And having lived
with the results of this chapter for nearly two decades, it is now
difficult for me to imagine that things could possibly work in any other
way. But the history that I have outlined in this section—like the
history of many other scientific discoveries—provides a sobering

reminder of just how easy it is to miss what will later seem obvious.



The World of Simple Programs

The Search for General Features

At the beginning of the last chapter we asked the basic question of what
simple programs typically do. And as a first step towards answering this
question we looked at several specific examples of a class of programs
known as cellular automata,

The basic types of behavior that we found are illustrated in the
pictures on the next page. In the first of these there is pure repetition,
and a very simple pattern is formed. In the second, there are many
intricate details, but at an overall level there is still a very regular
nested structure that CIMerges,

In the third picture, however, one no longer sees such regularity,
and instead there is behavior that seems in many respects random. And
finally in the fourth picture there is what appears to be still more
complex behavior—with elaborate localized structures being generated
that interact in complex ways.

At the outset there was no indication that simple programs could
ever produce behavior so diverse and often complex. But having now
seen these examples, the question becomes how typical they are. Is it
only cellular automata with very specific underlying rules that produce
such behavior? Or is it in fact common in all sorts of simple programs?

My purpose in this chapter is to answer this question by looking

at a wide range of different kinds of programs, And in a sense my
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approach is to work like a natoralist—exploring and studying the
various forms that exist in the world of simple programs.

I start by considering more general cellular automata, and then I
go on to consider a whole sequence of other kinds of programs—with
underlying structures further and further away from the array of black
and white cells in the cellular automata of the previous chapter.

And what I discover is that whatever kind of underlving rules one
uses, the behavior that emerges turns out o be remarkably similar to
the basic examples that we have already seen in cellular automata.

Throughout the world of simple programs, it seems, there is great
universality in the types of overall behavior that can be produced. And
in a sense it is ultimately this that makes it possible for me to construct
the coherent new kind of science that I describe in this book—and to
use it to elucidate a large number of phenomena, independent of the

particular details of the systems in which they occur,



More Cellular Automata

The pictures below show the rules used in the four cellular automata on
the facing page. The overall structure of these rules is the same in each
case; what differs is the specific choice of new colors for each possible
combination of previous colors for a cell and its two neighbors,
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There turn out to be a total of 256 possible sets of choices that
can be made, And following my original work on cellular automata
these choices can be numbered from 0 to 255, as in the picture below.
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But so how do cellular automata with all these different rules
hehave! The next page shows a few examples in detail, while the
following two pages show what happens in all 256 possible cases.

At first, the diversity of what one sees is a little overwhelming,
But on closer investigation, definite themes begin to emerge.

In the very simplest cases, all the cells in the cellular automaton

end up just having the same color after one step. Thus, for example, in
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rules 0 and 128 all the cells become white, while in rule 255 all of them
become black. There are also rules such as 7 and 127 in which all cells
alternate between black and white on successive steps.

But among the rules shown on the last few pages, the single most
commaon kind of behavior is one in which a pattern consisting of a
single cell or a small group of cells persists. Sometimes this pattern
remains stationary, as in rules 4 and 123, But in other cases, such as
rules 2 and 103, it moves to the left or right.

It turns out that the basic structure of the cellular automata
discussed here implies that the maximum speed of any such motion
must be one cell per step. And in many rules, this maximum speed is
achieved—although in rules such as 3 and 103 the average speed is
instead only half a cell per step.

In about two-thirds of all the cellular automata shown on the last
few pages, the patterns produced remain of a fixed size, But in about
one-third of cases, the patterns instead grow forever, Of such growing
patterns, the simplest kind are purely repetitive ones, such as those
seen in rules 50 and 109, But while repetitive patterns are by a small
margin the most commaon kind, about 14% of all the cellular automata
shown yield more complicated kinds of patterns.

The most common of these are nested patterns, like those on the
next page. And it turns out that although 24 roles in all yield such
nested patterns, there are only three fundamentally different forms that
pccur. The simplest and by far the most common is the one exemplified
by rules 22 and 60. But as the pictures on the next page show, other
nested forms are also possible. {In the case of rule 225, the width of the
overall pattern does not grow at a fixed rate, but instead is on average
proportional to the square root of the number of steps.)

4 The behssor of 8l 258 possible cellulsr autorrata with ndes irvoling e colors and nearest
neighbora. In aech caza, thety steps of evalution sfe shown, starting from a sangle black call. Mote
that eoma of the niles are ralated just by interchange of left and right or black and white (e.g. rules 2
ancd 18 of rulas 126 and 129, Thare arm 55 lundarmantally mequevalent such semaentary rules,
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Exarmples of cellular autornata thet produce nested of fractal patiems. Rule 22—like rule 90 from page 26—grees a pattenm with
fractal demansion Lenl2, 5l 1.55; nile 150 gives one with fractal dimension Log(2, 7+ 5 f= 1.69. The width of the pattern
ohtainad from rule 225 incraasaes lika the square mot of the number of steps

Repetition and nesting are widespread themes in many cellular

automata. But as we saw in the previous chapter, it is also possible for

cellular automata to produce patterns that seem in many respects
random. And out of the 256 rules discussed here, it turns out that 10
vield such apparent randomness. There are three basic forms, as
illustrated on the facing page.

Examgles of cellular autormets that produece patterns with many spparently randem festuras.
Three hundred steps of evolution are shown, starting in each case from a single Black cell. B
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Example of a totalistic cellular sutomaten wath thnes
possible colors for gach call The rule is aet Lip 20 that
tha new coker of evary call is detarmmined by the
avmage of the prvious colors of the ool and its
irmmediate neghbors, Wik O representng sehite, 1
gray and 2 black the rightriost slemsent of the nis
gives thi result for everage calzr 0, whils the elemsant
immadiate® 1o s left gres tha result for avarags
cokar 1 3=—and so an. Interpreting the sequence of
new colors &3 a sequence of base 3 digits, one San
gasagn & code nurmbes to 2ach Wialisns rule.

Beyvond randomness, the last example in the previous chapter was
rule 110: a cellular automaton whose behavior becomes partitioned into
a complex mixture of regular and irregular parts. This particular cellular
autoimaton is essentally enigue among the 256 rules considered here:
of the four cases in which such behavior is seen, all are equivalent if one
just interchanges the roles of left and right or black and white.

S0 what about more complicated cellular antomaton rules?

The 256 “elementary” rules that we have discussed so far are by
most measures the simplest possible—and were the first ones I studied.
But one can for example also look at rules that involve three colors,
rather than two, so that cells can not only be black and white, but also
gray. The total number of possible rules of this kind turns out to he
immense—7,625,597,484 087 in all—but by considering only so-called
“totalistic” ones, the number becomes much more manageable.

The idea of a totalistic rule is to take the new color of each cell to
depend only on the average color of neighboring cells, and not on their
individual colors. The picture below shows one example of how this
works. And with three possible colors for each cell, there are 2187
possible totalistic rules, each of which can conveniently be identified
by a code number as illustrated in the picture. The facing page shows a
representative sequence of such rules,

-?---I:II_I

1 i ] I 4 i ] = 777

We might have expected that by allowing three colors rather than

two we would immediately get noticeably more complicated behavior.
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pages, the nitial condition used
contains a single gray gell,
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But in fact the behavior we see on the previous page is not unlike what
we already saw in many elementary cellular automata a few pages back.
Having more complicated underlying rules has not, it seems, led to
much greater complexity in overall behavior.

And indeed, this is a first indication of an important general
phenomenon: that at least beyond a certain point, adding complexity to
the underlying rules for a system does not ultimately lead to more
complex overall behavior. And so for example, in the case of cellular
automata, it seems that all the essential ingredients needed to produce
even the most complex behavior already exist in elementary rules,

Using more complicated rules may be convenient if one wants, say,
to reproduce the details of particular natural systems, but it does not add
fundamentally new features. Indeed, looking at the pictures on the
previous page one sees exactly the same basic themes as in elementary
cellular automata. There are some patterns that attain a definite size, then
repeat forever, as shown below, others that continue to grow, but have a
repetitive form, as at the top of the facing page, and still others that
produce nested or fractal patterns, as at the bottom of the page.
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In detail, some of the patterns are definitely more complicated
than those seen in elementary rules. But at the level of overall behavior,
there are no fundamental differences, And in the case of nested patterns
even the specific structures seen are usually the same as for elementary
rules, Thus, for example, the structure in codes 237 and 948 is the most
common, followed by the one in code 1749, The only new structure not
already seen in elementary rules is the one in code 420—but this occurs
only quite rarely,

About 85% of all threecolor totalistic cellular automata produce
behavior that is ultimately quite regular, But just as in elementary cellular
automata, there are some rules that vield behavior that seems in many
respects random. A few examples of this are given on the facing page.

Beyond fairly uniform random behavior, there are also cases
similar to elementary rule 110 in which definite structures are
produced that interact in complicated ways. The next page gives a few
examples, In the first case shown, the pattern becomes repetitive after
about 150 steps, In the other two cases, however, it is much less clear
what will ultimately happen. The following pages continue these
patterns for 3000 steps. But even after this many steps it is still quite
unclear what the final behavior will be.

Looking at pictures like these, it is at first difficult to believe that
they can be generated just by following very simple underlyving cellular
automaton rules. And indeed, even if one accepts this, there is still a
tendency to assume that somehow what one sees must he a
consequence of some very special feature of cellular automata.

As it turns out, complexity is particularly widespread in cellular
automata, and for this reason it is fortunate that cellular automata were
the very first systems that I originally decided to study.

But as we will see in the remainder of this chapter, the fundamental
phenomena that we discovered in the previous chapter are in no way
restricted to cellular automata. And although cellular automata remain
some of the very best examples, we will see that a vast range of utterly
different systems all in the end turn out to exhibit extremely similar
types of behavior,
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CHAPTER F

The pictures below show totalistic cellular antomata whose

overall patterns of growth seem, at least at first, quite complicated. But
it turns out that after only about 100 steps, three out of four of these
patterns have resolved into simple forms.

S FOT

Soce TR

Examphes ol ndes thal o yield  patierns
which sesm to be on the adge botasn
growwth and extinction. For all but code
15599, the fate of thess patterns in fack
becomes chsar after less than 100 steps. A
total af 260 ateps are shown hara.

The one remaining pattern is, however, much more complicated.

As shown on the next page, for several thousand steps it simply grows,

albeit somewhat irregularly, But then its growth becomes slower. And
inside the pattern parts begin to die out, Yet there continue to be

necasional bursts of growth. But finally, after a total of 8282 steps, the

pattern resolves into 31 simple repetitive structures.

4 Three thousand staps in the sechsbon of tha last tven cellular automata from pags &6
Cespite tha simplicity of ther undedying rulas

imrmenae complesaty. In neither case e i clear what the fnal cutoome w

the final pattarmns preduced showr
be—whathear

spparent randomness wall tase over, of whether a simple regelditive farmm vl Bmerge.
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Mire thougand steps n the evolution of the three-color tetalistic cellulsr automeaten with code nurnber 1688, Startag from a
single gray csll, sach column comesponds to 3000 steps. The cutcome of the evelution finally becomes clear after B233
stegs, when the pattarn resolvas into 31 smpla repstitne strectures,



Mobile Automata

One of the basic features of a cellular automaton is that the colors of all
the cells it contains are updated in parallel at every step in its evolution.

But how important is this feature in determining the overall
behavior that occurs? To address this question, I consider in this section
a class of systems that I call “maobile automata™.

Muobile automata are similar to cellular automata except that
instead of updating all cells in parallel, they have just a single “active
cell” that gets updated at each step—and then they have rules that
specity how this active cell should move from one step to the next.

The picture below shows an example of 2 mobile automaton, The
active cell is indicated by a black dot. The rule applies only to this
active cell. It looks at the color of the active cell and its immediate
neighbors, then specifies what the new color of the active cell should

be, and whether the active cell should move left or right.

i+
ol | | |

| El-| L= | =l |-E| |-Z | D-| | LK |

An exampla of & mobda automaton. Uke a cellular automaton, 5
mabeds automaton conssts of a ine of galls, with each call havng
two possible colors. But unbkea a callular automaton, a mobie
autornaten has only one “actve coll” [mdicated here by a black dat)
at ary particular step. The le for the mobile autorraton specifies
both how the color of this active cell should be updated, and
whathor it shoukd mowe 1o the et S nghd, The result of eeaaduiesn

|
L

lor @ larger nurmbar of Steps with the particular obe shown here s
given ags example (i} on the next page

Much as for cellular automata, one can enumerate all possible rules
of this kind; it turns out that there are 65,536 of them., The pictures at the
top of the next page show typical behavior obtained with such rules. In
cases [a) and (b), the active cell remains localized to a small region, and the

hehavior is very simple and repetitive. Cases |¢) through () are similar,
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Examples of mobila automata with various rules b cases {al through [§) the maton of tha active cell s pursly repstitiva, In casas
lgh end [h it ia rot. The width of the pattem in thess cases after ¢ steps growvs roughly like 271 .

except that the whole pattern shifts systematically to the right, and in
cases (€] and [f] a sequence of stripes is left behind.

But with a total of 218 out of the 65,536 possible rules, one gets
somewhat different behavior, as cases (g) and (h) above show. The active
cell in these cases does not move in a strictly repetitive way, but instead
sweeps backwards and forwards, going progressively further every time.

The overall pattern produced is still quite simple, however. And

indeed in the compressed form below, it is purely repetitive.

Comprassed varsions of tha evalutizn of maobile autormata {gl and (hi abova, obtained by showeng oy
thase sleps al which the acivm cell = further 1o the left or nghl than it bas eser baan belore

T2
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Of the 65,536 possible mobile automata with rules of the kind
discussed so far it turns out that not a single one shows more complex
behavior. So can such behavior then ever occur in mobile automata?

One can extend the set of rules one considers by allowing not
only the color of the active cell itself but also the colors of its
immediate neighbors to be updated at each step. And with this
extension, there are a total of 4,294 967,296 possible rules.

If one samples these rules at random, one finds that more than
90% of them just yield simple repetitive behavior. But once in every
few thousand rules, one sees behavior of the kind shown below—that is
not purely repetitive, but instead has a kind of nested structure,

|
11 =
CECT NN

A mobila autornaton weth slighthy mora
compheated uns hat yelds a nestaed
pattgen Each colemn on thee ol shows
200 atepz in the mobde automsion
ewpduticn. The compressed ferm of tha
pattsen is hased ona total of 3000 staps,

11 3N I O I N O O O I O B O [ )

.
|||I|||||III||r

e
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The overall pattern is nevertheless still very regular. But after
searching through perhaps 50,000 rules, one finally comes across a rule
of the kind shown below—in which the compressed pattern exhibits
very much the same kind of apparent randomness that we saw in
cellular automata like rule 30.

(N ( MU | NI | AT ([ (T | T | TR
[0 Jicunjjs Ci| = j[msCjj0 sjjcs §] = |

A mchds automaton thet yisdds a pattem waith
sesmingly randor features. The motion of the active
cell is still guite regular, as the picturs on the nght
showes. But when wviewsd n compressed form, as
balow, this owerall pattern of colars Seams In many
respests randam. Each column on the nght showws
200 steps of evolution; the cornpressad form baloes
comesponds to 50,000 steps

But even though the final pattern left behind by the active cell in
the picture above seems in many respects random, the motion of the
active cell itself is still quite regular. So are there mobile automata in
which the motion of the active cell is also seemingly random? At first, T
believed that there might not be. But after searching through a few
million rules, I finally found the example shown on the facing page.
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Despite the fact that mobile automata update only one cell at a
time, it is thus still possible for them to produce behavior of great
complexity. But while we found that such behavior is quite common in
cellular automata, what we have seen in this section indicates that it is
rather rare in mobile automata,

(One can get some insight into the origin of this difference by
studying a class of generalized mobile automata, that in a sense
interpolate between ordinary mobile automata and cellular automata,

The basic idea of such generalized mobile automata is to allow
more than one cell to be active at a time. And the underlying rule is
then typically set up so that under certain circomstances an active cell
can split in two, or can disappear entirely.

Thus in the picture below, for example, new active cells end up

being created every few steps,

O [Cs| Ms| W= | ol |+l sl |=N=

& genaeralzed mokile automaton in whech any nwmbss
of calls can be actee at & tma. The nla given akove is
appberd to evary cell that i active at a particular stap. In
rrany cases, the rule spesifies st that the actoe cal
shoukd move to the left or nght. But = some cases, i1
spoecifies that the active cell should aplit n Do,
tharaty craating an additional active call

If one chooses generalized mobile automata at random, most of
them will produce simple behavior, as shown in the first few pictures
on the facing page. But in a few percent of all cases, the behavior is
much more complicated. Often the arrangement of active cells is still
quite regular, although sometimes it is not.

But looking at many examples, a certain theme emerges: complex
behavior almost never occurs except when large numbers of cells are
active at the same time. Indeed there is, it seems, a significant
correlation between overall activity and the likelihood of complex
behavior. And this is part of why complex behavior is so much more
common in cellular automata than in mobile automata.
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Exarnples of ganaralizad mobila autornata with various rilas. In case (al, only & limited number of calls ever bacoms active. But in
all the other cases shown active cells proliferate forever. In case d), almost all cells are actwse, and the system oporates
essarimlly bkn & collukar sutematon, Inthe remaiming cases Somevha! complicated patterns of oels ane active. Molae that wnlike in
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Turing Machines

In the history of computing, the first widely understood theoretical
computer programs ever constructed were based on a class of systems
now called Turing machines.

Turing machines are similar to mobile automata in that they
consist of a line of cells, known as the "tape”, together with a single
active cell, known as the "head”. But unlike in a mobile actomaton, the
head in a Turing machine can have several possible states, represented
by several possible arrow directions in the picture below.

And in addition, the rule for a Turing machine can depend on the
state of the head, and on the color of the cell at the position of the head,
but not on the colors of any neighboring cells.

[ BENNLINNE |
Co (=M | W

= | H | &
W0 | W~

An exarnple of a Turing rmachine, Like a
maobila automaten, the Turing rmaching
b o st cell o "haead? bub sow
hesd has  several  posshkle  states,
indicated by the directions of the arrowa
in thes pictuns

EEEEHHEERL

Turing machines are still widely used in theoretical computer
science. But in almost all cases, one imagines constructing examples to
perform particular tasks, with a huge number of possible states and a
huge number of possible colors for each cell.

But in fact there are non-trivial Turing machines that have just
two possible states and two possible colors for each cell. The pictures
on the facing page show examples of some of the 4096 machines of this
kind. Both repetitive and nested behavior are seen to occur, though

nothing more complicated is found.



THE W >RLEZ QF S5IMPLE FROQOGRAMS

il B
M

L N imn T
| S i i S ol S Sl S e

Hadelaliela il 1ol il o lat ibiolial il
| W

|
|

e

fai) fthp fel fe)

Exarnples of Turing machings with two poasible states for the head. Thare ars a total of 4096 ules
of this kind. Repetitive snd nested patiems are ssan, but nothing mare complicated ever occura

From our experience with mobile automata, however, we expect
that there should be Turing machines that have more complex behavior.

With three states for the head, there are about three million
possible Turing machines. But while some of these give behavior that
looks slightly more complicated in detail, as in cases (a] and (b} on the
next page, all ultimately turn out to vield just repetitive or nested
patterns—at least if they are started with all cells white.

With four states, however, more complicated behavior
immediately becomes possible. Indeed, in about five out of every
million rules of this kind, one gets patterns with features that seem in
many respects random, as in the pictures on the next two pages.

S0 what happens if one allows more than four states for the head?
It turns out that there is almost no change in the kind of behavior one
sees. Apparent randomness becomes slightly more common, but
otherwise the resules are essentially the same.

Once again, it seems that there is a threshold for complex
hehavior—that is reached as soon as one has at least four states. And
just as in cellular automata, adding more complexity to the underlving
rules does not vield behavior that is ultimately any more complex.
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Substitution Systems

One of the features that cellular automata, mobile automata and Turing
machines all have in common is that at the lowest level they consist of
a fixed array of cells. And this means that while the colors of these cells
can be updated according to a wide range of different possible rules, the
underlying number and organization of cells always stays the same.

Substitution systems, however, are set up so that the number of
elements can change. In the typical case illustrated below, one has a
sequence of elements—each colored say black or white—and at each step
cach one of these elements is replaced by a new block of elements,

In the simple cases shown, the rules specify that each element of
a particular color should be replaced by a fixed block of new elements,
independent of the colors of any neighboring elements,

8 G

Exarmplss of substiteton systems with twe possible kinds of alermeants, in which at evary step sach
kind of alemsant s replced by a fiuad block of nevw slameants, Inthe first cass shown, the total nembear
of elements obtaned deables a1 every atep; in the second case, it follwes a Flhonace sequencs, and
increasas by a factor of roughly (148 2« 1678 at evary step. The Dwe subatitufion syatems
ghowwn hiere comespand to the second and third exarmpiss in the pictures on the folleing teo pages.

And with these kinds of rules, the total number of elements
typically grows very rapidly, so that pictures like those above quickly
become rather unwieldy, But at least for these kinds of rules, one can
make clearer pictures by thinking of each step not as replacing every
element by a sequence of elements that are drawn the same size, but
rather of subdividing cach element into several that are drawn smaller.

In the cases on the facing page, T start from a single element
represented by a long box going all the way across the picture, Then on
successive steps the rules for the substitution system specify how each
box should be subdivided into a sequence of shorter and shorter boxes.
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Examples of substitution systems in which avery element iz dréwn as being subdivided into 8
sequence of new elements at each step. In all cazes the overall patterns ohitained can be sssn fo
hawe a wvary ragular nestad form. Rule by gives the so-callad Thue-horse ssguence, which wa w
ancouniar many timss in this book. Ruls [} 5 related 1o the Fibonacci sequancs. Rule (@ gves a
varsion ol the Cantlor sof

The pictures at the top of the next page show a few more examples.
And what we see is that in all cases there is obvious regularity in the
patterns produced. Indeed, if one looks carefully, one can see that every
pattern just consists of a collection of identical nested pieces.

And ultimately this is not surprising. After all, the basic rules for
these substitution systems specify that any tme an element of a
particular color appears it will always get subdivided in the same way.

The nested structure becomes even clearer it one represents
elements not as boxes, but instead as branches on a tree, And with this
setup the idea is to start from the trunk of the tree, and then at each
step to wse the rules for the substitution system to determine how

every branch should be split into smaller branches.
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hore ecamples of neighbosindependent aubataution systarns like those on the previous page. Each rule ywelds a different sequence
of elernents, but all of them ultimately have simplke nasiad fonms.

Then the point is that becaose the rules depend only on the color of
a particular branch, and not on the colors of any neighboring branches, the
subtrees that are generated from all the branches of the same color must

have exactly the same structure, as in the pictures below.

-Yl-Y Y-y -1-Y I-YlI-Y

The evalution of the same scbsiiuton systams as on the provous page, bul now showen in terms ol rees, Starting from the trunk at

the bollarm, thae rubes specily thal at sach Step every branch af & particular colar shauld spht into smaler brancves in the Sama way
The rasult is that sach trae consests of a collection of prograssively smefsr sulbtraas with the same structurs. On page 400 | will use
gamilar systems 1o discuss the growth of actusl trees and leaves.
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To get behavior that is more complicated than simple nesting, it
follows therefore that one must consider substitution systems whose
rules depend not only on the color of a single element, but also on the
color of at least one of its neighbors. The pictures below show examples
in which the rules for replacing an element depend not only on its own

color, but also on the color of the element immediately to its right.

Exarmples of substituton aystermsa whose rules depend not just on the color of an alerment iteslf, b
alsz on the codor of the element immedistaly to its right. Rules of this kind cannot readily be
interprated in tarms of smpks subdvisien of one alameant inte sevaral. And as a result, thama is no
obwious weay to chooss what size of box should be ussd 1o reprssant sach alamant in the piciura
What | do hers is simply to divide the whels width of the picture equslly samong all slements thai
appear at each step, Mote that on every step the nghtrmozt element is alweays dropeed, sinee ne s
i goven for how to reglace it

In the first example, the pattern obtained still has a simple nested
structure. But in the second example, the behavior is more complicated,
and there is no obvious nested structure.

One feature of both examples, however, is that the total number
of elements never decreases from one step to the next, The reason for
this is that the basic rules we used specity that every single element
should be replaced by at least one new element.
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Twwo weews of a substitution system whoze
rules allow both creaton and destnction of
alamants. In the wiew on the ki, the bowes
reprasenting aach slamant ara scaled to kaap
thar foltal swadth thee sarmuee, wheassas an the
rgfl wach box has & lwed s, as in our
crignal pectures of substitution systems on
page 82, Tha mghi-hand wviewr showws that tha
rates of creation and dastruction of elaments
are balanced closaly enough that the tetal
number of alemeants grows by only & fied

amount at each step

It is, however, also possible to consider substitution systems in
which elements can simply disappear, If the rate of such disappearances
is too large, then almost any pattern will quickly die out. And if there
are too few disappearances, then most patterns will grow very rapidly.

But there is always a small fraction of rules in which the creation

and destruction of elements is almost perfectly balanced.
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The picture above shows one example. The number of elements
does end up increasing in this particular example, but only by a fixed
amount at each step. And with such slow growth, we can again
represent each element by a box of the same size, just as in our original
pictures of substitution systems on page 82,

When viewed in this way, however, the pattern produced by the
substitution system shown above is seen to have a simple repetitive
form. And as it turns out, among substitution systems with the same
type of rules, all those which yield slow growth also seem to produce
only such simple repetitive patterns.

Enowing this, we might conclude that somehow substitution
systems just cannot produce the kind of complexity that we have seen
in systems like cellular automata. But as with mobile automata and
with Turing machines, we would again be wrong. Indeed, as the
pictures on the facing page demonstrate, allowing elements to have
three or four colors rather than just two immediately makes much more
complicated behavior possible.
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As it turns out, the first substitution system shown works almost
exactly like a cellular automaton. Indeed, away from the right-hand
edge, all the elements etfectively behave as if they were lying on a
regular grid, with the color of each element depending only on the
previous color of that element and the element immediately to its right.

The second substitution system shown again has patches that
exhibit a regular grid structure. But between these patches, there are
regions in which elements are created and destroyed. And in the other
substitution systems shown, elements are created and destroved
throughout, leaving no trace of any simple grid scructure, So in the end
the patterns we obtain can look just as random as what we have seen in

systems like cellular automata.

Sequential Substitution Systems

Mone of the systems we have discussed so far in this chapter might at first
seem much like computer programs of the kind we typically use in
practice. But it turns out that there are for example variants of
substitution systems that work essentially just like standard text editors,

The first step in understanding this correspondence is wo think
of substitution systems as operating not on sequences of colored
elements but rather on strings of elements or letters. Thus for
example the state of a substitution system at a particular step can be
represented by the string ABEBABA, where the A's correspond to
white elements and the B to black ones.

The substitution svstems that we discussed in the previous
section work by replacing each element in such a string by a new
sequence of elements—so that in a sense these systems operate in
parallel on all the elements that exist in the string at each step.

But it is also possible to consider sequential substitution
systems, in which the idea is instead to scan the string from left to
right, looking for a particular sequence of elements, and then to
perform a replacement for the first such sequence that is found. And
this setup is now directly analogous to the search-and-replace

function of a typical text editor.
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The picture below shows an example of a sequential substitution
system in which the rule specifies simply that the first sequence of the
torm BA found at each step should be replaced with the sequence ABA.

An awarngle of & wery snpla seguantal substiboton
gystern, The lghl squares can be thought of as
comespandng 9 the eermaent A, and the dark Souanes
ter the elemant B At each step, the ke then specifes
that the string which exsts at thet step shoukd ke
scarnad] from left to right, and the first sequsnce B84
tht is fowend should be replaced by A2A. Inthe picturs,
the bladk dote indcate which slernents ane besng
replaced ot aach step. In the cese shewn, the ndtial
strng is 8484 At each step, the rule then has tha
et o adding an A mside the stimg

The behavior in this case is very simple, with longer and longer
strings of the same form being produced at each step. But one can get
maore complicated behavior if one uses rules that involve more than just
one possible replacement. The idea in this case is at each step to scan
the string repeatedly, trying successive replacements on successive
scans, and stopping as soon as a replacement that can be used is found.

The picture on the next page shows a sequential substitution
system with rule [ABA - AAB, A = ABA} involving two possible
replacements. Since the sequence ABA occurs in the initial string that is
given, the first replacement is used on the first step. But the string
BAAB that is produced at the second step does not contain ABA |, s0 now
the first replacement cannot be used. Nevertheless, since the string does
contain the single element A, the second replacement can still be used.

Despite  such alternation between different replacements,
however, the final pattern that emerges is very regular. Indeed, if one
allows only two possible replacements—and two possible elements—

a9
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then it seems that no rule ever gives behavior that is muoch more
complicated than in the picture above,

And from this one might be led to conclude that sequential
substitution systems could never produce behavior of any substantial
complexity. But having now seen complexity in many other kinds of
systems, ong might suspect that it should also be possible in sequential
substitution systems.

And it turns out that if one allows more than two possible
replacements then one can indeed immediately get more complex
behavior. The pictures on the facing page show a few examples. In many
cases, fairly regular repetitive or nested patterns are still produced.

But about once in every 10,000 randomly selected rules, rather
different behavior is obtained. Indeed, as the picture on the following
page demonstrates, patterns can be prodoced that seem in many
respects random, much like patterns we have seen in cellular
automata and other systems.

So this leads to the rather remarkable conclusion that just by
using the simple operations available even in a very basic text editor, it
is still ultimately possible to produce behavior of great complexity,
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Tag Systems

One of the goals of this chapter is to find out just how simple the
underlying structure of a system can be while the system as a whole is
still capable of producing complex behavior. And as one example of a
class of svstems with a particularly simple underlying structure, I
consider here what are sometimes known as tag systems.

A tag system consists of a sequence of elements, each colored say
hlack or white. The rules for the system specify that at each step a fixed
number of elements should be removed from the beginning of the
sequence. And then, depending on the colors of these elements, one of
several possible blocks is tagged onto the end of the sequence.

The pictures below show examples of tag systems in which just
one ¢lement is removed at each step. And already in these systems one

sometimes sees behavior that looks somewhat complicated.

raf

Examplas of tag systems in which a single alamant is ramovad from the beginning of the seguance at sach step, and a new
black of eluments 15 added 1o the end of he Sequence acccrdng o the rules shown, Becauvse aonly & snglke elament 15
rrmioaied At gach Step, the systerms atbectivedy (ust ayclie through all dements, replacing each oneg m berne And alter evary
complata cycle, the ssquences obtained correspond exactly to the sequences produced on successive steps o the first
three ordinary neighborindapandant swletitution syetams shown on page 53,

But in fact it turns out that if only one element is removed at
each step, then a tag system always effectively acts just like a slow
version of a neighbor-independent substitution system of the kind we
discussed on page 83. And as a result, the pattern it produces must
ultimately have a simple repetitive or nested form.

If two elements are removed at each step, however, then this is no
longer true. And indeed, as the pictures on the next page demonstrate,

the behavior that is obtained in this case can often be very complicated.
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Cyclic Tag Systems

The basic operation of the tag systems that we discussed in the previous
section is extremely simple. But it turns out that by using a slightly
different setup one can construct systems whose operation is in some
ways even simpler. In an ordinary tag system, one does not know in
advance which of several possible blocks will be added at each step. But
the idea of a cvelic tag system is to make the enderlyving rule already
specify exactly what block can be added at each step.

In the simplest case there are two possible blocks, and the rule
simply alternates on successive steps between these blocks, adding a
block at a particular step when the first element in the sequence at that
step is black. The picture below shows an example of how this works,

S == =

An mamphe of & oychic tag sestem, Thise ane Dwaa cases in the ruke,
and thess cases ane uaed on abamats sieps, a8 iInauated by the cinsle
mone on the . In each case a sngle elemant 18 rermoved Trom the
bagnning of the seguanca, and then a new bleok = addsd at the and
wihimrizaizr the alormuen? rpemeeied © bk |he rde can be semrmanzed

et By geving thee Bl 1o be used i sach case, as shown balow

R A=y

The next page shows examples of several eyelic tag systems. In
cases al and |b) simple behavior is obtained. In case [c] the behavior is
slightly more complicated, but if the pattern is viewed in the
appropriate way then it turns out to have the same nested form as the
third neighbor-independent substitution system shown on page H3.

So what about cases (d] and (]! In both of these, the sequences
abtained at successive steps grow on average progressively longer. But if
one looks at the fluctuations in this growth, as in the plots on the next

page, then one finds that these fluctuations are in many respects random.
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Register Machines

All of the various kinds of systems that we have discussed so far in this
chapter can readily be implemented on practical computers. But none of
them at an underlving level actually work very much like typical
computers. Register machines are however specifically designed to be
very simple idealizations of present-day computers.

Under most evervday circumstances, the hardware construction
of the computers we use is hidden from us by many lavers of software.
But at the lowest level, the CPUs of all standard computers have
registers that store numbers, and any program we write is ultimately
converted into a sequence of simple instructions that specity operations
to be performed on these registers.

Muost practical computers have quite a few registers, and support
perhaps tens of different kinds of instructions. But as a simple
idealization one can consider register machines with just two registers—
each storing a number of any size—and just two kinds of instructions:
“"increments” and “decrement-jumps”. The rules for such register
machines are then idealizations of practical programs, and are taken to
consist of fixed sequences of instructions, to be executed in turn,

Increment instructions are set up just to increase by one the
number stored in a particular register. Decrement-jump instructions, on
the other hand, do two things. First, they decrease by one the number in
a particular register. But then, instead of just going on to execute the
next instruction in the program, they jump to some specified other
point in the program, and begin executing again from there.

Since we assume that the numbers in our registers cannot be
negative, however, a register that is already zero cannot be decremented.
And decrement-jump instructions are then set up so that it they are
applied to a register containing zero, they just do essentially nothing:
they leave the register unchanged, and then they go on to execute the
next instruction in the program, without jumping anywhere,

This feature of decrement-jump instructions may seem like a
detail, but in fact it is crucial—for it is what makes it possible for our
register machines to take different paths depending on values in
registers through the programs they are given.
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txamples of smpls regestar machings, 551 up to mimis the loweeleval oparation of practical computsrs. Tha machines showwn
hava twee registars, whose waluss on succassve steps ars gaven on suscessee ines down tha page, Each madhing follows
& Tooed prrogram gran a1 the top The program conssis ol 8 Ssequence of noement = and decremant-permp @ insiuctions
neabructiens that are ahosn s light gray bewes: refer to the first regester; those shown as dark gray boses refer o the second
cne. Cnoaach ling gong down the page, the Hack dot on the el indicatas which instruction i the program is baing exscuted

at the corresgonodng step. With the parbcular programs shown hars, each miathine just executses successive Metructons in
wnn, urmpng o thae Baganirg sgen whan b resding the and af The program

And with this setup, the pictures above show three very simple
examples of register machines with two registers, The programs for
each of the machines are given at the top, with » representing an
increment instruction, and « a decrement-jump. The successive steps
in the evolution of each machine are shown on successive lines down
the page. The instruction being executed is indicated at each step by the
position of the dot on the left, while the numbers in each of the two
registers are indicated by the gray blocks on the right.

All the register machines shown start by executing the first
instruction in their programs. And with the particular programs used
here, the machines are then set up just to execute all the other
instructions in their programs in turn, jumping back to the beginning of
their programs whenever they reach the end.

Both registers in each machine are initially zero, And in the first
machine, the first register alternates between 0 and 1, while the second

remains zero. In the second machine, however, the first register again



alternates between 0 and 1, but the second register progressively grows.
And finally, in the third machine both registers grow,

But in all these three examples, the overall behavior is essentially
repetitive, And indeed it turns owvt that among the 10,552 possible
register machines with programs that are four or fewer instructions
long, not a single one exhibits more complicated behavior.

However, with five instructions, slightly more complicated
hehavior becomes possible, as the picture below shows, But even in this
example, there is still a highly regular nested structure,

>

|_ . & regestar maching that showes nastad
L rathuer than strnicthy repetitive biebaves

| e rI?I_]I!'il':!' machne has a Hroraems
which is five instructons long. It furns
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. the 248 832 possible programs wath
free instrectionz that yield amything
. sthar than strictly repsttive bahavies,
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And it turns out that even with up to seven instructions, none of
the 276,224 376 programs that are possible lead to substantially more
complicated behavior. But with eight instructions, 126 out of the
11,019.960.576 possible programs finally do show more complicated

behavior. The next page gives an example.
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& ragister machine whosa bahavior esems in sorme ways random. The program for thes register machine is esght instructions long.
le=ting al 11,008,960 676 possible prograrms of hength eight revealod jest s ard 125 somdar cases ol complex Behavior, Bart (k)
showvs the evolubion m compressed form, wath only these steps moheied at which aither o the registers bas just decreased o Zero
The walues of the nonzera registers are shown using a loganthmic scels. Part {cl shows the inatructons that are executed for the first
400 times that one of the registers s dacreased to zero. Firally, part 1d) gives the successive valuas attained by the sscond register at
stegs whara the first registar has pest decreassd to 2600, Thass valuss are given hara as binary digit sequencas. As discussed on page
122, tha valuas can n fact be ohtamad by a sempls arithmatic rda, wthowt explicatly following sach step in tha eveluton of tha ragister
i, If o valee is a, then the next valus s 3o/2 § a iz eeen, and (3es 12§ ais odd. The initial condtion g o=

Looking just at the ordinary evolution labelled (al, however, the
system might still appear to have quite simple and regular behavior, But
a closer examination turns out to reveal irregularities. Part (b) of the

picture shows a version of the evolution compressed to include only

104



those steps at which one of the two registers has just decreased to zero.
And in this picture one immediately sees some apparently random
variation in the instructions that are executed,

Part |c) of the picture then shows which instructions are executed
for the first 400 times one of the registers has just decreased to zero,
And part {d) finally shows the base 2 digits of the successive values
attained by the second register when the first register has just decreased
to zero, The results appear to show considerable randomness.

S0 even though it may not be as obvious as in some of the other
systems we have studied, the simple register machine on the facing
page can still generate complex and seemingly quite random behavior,

S0 what about more complicated register machines?

An obvious possibility is to allow more than two registers. But it
turns out that very little is normally gained by doing this, With three
registers, for example, seemingly random behavior can be obtained with
a program that is seven rather than eight instructions long, But the
actual behavior of the program is almost indistinguishable from what
we have already seen with two registers.

Another way to set up more complicated register machines is w
extend the kinds of underlyving instructions one allows, One can for
example introduce instructions that refer to two registers at a time,
adding, subtracting or comparing their contents. But it turns out that the
presence of instructions like these rarely seems to have much effect on
gither the form of complex behavior that can oceur, or how common it is.

Yet particularly when such extended instruction sets are used,
register machines can provide fairly accurate idealizations of the
low-level operations of real computers, And as a result, programs for
register machines are often very much like programs written in actual
low-level computer languages such as C, Basic, Java or assembler,

In a typical case, each wvariable in such a program simply
corresponds to one of the registers in the register machine, with no
arrays or pointers being allowed. And with this correspondence, our
general results on register machines can also be expected to apply to
simple programs written in actoal low-level computer languages,
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Practical details make it somewhat difficult to do systematic
experiments on such programs. But the experiments I have carried out
do suggest that, just as with simple register machines, searching
through many millions of short programs typically vields at least a few
that exhibit complex and seemingly random behavior.

Symbeolic Systems

Register machines provide simple idealizations of cypical low-level
computer languages. But what about Mathematica? How can one set up a
simple idealization of the transformations on symbolic expressions that
Mathematica does? One approach suggested by the idea of combinators
from the 19205 is to consider expressions with forms such as
elelellelllelie] and then to make transformations on these by repeatedly
applying rules such as ¢[x_][y_] = x[x[y]], where x_ and y_ stand for any
exXpression.

The picture below shows an example of this. At each step the
transformation is done by scanning once from left to right, and applying
the rule wherever possible without overlapping.

& seguanca of steps in the evslution of a

=mple symbobs system. At sach step sach
o boed regeon @ transformned sccording to the
w iyl ] ruba shoem. Thes transformation comesponds

to applying the basic Msthemshica operation
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The structure of expressions like those on the facing page is
determined just by their sequence of opening and closing brackets. And
representing these brackets by dark and light squares respectively, the
picture below shows the overall pattern of behavior generated.

fora steps in the avolution on the previous page, with opaning brackats represanted ey dark sguares and closing brackets by light
onmg, Ineach case conbguralions widks Than the proiure ane cut ol an the nght. For the initia condition fram the previous pags, the
syslorm evolves aller 264 steps toa Twed conhiguratan invalveng 288 opening brackats followved by 358 closing brackats, For tha inmial
Coamddion on the bottom nght, the ayalem again eaoes 1o 8 fed contiguration, but ndw thes takes Gb, 555 aieps, and the Cl:ll'lflgl.ll'm il
imazhvas G553 opaning and closing brackets. Mota that the evelution rules are heghly nondocal, and ang rather unive thosa, say. ina
cslular autorraton, 1t turrs oot that this particular system absays evobias toa fiwed configuration, but for ntial conditions of size 2 can
taka reamghly n terated powars of 7 lar 2 | lo do so
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With the particular rule shown, the behavior always eventually
stahilizes—though sometimes only after an astronomically long time.

But it is quite possible to find symbolic systems where this does
not happen, as illustrated in the pictures below. Sometimes the
behavior that is generated in such systems has a simple repetitive or
nested form. But often—just as in so many other kinds of systems—the

behavior is instead complex and seemingly quite random.
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Some Conclusions

In the chapter before this one, we discovered the remarkable fact that
even though their underlying rules are extremely simple, certain cellular
automata can nevertheless produce behavior of great complexity.

Yet at first, this seems so surprising and so outside our normal
experience that we may tend to assume that it must be a consequence
of some rare and special feature of cellular automata, and muost not
pccur in other kinds of systems.

For it is certainly true that cellular automata have many special
teatures, All their elements, for example, are always arranged in a rigid
array, and are always updated in parallel at each step. And one might
think that features like these could be crucial in making it possible to
produce complex behavior from simple underlying rules.

But from our study of substitution systems earlier in this chapter
we know, for example, that in fact it is not necessary to have elements
that are arranged in a rigid array. And from studying mobile automata,
we know that updating in parallel is also not critical.

Indeed, T specifically chose the sequence of systems in this
chapter to see what would happen when each of the various special
features of cellular automata were taken away. And the remarkable
conclusion is that in the end none of these features actually matter
much at all. For every single type of system in this chapter has
ultimately proved capable of producing very much the same kind of
complexity that we saw in cellular automata,

So this suggests that in fact the phenomenon of complexity is quite
universal—and quite independent of the details of particular systems,

But when in general does complexity occur?

The examples in this chapter suggest that if the rules for a
particular system are sutficiently simple, then the system will only ever
exhibit purely repeticive behavior, If the roles are slightly more
complicated, then nesting will also often appear. But to get complexity
in the overall behavior of a system one needs to go beyond some

threshold in the complexity of its underlying rules.
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The remarkahle discovery that we have made, however, is that
this threshold is typically extremely low. And indeed in the course of
this chapter we have seen that in every single one of the general kinds
of systems that we have discussed, it ultimately takes only very simple
rules to produce behavior of great complexity.,

(One might nevertheless have thought that if one were to increase
the complexity of the rules, then the behavior one would get would also
become correspondingly more complex. But as the pictures on the
tacing page illustrate, this is not typically what happens.

Instead, once the threshold for complex behavior has been
reached, what one usvally finds is that adding complexity to the
underlying rules does not lead to any perceptible increase at all in the
overall complexity of the behavior that is produced.

The crucial ingredients that are needed for complex behavior are,
it seems, already present in systems with very simple rules, and as a
result, nothing fundamentally new typically happens when the rules
are made more complex. Indeed, as the picture on the facing page
demonstrates, there is often no clear correlation between the
complexity of rules and the complexity of behavior they produce. And
this means, for example, that even with highly complex rules, very
simple behavior still often occurs,

Omne observation that can be made from the examples in this
chapter is that when the behavior of a system does not look complex, it
tends to be dominated by either repetition or nesting. And indeed, it
seems that the basic themes of repetition, nesting, randomness and
localized structures that we already saw in specific cellular automata in
the previous chapter are actually very general, and in fact represent the
dominant themes in the behavior of a vast range of different systems,

The details of the eunderlving rules for a specific system can
certainly affect the details of the behavior it produces. But what we
have seen in this chapter is that at an overall level the typical types of
behavior that occur are quite universal, and are almost completely
independent of the details of underlying rules,

And this fact has been crucial in my efforts to develop a coherent
science of the kind I describe in this book. For it is what implies that
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there are general principles that govern the behavior of a wide range of
systems, independent of the precise details of each system.

And it is this that means that even if we do not know all the
details of what is inside some specific system in nature, we can still
potentially make fundamental statements about its overall behavior,
Indeed, in most cases, the important features of this behavior will
actually turn out to be ones that we have already seen with the various

kinds of very simple rules that we have discussed in this chapter.

How the Discoveries in This Chapter Were Made

This chapter—and the last—have described a series of surprising
discoveries that I have made about what simple programs cypically do. And
in making these discoveries T have ended up developing a somewhat new
methodology—that T expect will be central w almost any fundamental
investigation in the new kind of science that I describe in this book.

Traditional mathematics and the existing theoretical sciences
would have suggested using a basic methodology in which one starts
from whatever behavior one wants to study, then tries to construct
examples that show this behavior. But T am sure that had T used this
approach, I would not have got very far. For [ would have looked only
for types of behavior that 1 already believed might exist. And in
studying cellular automata, this would for example probably have
meant that I would only have looked for repetition and nesting,

But what allowed me to discover much more was that I used instead
a methodology fundamentally based on doing computer experiments.

In a traditional scientific experiment, one sets up a system in
nature and then watches to see how it behaves. And in much the same
way, one can set up a program on a computer and then watch how it
behaves, And the great advantage of such an experimental approach is
that it does not require one to know in advance exactly what kinds of
behavior can occur. And this is what makes it possible to discover
genuinely new phenomena that one did not expect.

Experience in the traditional experimental sciences might suggest,

however, that experiments are somehow always fundamentally imprecise.



For when one deals with systems in nature it is normally impossible to set
up or measure them with perfect precision—and indeed it can be a
challenge even to make a traditional experiment be at all repeatable.

But for the kinds of computer experiments I do in this book, there
is no such issue, For in almost all cases they involve programs whose
rules and initial conditions can be specified with perfect precision—so
that they work exactly the same whenever and wherever they are run.

In many ways these kinds of computer experiments thus manage
to combine the best of both theoretical and experimental approaches to
science, For their results have the kind of precision and clarity that one
expects of theoretical or mathematical statements, Yet these resules can
nevertheless be found purely by making observations.

Yet as with all types of experiments it requires considerable skill
and judgement to know how to set up a computer experiment that will
yield meaningful results. And indeed, over the past twenty years or so my
own methodology for doing such experiments has become vastly better.

Over and over again the single most important principle that I
have learned is that the best computer experiments are ones that are as
simple and straightforward as possible. And this principle applies both
to the structure of the actual systems one studies—and o the
procedures that one uses for studying them.

At some level the principle of looking at systems with the
simplest possible structure can be viewed as an abstract aesthetic one,
But it turns out also to have some VErY CONnCrete con SequUences.

For a start, the simpler a structure is, the more likely it is that it
will show up in a wide diversity of different places. And this means that
by studying systems with the simplest possible structure one will tend
to get results that have the broadest and most fundamental significance.

In addition, looking at svstems with simpler uonderlying
structures gives one a better chance of being able to tell what is really
responsible for any phenomenon one sees—for there are fewer features
that have been put into the system and that could lead one astray.

At a purely practical level, there is also an advantage to studying
systems with simpler structures; for these systems are usually easier to
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implement on a computer, and can thus typically be investigated more
extensively with given computational resources,

But an obvious issue with sayving that one should study systems
with the simplest possible structure is that such systems might just not
be capable of exhibiting the kinds of behavior that one might consider
interesting—aor that actually occurs in nature.

And in fact, intuition from traditional science and mathematics
has always tended to suggest that unless one adds all sorts of
complications, most systems will never be able to exhibit any very
relevant behavior, But the results so far in this book have shown that
such intuition is far from correct, and that in reality even systems with
extremely simple rules can give rise to behavior of great complexity.

The consequences of this fact for computer experiments are quite
profound, For it implies that there is never an immediate reason to go
beyond studying systems with rather simple underlying rules, But to
absorb this point is not an easy matter, And indeed, in my experience
the single most common mistake in doing computer experiments is to
look at systems that are vastly more complicated than is necessary.

Typically the reason this happens is that one just cannot imagine
any way in which a simpler system could exhibit interesting behavior,
And so one decides to look at a more complicated system—usually with
features specifically inserted to produce some specific form of behavior.

Much later one may go back and look at the simpler system
again. And this is often a humbling experience, for it is common to find
that the system does in fact manage to produce interesting behavior—
but just in a way that one was not imaginative enough to guess.

S0 having seen this many times I now always try to follow the
principle that one can never start with too simple a system. For at
waorst, one will just establish a lower limit on what is needed for
interesting behavior to occur. But much more often, one will instead
discover behavior that one never thought was possible.

It should however be emphasized that even in an experiment it is
never entirely straightforward to discover phenomena one did not
expect. For in setting up the experiment, one inevitably has to make
assumptions about the kinds of behavior that can occur, And if it turns
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put that there is behavior which does not happen to fit in with these
assumptions, then typically the experiment will fail to notice it.

In my experience, however, the way to have the best chance of
discovering new phenomena in a computer experiment is to make the
design of the experiment as simple and direct as possible, Tt is usually
much better, for example, to do a mindless search of a large number of
possible cases than to do a carefully crafted search of a smaller number,
For in narrowing the search one inevitably makes assumptions, and
these assumptions may end up missing the cases of greatest interest.

Along similar lines, I have always found it muoch better to look
explicitly at the actual behavior of systems, than to work from some
kind of summary. For in making a summary one inevitably has to pick
put only certain features, and in doing this one can remove or obscure
the most interesting effects,

But one of the problems with very direct experiments is that they
often generate huge amounts of raw data. Yet what T have typically
found is that if one manages to present this data in the form of pictures
then it effectively becomes possible to analyze very quickly just with
one's eyes. And indeed, in my experience it is typically much easier to
recognize unexpected phenomena in this way than by using any kind of
automated procedure for data analysis.

It was in a certain sense lucky that one-dimensional cellular
automata were the first examples of simple programs that 1
investigated. For it so happens that in these systems one can usually get
a good idea of overall behavior just by looking at an array of perhaps
10,000 cells—which can easily be displayed in few square inches.

And since several of the 256 elementary cellular automaton rules
already generate great complexity, just studyving a couple of pages of
pictures like the ones at the beginning of this chapter should in
principle have allowed one to discover the basic phenomenon of
complexity in cellular automata.

But in fact I did not make this discovery in such a straightforward
way. I had the idea of looking at pictures of cellular automaton
evolution at the very beginning. But the technological difficulty of
producing these pictures made me want to reduce their number as
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much as possible. And so at first I looked only at the 32 rules which had
lett-right symmetry and made blank backgrounds stay unchanged.

Among these rules T found examples of repetition and nesting.
And with random initial conditions, I found more complicated behavior,
But since I did not expect that any complicated behavior would be
possible with simple initial conditions, I did not try looking at other
rules in an attempt to find it. Nevertheless, as it happens, the first paper
that T published about cellular automata—in 1983—did in fact include a
picture of rule 30 from page 27, as an example of 2 non-symmetric rule,
But the picture showed only 20 steps of evolution, and at the time T did
not look carefully at it, and certainly did not appreciate its significance,

For several years, I did progressively more sophisticated computer
experiments on cellular automata, and in the process I managed to
elucidate many of their properties. But finally, when technology had
advanced to the point where it became almost trivial for me to do so, I
went back and generated some straightforward pages of pictures of all
256 elementary rules evolving from simple initial conditions, And it
was upon seeing these pictures that I finally began to appreciate the
remarkable phenomenon that occurs in systems like rule 30.

Seven years later, after T had absorbed some basic intuition from
looking at cellular automata like rule 30, T resolved to find out whether
similar phenomena also occurred in other kinds of systems, And the
first such systems that I investigated were mobile automara.

Maobile automata in a sense evolve very slowly relative wo cellular
automata, so to make more efficient pictures I came up with a scheme
tor showing their evolution in compressed form. T then started off by
generating pictures of the first hundred, then the first thousand, then
the first ten thousand, mobile automata. But in all of these pictures I
tound nothing beyond repetitive and nested behavior.

Yet being convinced that more complicated behavior must he
possible, 1 decided to persist, and so I wrote a program that would
automatically search through large numbers of mobile automata. T set
up various criteria for the search, based on how I expected mobile
automata could behave. And quite soon, T had made the program search
a million mobile automata, then ten million.
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But still I found nothing.

S0 then T went back and started looking by eye at mobile
automata with large numbers of randomly chosen rules. And after some
time what I realized was that with the compression scheme I was vsing
there could be mobile avtomata that would be discarded according w
my search criteria, but which nevertheless still had interesting
behavior. And within an hour of modifying my search program to
account for this, I found the example shown on page 74.

Yet even after this, there were still many assumptions implicit in
my scarch program. And it took some time longer to identify and
remove them, But having done so, it was then rather straightforward to
find the example shown on page 75.

A somewhat similar pattern has been repeated for most of the
other systems described in this chapter. The main challenge was always
to avoid assumptions and set up experiments that were simple and
direet enough that they did not miss important new phenomena.

In many cases it took a large number of iterations to work out the
right experiments to do. And had it not been for the ease with which I
could set up new experiments using Mathenatica, it is likely that I
would never have gotten very far in investigating most of the systems
discussed in this chapter. But in the end, after running programs for a
total of several vears of computer time—corresponding to more than a
million billion logical operations—and creating the equivalent of tens
of thousands of pages of pictures, I was finally able to find all of the
various examples shown in this chapter and the ones that follow.
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Systems Based on Numbers

The Notion of Numbers

Much of science has in the past ultimately been concerned with trying
to find ways to describe natural systems in terms of numbers.

Yet g0 far in this book T have said almost nothing about numbers.
The purpose of this chapter, however, is to investigate a range of
systems that are based on numbers, and to see how their behavior
compares with what we have found in other kinds of systems,

The main reason that systems based on numbers have been so
popular in traditional science is that so much mathematics has been
developed for dealing with them. Indeed, there are certain kinds of
systems based on numbers whose behavior has been analyzed almost
completely using mathematical methods such as calculus.

Inevitably, however, when such complete analysis is possible, the
final behavior that is found is fairly simple.

S0 can systems that are based on numbers ever in fact yield
complex behavior? Looking at most  textbooks of science and
mathematics, one might well conclude that they cannot. But what one
must realize is that the systems discussed in these textbooks are usoally
ones that are specifically chosen to be amenable to fairly complete
analysis, and whose behavior is therefore necessarily quite simple.

And indeed, as we shall see in this chapter, if one ignores the

need for analysis and instead just looks at the results of computer
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experiments, then one guickly finds that even rather simple systems
based on numbers can lead to highly complex behavior.

But what is the origin of this complexity? And how does it relate
to the complexity we have seen in systems like cellular avtomata?

One might think that with all the mathematics developed for
studying systems based on numbers it would be easy to answer these
kinds of questions, But in fact traditional mathematics seems for the
most part to lead to more confusion than help.

One basic problem is that numbers are handled very differently in
traditional mathematics from the way they are handled in computers
and computer programs. For in a sense, traditional mathematics makes
a fundamental idealization: it assumes that numbers are elementary
objects whose only relevant attribute is their size. But in a computer,
numbers are not elementary objects. Instead, they must be represented
explicitly, typically by giving a sequence of digits.

The idea of representing a number by a2 sequence of digits is
familiar from everyday life: indeed, our standard way of writing
numbers corresponds exactly to giving their digit sequences in base 10,
What base 10 means is that for each digit there are 10 possible choices:
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(0 through 9. But as the picture at the bottom of the facing page shows,
one can equally well use other bases. And in practical computers, for
example, base 2 is almost always what is used,

S0 what this means is that in a computer numbers are
represented by sequences of 0% and 1%, much like sequences of white
and black cells in systems like cellular automata. And operations on
numbers then correspond to ways of updating sequences of 0% and 1%s.

In traditional mathematics, the details of how operations
performed on numbers affect sequences of digits are usually considered
quite irrelevant. But what we will find in this chapter is that precisely
by looking at such details, we will be able to see more clearly how
complexity develops in systems hased on numbers.

In many cases, the behavior we find looks remarkahly similar to
what we saw in the previous chapter, Indeed, in the end, despite some
confusing suggestions from traditional mathematics, we will discover
that the general behavior of systems based on numbers is very similar
to the general behavior of simple programs that we have already

discussed.

Elementary Arithmetic

The operations of elementary arithmetic are so simple that it
seems impossible that they could ever lead to behavior of any great
complexity. But what we will find in this section is that in fact they can.

To begin, consider what is perhaps the simplest conceivable
arithmetic process: start with the number 1 and then just progressively
add 1 at each of a sequence of steps.

The result of this process is to generate the successive numbers
1,2,3, 4,5 6 7,8 ... The sizes of these numbers obviously form a
very simple progression,

But if one looks not at these overall sizes, but rather at digit
sequences, then what one sees is considerably more complicated. And
in fact, as the picture on the right demonstrates, these successive digit

sequences form a pattern that shows an intricate nested structure.
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The pictures below show what happens if one adds a number
other than 1 at each step. Near the right-hand edge, each pattern is
somewhat ditferent, But at an overall level, all the patterns have exactly
the same basic nested structure.

T [ [ ik i1 hea oS ik 1

Drigit saquences in bagse 2 of nuembers obtained by starting with 1 and then successively adding a
constant at aach step. Al thess patterrs ullimately hava the same ovarall nasted form.

If instead of addition one uses multiplication, however, then the
results one gets can be very different. The first picture at the top of the
facing page shows what happens if one starts with 1 and then
successively multiplies by 2 at each step.

It turns out that if one represents numbers as digit sequences in
base 2, then the operation of multiplying by 2 has a very simple effect:
it just shifts the digit sequence one place to the left, adding a O digit on
the right. And as a result, the overall pattern obtained by successive

multiplication by 2 has a very simple form.
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Patterns produced by starbng with the numbar 1, and than successively multiplying by & factor of 2, snd a fector of 3. In each
casay, The cign Secueencie ol the nurmber abtained at each Step 15 showen in Base 2, Muiplication by 7 s ool 1o cormespond s

ta shiting all digits i base 2 ane pasibon b the ki, 2o thal the overall pattem prodeced in s case = very ampls. Bul
multiplicaton by 3 yields a much mare complicated pattern, a3 the pieture on the nght showa, Mote that in these pictures the

complata rembers chtained at sach step comespond respsctivaly to the succassive integer powars of 7 and of 3

But if the multiplication factor at each step is 3, rather than 2,
then the pattern obtained is quite different, as the second picture above
shows. Indeed, even though the only operation used was just simple
multiplication, the final pattern obtained in this case is highly complex.

The picture on the next page shows more steps in the evolution of
the system. At a small scale, there are some obvious triangular and
other structures, but beyond these the pattern looks essentially random.

S0 just as in simple programs like cellular automata, it seems
that simple systems based on numbers can also vield behavior that is
highly complex and apparently random.

But we might imagine that the complexity we see in pictures like
the one on the next page must somehow be a consequence of the fact that
we are looking at numbers in terms of their digit sequences—and would
not occur if we just looked at numbers in terms of their overall size.

A few examples, however, will show that this is not the case.

To begin the first example, consider what happens if one
multiplies by 3/2, or 1.5, at each step. Starting with 1, the successive
numbers that one obtains in this way are 1, 3/2=1.5, %4=2.125,
278 = 3.375, Bl/16 = 5.0625, 243/32 = 7.59375, 72964 = 11.390625, ...
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hie Tirst GO0 powers of 3, shown in base 2. Some small-Scabs Shucies 5 visable, but ona larger scale the patiem $eams for al pracia
purposes random, Matm that the pattern showen b bas been runcated at the edoge of the page on the ledt, although in fact T vebobs
patiarn contmees o expand o the ki fosasar with an HvEragS SaOfs of LaglZ, 5= T1.58.
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The picture below shows the digit sequences for these numbers
given in base 2. The digits that lie directly below and to the left of the
original 1 at the top of the pattern correspond to the whole number part
of each successive number (e.g 3 in 3.375|, while the digits that lie to
the right correspond to the fractional pare |e.g 0.3751n 3,375
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Successive powars of 2, showen in base 2. Multiphicaton by 372 can ba thought of as multiplication by 3 combined with devisaon by 2
But division by 2 just doss the opposite of multiplication by 2, 5000 base 2 it simipdy shifts all digits one position (o tha rght. Tha owvarall
pattern & thus 8 shfied version of the patterm shown on the facing page.

And instead of looking explicitly at the complete pattern of digits,
one can consider just finding the size of the fractional part of each
successive number. These sizes are plotted at the top of the next page.
And the picture shows that they too exhibit the kind of complexity and
apparent randomness that is evident at the level of digits,
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Sizes of the fractional parts of successive powers of 382, These sizes are completely independent of what bese s used to represent

the nurnbers, O tly the dats are Elgl'llfl'lﬂ"“l_ the shading and lines batweasn them ars LET incledad o makse the plot esgier o readl.

The example just given involves numbers with fractional parts.
But it turns out that similar phenomena can also be found in systems

that involve only whole numbers,

As a first example, consider a slight variation on the operation of

multiplying by 3/2 used above: if the number at a particular step is even
(divisible by 2), then simply multiply that number by 3/2, getting a
whole number as the result, But if the number is odd, then tirst add 1—

50 as to get an even number—and only then multiply by 3/2.

A0 RTO TENDT R0 0D 10T G0 3 0 AR T 1 0 (ODF0STET 1 1 POGT 100 51 P2 D302 RAFT P T IO
TART PO TONCORT 10T A030T PAFTC0T T MAGQT TO0GT T a7 T TTAFIETaT 00 FI0TET 3 T2 MR T Domong
DRI RIE T D00 00 A0 3 T30 SAGII 02 F A0DET I T3 7 1 SAGDETOT I 37 10027 10 #1531 10200
TRRDRIPO T TO0 T I 00T I DFTRIT 100 FARDE TR0 T IO F0I0 W3 PO TORMIT T 303 5 0 GOa00
(0 TCT 0T QT T T AT 3 T TO0ET O 1 TEMFT PO 10N AR ARG ¥ 10T (T 10 0T (e 1 (e PN
TR0 OO O A0 AT 130 10T 3 TS AP TOT I B0 T3 TOROSD AT T2 A0 1 007 30 F IO
FOJRIT0T P 1 RFOST R0 RAPERIT T ROGT T05T 1G0T 00T 00 T P IS0 RARI T 0T T AP T 302 I FIP
GOPIQTITIOARIOMI O FIGTIFOAT I TR0 0700 FACTE0AT I MR TET 107 PAT TOMMARAGR I 0 7 1071
BRI TR A0 F T TP 10T I0DT I TAD 11 10 0G00I T P 150F TETOST GO 1O 01 11 F 18100 1 BT
O N PRI TENT B0 (R TR 30 D 2T MDY P00 POGT BT 3T TP A 000 TR P T T 0 3 B 00§ TO0D
PO TR T PRI OR P T T3 T@na T 100 0T 00 ARG TETT T 10T 1 Tomar T 71 3 Tona Tl
O 10T 1 1 1 0 AT B0 0T 1 1030030 P 1DTATIDP 100 0 I FOSTI00MT P13 T 0300
DOFTPTPOITET R0 P A0XT T PO IO IR0 O 0DPT PO TIORDE ROFTI TP 10T AT TO0NH D000
DAGAPTO0I T T NODEAITIT T RA3T I TE07 71 P IFTO0R FARAT T3 TOMAE FO 7 TI07 37 MADT 137 171007 0000
FIPTATOODAORTF T T8 RO ADP 03 TETII00DT 0 TG 003 TO P 109 ¢ 11000050 F 10T T102 /00301 B
FIPT0ITO0 PTFT00 0 RORDIOO0 T PT PTOTITT PA0T IO000000 0 T 10000 P 10007 I TORI 13T AT 10
T 708 AT TET T80T 1000 T PR TG TOAF I PO T2 P TP IETOTET 1RO F 100 03T 10307 FaT 10037000
D3 BT 10 A2ST I TG 30 IR #1 P9 FOOT S IT0DF ST 101 K91 10303 3 #1003 0270 1 AP0 TITD

Fesulis of startng with the number 1, than appfing the folowing mls: i
the number at o particular step i even, multipl by 32, otherwize add 1,
then multiphy by 302, This procedure yislds a succesaon of whole numbers
wihose digit saquences in besa 2 are showen at the night. The nghtmost
digits cbtained at sach step are showwn ahove, The digit is O whan the
numbeer 1% wven and 1 sehen § 5 odd, and, as shaeen, the digits alternate in
& saarmingly randarm ey lurms owl that the system descntsd hora 15
chasaly refatad to one that arose in studying the register maching shown
on page 100, The system here can be represanted by the rule
A= FIEvendin), 202 Jin+ 1121, whils the one on page 100 follzws the
rule p— FfEvenOnl, 3of8, (An e 1 )/2]1 Alter the first step these syatems

give the same sequence of numbers, except for an owerall factor of 3.




This procedure is always guaranteed to give a whole number. And
starting with 1, the sequence of numbers one getsis 1, 3, 6,9, 15, 24, 34,
54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, ..,

Some of these numbers are even, while some are odd, But as the
resules at the bottom of the facing page illustrate, the sequence of which
numbers are even and which are odd seems to be completely random.

Despite this randomness, however, the overall sizes of the
numbers obtained still grow in a rather regular way. But by changing
the procedure just slightly, one can get much less regular growth,

As an example, consider the following procedure: if the number
obtained at a particular step is even, then multiply this number by 5/3;
otherwise, add 1 and then multiply the result by 1/2.

If one starts with 1, then this procedure simply gives 1 at every
step. And indeed with many starting numbers, the procedure yields
purely repetitive behavior. But as the picture below shows, it can also
give more complicated behavior.

[ 7 L] a o

Assults of apphing the rula n— KF{Ewenind, §ndZ, fn+ T}2], starting with déffsesnt initial choices of
n. b many cases, the behavior obtained s purely repetitive. But in some cases it is not,

Starting for example with the number 6, the sizes of the numbers
obtained on successive steps show a generally increasing trend, but
there are considerable fluctuations, and these fluctuations seem to be

essentially random. Indeed, even after a million steps, when the
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a 200 4040 2L o plLe

Tha results of follawing the same rule as on the previous page, starting from the value 6. Plottsd on tha right ars the
owerall smres of the numbers abi@ined for the st thousand stees, Thae plot 1 on a loganthrmic scale, so the hmght of each
pont B esgentialy the lkength oo The digit saquence for the nurnber that it represanis—er thewadth of the roww on the befit
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number obtained has 48,554 |base 10} digits, there is still no sign of
repetition or of any other significant regularity.

So even if one just looks at overall sizes of whole numbers it is
still possible to get great complexity in systems based on numbers.

But while complexity is wvisible at this level, it is usually
necessary to go to a more detailed level in order to get any real idea of
why it oceurs. And indeed what we have found in this section is that if
one looks at digit sequences, then one sees complex patterns that are
remarkably similar to those produced by systems like cellular automata.

The underlying rules for systems like cellular automata are
however usually rather different from those for systems based on
numbers. The main point is that the rules for cellular automata are
always local: the new color of any particular cell depends only on the
previous color of that cell and its immediate neighbors. But in systems
based on numbers there is usually no such locality.

Omne knows from hand calculation that even an operation such as
addition can lead to “carry” digits which propagate arhitrarily far to the
left. And in fact most simple arithmetic operations have the property



that a digit which appears at a particular position in their result can

depend on digits that were originally far away from it.
But despite fundamental differences like this in underlying rules,

the overall behavior produced by systems based on numbers is seill very

similar to what one sees for example in cellular automata,

So just like for the various kinds of programs that we discussed in

the previous chapter, the details of underlying rules again do not seem

to have a crucial etfect on the kinds of behavior that can occur.

Indeed, despite the lack of locality in their underlying rules, the
pictures below and on the pages that follow show that it is even
possible to find systems based on numbers that exhibit something like

the localized structures that we saw in cellular automata on page 32.
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An esample of & syatern defined by the
fodlowiing ruke: at esch step, take the number
obtanad at that step and wts its base 2
digits m rewersa orodar, then add the resulting
number to the onginal one, For manyg
poasiple gtarng nurmbers, the behaior
obtanad is very simple. This picture showes
what happens whan one starts with the
number 16, Aler 180 steps, il urng out that
gll that survives ame a few objects thet one
can wiew &8 Iocalized struciures
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& thousand steps o
tha evolution of a
system with the sams
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g, bt nes starting
with the memosr 512,
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Contmmtion  of  the
pattern on the facing
page, otarbng at the
milliznth  step. The
pictiure  shows  tha
right-hand edge of the
patber e thi complaie
patbern ebandas  aboul
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tha pags to tha lefi

127

3



STEFPHEMN WOQLFREAM |AHEWIIH|_'.- DF SCIEMCE

fied =1+ fn-1j, HfT1=1

Recursive Sequences

In the previous section, we saw that it is possible to get behavior
of considerable complexity just by applying a variety of operations
based on simple arithmetic. In this section what T will show is that with
the appropriate setup just addition and subtraction turn out to be in a
sense the only operations that one needs.

The basic idea is to consider a sequence of numbers in which
there is a definite rule for getting the next number in the sequence from
previous ones. It is convenient to refer to the first number in each
sequence as f[1], the second as ]2], and so on, so that the #™ number is
denoted flx]. And with this notation, what the rule does is to specify
how fln] should be caleulated from previous numbers in the sequence.

In the simplest cases, flu] depends only on the number
immediately before it in the sequence, denoted f[n—1]. But it is also
possible to set up rules in which f[x] depends not only on flr = 1], but
also on fln = 2], as well as on numbers still earlier in the sequence,

The table below gives results obtained with a few specific rules. In
all the cases shown, these results are quite simple, consisting of
sequences that increase uniformly or fluctuate in a purely repetitive way,

M HEELEEEREEE EEOEEEHEEEEHEE EEEEHE EEEEEEEEEE R

fin) = T=fln-1)0 f1l=1

| Alalalaltlalr|alrel el {ellolalalsfalalr|alr]alt|el]olals{als|alr)al1]a]r|alr|a]t]o]s]o] ..

finda2ffn-1), 1=l

wa[ 1] 2[4 B[ 18] 32| 64] 728 ] 256 | 512 1024 2048 [ 4006 | 5792 | 16354 [ 22765 65526 | 121072 262144 | 524268 [ 1046576 | 2097157 ...

find=fn-T1+dn-20 HTi=1, t13f =1

w13 22| E] 8] 12] 21| 24| 55 |88 [ 144] 223 | 377 | 635 | 987 | 1567 | 2684 | 478 | 6765 | 10066 | 17711 | 28657 | 46368 7602 | 121352 ...

find=ffn=1l=ffn=2] fi]=1, fl2) =T

w1 ]0]a]-a]-rlefr[pfef-r]-t{efa[sfol-r[-2]elr[aja]-a[-2]olr [rle]-1 [-2[afa frla]-r]-a]o]r]r]a]-T{-2]a]r]T]..

finda=fla=-1)+fin-28 M=), {Ef=1

il a|afala|-1]2] -2 5]-5] 13|27 [ 34| -58| os| - v | 232 | 277 |6TO| -7 | 1597 | -2884d |AT2) | -6TES | 109E | -7 FF ) | 28657 | -4526F | ...

Examplas of some simple racursiva sequences. Tha n'™ alemant in sach saquence is dencted ffnj, and tha rule spacdias how
this alament 1% detarmined Trom prmnous anes, Witk &l the roles shown B, Sucspssive elemanls @ither incraase srmoothly or
fluctuste in & purdy repabiive sy S-tq.l-r'n:-l ek 15 thie pearsers of twia, (d) 1% the So-called Fibaraca Soquance, relElnd lo pouveers
of the golen ratic {1+ V'8 )42 = 1,618 All rules of the kind shown here lead to sequences where fin) can b expressed in terms
of & sirmple surn of powers of the form a".
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But it turns out that with slightly more complicated rules it is
possible to get much more complicated behavior. The key idea is to
consider rules which look at numbers that are not just a fixed distance
back in the sequence. And what this means is that instead of depending
only on quantities like flin— 1] and flr - 2], the rule for flx] can also
for example depend on a quantivy like flr— fln—1]].

There is some subtlety here because in the abstract nothing
guarantees that » = fln = 1] will necessarily be a positive number. And
if it is not, then resulis obtained by applying the rule can involve
meaningless quantities such as f]0], f1-1] and f[-2].

fiod = T+ din-tln- 1010 (1=

MEHEEBBEDOOEEEEEEEEHEEEEEHEE BEHHEBEEHEEEEEBE EEBEEBEBE R
Fin) = 2w fln=Fin=11 fTj=1 (120 =1

CDIHBE EEBE HEHBEHGEBEHEHEHEE BHEIE B H B B E B E E B E E E L EE HIEE B
find = fifn- 101+ o= fio-1f) 3 =1 121 =1

[ 1|1]2)2]3]4|4[4[5]6]7|7|8[a]a|r|o[10[17|12[22|13]24 |04 15| 15 15| 1625 | 18| 76| 16 [ 17] 28] ra| 20|21 20 [22] 23
find = fln-tin- 1) +fln-fin-2f-2) €if=1, f2f=1

| ala|2l2|alalala|s|a|a|7|a|s|s]|a|a|10] 0] re|22]12] 12| 12| 14| 12| 15| 18| 16 | 25| 18| 15| ¢7| 28] 18] 13| 20| 20| 20] 2] ...
Fin) = finafine1)f e fin=fln=2) Fi=1, #2)=1

B EEEREHEE G EE R N EEHEEE I E EE EHE E HE E EBIE
fied = tla-1a- 1) - 1)+ fin-rEn-20-1], H{1f=1, H2{=1

I HEEHEOE OO OEHELOEOEEENE G EE EEE E LGN EEEEEEEEHER
Fin) = - Tji e ffn-Fn-20-2) f1) =T §f2)=1

i 11 2)2|2|alala|a|a|5|s|7|5|8]|a|5|8]|a]a] o 10] 10| 12| 13| 15] a5 14| 15| 18] 18] 18] 18| 15| 15| 26| 17| 18] 28] 18] 18] ...
fin) = (= 1Jf « fie-2Fin-1)+ 1L {1} =1, F2)=1
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E:-:arrpl-ﬂ of Ssequences gengratied by rules that do ned depand anly on elements 8 Tooed distance back. Most such ndes aveniualy
end up irmobansg meaningless guantities such as FIOJ and f7-17, but the perbculer nbes shown bene all avoad this problem
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fod ffnd e S leiia- A1) [f{af-ntd shorn)

e 40 00 &30 aga 1200 00 et 18 ST

[0 ffnf = Sa-fin- U Tefin-fin-27 =31 [f{a] -2 shawn)

P it

L 00 &30 aga 1200 00 et 18 ST

fal flale flo=fjp=-ldalja=-rfia=-2)) el -n'Z ghapn|

e 40 00 &30 aga 1200 00 reid 18 ST

fie) = fie=ffn=-11=-Tfeffn-fla)-F{=1) ifi=r-n'S sharmnl

I 4 00 &0 oaa 200 fa00 icen 18] ST

fod  ffa) = fiffe-Tifedin-fla-2¢ -0 finf-ndd sheen)

2 47 3 L) [Le 209 a0 Tem 18 ST
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Flectuations in the owerall increase of sequences from the prawvscus page. In casss (o) and 1), the fluctustons have a regular nestad
form, and turn ot to be directly ralated to the bese 2 digt seguence of a. In the other cases, the fluctuations are rmora
carmplcabed, and Smarm e many respests randarm. Al tha rekes showen start wilh FIf) = (7 =}
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For the vast majority of rules written down at random, such
problems do indeed occur. But it is possible to find rules in which they
do not, and the pictures on the previous two pages show a few examples
I have found of such rules, In cases (al and (b), the behavior is fairly
simple. But in the other cases, it is considerably more complicated,

There is a steady overall increase, but superimposed on this
increase are fluctuations, as shown in the pictures on the facing page.

In cases (c] and (d], these fluctuations turn out to have a very
regular nested form., But in the other cases, the fluctuations seem
instead in many respects random. Thus in case {f], for example, the
number of positive and negative fluctuations appears on average to be
equal even after a million steps.

But in a sense one of the most surprising features of the facing
page is that the fluctuations it shows are so violent, One might have
thought that in going say from f[2000] to f[2001] there would only ever
be a small change. After all, between r = 2000 and 2001 there is only a
0.05% change in the size of ».

But much as we saw in the previous section it turns out that it is
not so much the size of # that seems to matter as various aspects of its
representation. And indeed, in cases (¢} and (dl, for example, it so
happens that there is a direct relationship between the fluctuations in
fln] and the base 2 digit sequence of 5.

In case [d], the fluctuation in each fr] turns out to be essentially
just the number of 1's that occur in the base 2 digit sequence for n. And
in case [c|, the fluctuations are determined by the total number of 1's
that occur in the digit sequences of all numbers less than #.

There are no such simple relationships for the other rules shown
on the facing page. But in general one suspects that all these rules can
be thought of as being like simple computer programs that take some
representation of 1 as their input.

And what we have discovered in this section is that even though
the rules ultimately involve only addition and subtraction, they
nevertheless correspond to programs that are capable of producing
behavior of great complexity,

CHAPTER =+
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The Sequence of Primes

In the sequence of all possible numbers 1,2, 3, 4,5, 6, 7, 8, ... most are
divisible by others—so that for example 6 is divisible by 2 and 3. But
this is not true of every number, And so for example 5 and 7 are not
divisible by any other numbers {except trivially by 1). And in fact it has
been known for more than two thousand years that there are an infinite
sequence of so-called prime numbers which are not divisible by other
numbers, the first few being 2, 3, 5, 7, 11, 13, 17, 19,23 29 31, 37, ...
The picture below shows a simple rule by which such primes can
be obtained. The idea is to start out on the top line with all possible
numbers. Then on the second line, one removes all numbers larger than 2
that are divisible by 2. On the third line one removes numbers divisible
by 3, and so on. As one goes on, fewer and fewer numbers remain, But

some numbers always remain, and these numbers are exactly the primes.

] ! & & ll
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A filtenng procesas that yields the prime numbsrs. One starts on the top bne with all nurnbers bebeesen 1 and 100, Then on the
sacond line, one rermoves nermbers larger than 2 that ara divigibla by 2—as mdicatad by the gray dots. On the third ins, ona
remcwas mambsrs largar than 3 that are divisibla by 3. F one than continues foreves, thess are some numbaers that ahwaws remain,
and thasa ara sxactly tha primes. The process shown is assantialy the sieva of Eratosthenas, alraady knoem in 200 BC

Given the simplicity of this rule, one might imagine that the
sequence of primes it generates would also be correspondingly simple.
But just as in so many other examples in this book, in fact it is not. And
indeed the plots on the facing page show wvarious features of this
sequence which indicate that it is in many respects quite random.
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The examples of complexity that I have shown so far in this book
are almost all completely new. But the first few hundred primes were
no doubt known even in antiguity, and it must have been evident that
there was at least some complexity in their distribution.

However, without the whole intellectual structure that T have
developed in this book, the implications of this observation—and its
potential connection, for example, to phenomena in nature—were not
recognized. And even though there has been a wast amount of
mathematical work done on the sequence of primes over the course of
many centuries, almost without exception it has been concerned not
with basic issues of complexity but instead with trying to find
specific kinds of regularities.

Yet as it turns out, few regularities have in fact been found, and
often the results that have been established tend only to support the
idea that the sequence has many features of randomness. And so, as one
example, it might appear from the pictures on the previous page that (cl,
(d} and (e} always stay systematically above the axis, But in fact with
considerable effort it has been proved that all of them are in a sense
more random—and eventually cross the axis an infinite number of
times, and indeed go any distance up or down,

S0 is the complexity that we have seen in the sequence of primes
somehow unusual among sequences based on numbers? The pictures
on the facing page show a few other examples of sequences generated
according to simple rules based on properties of numbers.

And in each case we again see a remarkable level of complexity.

Some of this complexity can be understood if we look at each
number not in terms of its overall size, but rather in terms of its digit
sequence or set of possible divisors. But in most cases—often despite
centuries of work in number theory—considerable complexity remains.

And indeed the only reasonable conclusion seems to be that just
as in so many other systems in this book, such sequences of numbers
exhibit complexity that somehow arises as a fundamental consequence
of the rules by which the sequences are generated.
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Mathematical Constants

The last few sections have shown that one can set up all sorts of
systems based on numbers in which great complexity can occur. But it
turns out that the possibility of such complexity is already suggested by
some well-known faces in elementary mathematics.

The facts in question concern the sequences of digits in numbers
like o |pil. To a very rough approximation, = is 3.14. A more accurate
approximation is 3. 141592653589793 2384026433832 795(28K,

But how does this sequence of digits continue?

Cme might suppose that at some level it must be quite simple and
regular. For the value of r is specified by the simple definition of being
the ratio of the circumference of any circle to its diameter.

But it turns out that even though this definition is simple, the
digit sequence of 7 is not simple at all. The facing page shows the first
4000 digits in the sequence, both in the usual case of base 10, and in
hase 2. And the picture below shows a pictorial representation of the
tirst 20,000 digits in the sequence.

a
50
Jar b
a fLa] 2000 o il 4007 S0 B0 TR 50 LELH P
2
0 |
09
T ITdaa Pl ] i 30 14020 hi A Rl T 180040 E L 20000

A pictanal reprasentabion of the first 20,000 digns o mon base 20 The cunse dravwen goes up every T 8 degpt 5 1, and
dorewn envery tima it is 0 Great complawty is avident. If the curve were continusd further, it would spend mers time abaove
the axig, and no aspect of what = seen providas any evidence that the digt sequance is anything but perfactly random.
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In no case are there any obvious regularities. Indeed, in all the
more than two hundred billion digits of & that have so far been
computed, no significant regularity of any kind has ever been found.
Drespite the simplicity of its definition, the digit sequence of 7 seems
for practical purposes completely random,

But what about other numbers? Is © a special case, or are there
other familiar mathematical constants that have complicated digit
sequences! There are some numbers whose digit sequences effectively
have limited length. Thus, for example, the digit sequence of 3/3 in base
10 is 0,375, (Strictly, the digit sequence is 0.3750000000,.., but the 0
do not affect the value of the number, so are normally suppressed. |

It is however easy to find numbers whose digit sequences do not
terminate. Thus, for example, the exact value of 1/3 in base 10 is
0.33333333333233..., where the 3% repeat forever, And similarly, 1/7 is
0. 142857 142857142857 142857 142857..., where now the block of digits
142857 repeats forever, The table below gives the digit sequences for
several rational numbers obtained by dividing pairs of whole numbers.
In all cases what we see is that the digit sequences of such numbers
have a simple repetitive form. And in fact, it turns out that absolutely
all rational numbers have digit sequences that eventually repeat.

PNk ke bbbk ekve ek ek e ek eekbenkbepbb e eeky kel epb b ek ekhpbb ok e ek ek kel okl
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Dgit gequences for vanous raticnal numbers, goven i base 10 jabove) and baze 2 (belowt. For a
nurmiber of the fom gda, the digit sequence alweys repaats wath & period of ab mast g- T staps,

We can get some understanding of why this is so by looking at
the details of how processes for performing division work. The pictures



helow show successive steps in a particular method for computing the

hase 2 digit sequence for the rational numbers p/g.
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L] [ 6 147

P

Swccasene stegs in the cormputation of varicws rationsl numbers. In each casa, the column on the right shows the saqueanca of
base 2 digits in the rmembear, whils the box on the ksft shows the remairdsr at aach of the staps in the computation

The method is essencially standard long division, although it is
somewhat simpler in base 2 than in the usual case of base 10. The idea is
to have a number r which essentially keeps track of the remainder at each
step in the division. One starts by setting r equal to p. Then at each step,
one compares the values of 2r and 4. If 2 ¢ is less than g, the digit
generated at that step is 0, and r is replaced by 2 r. Otherwise, r is
replaced by 2 r— 5. With this procedure, the value of r is always less than
4. And as a result, the digit sequence obtained always repeats at most
every 4 = 1 steps,

It turns out, however, that rational numbers are very unusual in
having such simple digit sequences, And indeed, if one looks for
example at square roots the story is completely different.

Perfect squares such as 4 =2x2 and 9 = 3x3 are specifically set
up to have square roots that are just whole numbers. But as the table at
the top of the next page shows, other square roots have much more
complicated digit sequences, In fact, so far as one can tell, all whole
numbers other than perfect squares have square roots whose digit
sequences appear completely random,

#10
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Dgll smijurnons for vanous squane rools, geen &t the op n base 10 and al the bottam o basae 2
Dﬂpﬂ:l thanr sirmplo deteation, all thnss sogquances saam for practieal purposes randsm

But how is such randomness produced? The picture at the top of
the facing page shows an example of a procedure for generating the base
2 digit sequence for the square root of a given number #.

The procedure is only slightly more complicated than the one for
division discussed abowe, It involves two numbers » and s, which are
initially set to be » and 0, respectively. At cach step it compares the
values of r and 5, and if 7 is larger than s it replaces rand s by 4 (r—5-1)
and 2 (s + 2} respectively; otherwise it replaces them just by 4 r and 2 5.
And it then turns out that the base 2 digits of 5 correspond exactly to the
base 2 digits of 4 —with one new digit being generated at each step.

As the picture shows, the results of the procedure exhibit
considerable complexity, And indeed, it seems that just like so many
other examples that we have discussed in this book, the procedure for
generating square roots is based on simple rules but nevertheless yvields
behavior of great complexity.
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A procadure for genarating the digit seguences of sgquara rosts. Teeo numbers, « snd 5, are invobead
Te find W' one starts by setting r=n and s=0. Then at each step one applies the rule
froaf=Flres+ 0 fdir-s-7T) Zis+ 2, fdr, 25)]. The result is that the digits of 2 in basa 2 tum out
to correspond sxactly to the digts of Voo Mote that i 5 iz not between 1 and 4, it must be
multiplied o divided by an appropnate povess of 4 befone starting this proceduan

It turns out that square roots are certainly not alone in having
apparently random digit sequences, As an example, the table on the next
page gives the digit sequences for some cube roots and fourth roots, as well
as for some logarithms and exponentials, And so far as one can tell, almost
all these kinds of numbers also have apparently random digit sequences.

In fact, rational numbers turn out to be the only kinds of
numbers that have repetitive digit sequences, And at least in square
ronts, cube roots, and so on, it is known that no nested digit sequences
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ever occur. It is straightforward to construct a nested digit sequence
using for example the substitution systems on page 83, but the point is
that such a digit sequence never corresponds to a number that can be
obtained by the mathematical operation of taking roots.

So far in this chapter we have always used digit sequences as
our way of representing numbers. But one might imagine that perhaps
this representation is somehow perverse, and that if we were just to
choose another one, then numbers generated by simple mathematical
operations would no longer seem complex.

Any representation for a number can in a sense be thought of as
specifying a procedure for constructing that number. Thus, for example, the
pictures at the top of the facing page show how the base 10 and base 2 digit
sequence representations of o can be used to construct the number .
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By replacing the addition and multiplication that appear above by
other operations one can then get other representations for numbers, A
common example are so-called continued fraction representations, in
which the operations of addition and division are used, as shown below.
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Thie continued fraction represantaton of . In s representatcn the value ol 7 1% bud up by
succesaive addtions and divisions, rather than succesape additions and rmultiplications

The table on the next page gives the continued fraction
representations for various numbers. In the case of rational numbers,
the results are always of limited length. But for other numbers, they go
on forever. Square roots turn out to have purely repetitive continued
fraction representations, And the representations of e = 2,718 and all its
roots also show definite regularicy. But for x, as well as for cube roots,
fourth roots, and so on, the continued fraction representations one gets
seem essentially random.

What about other representations of numbers? At some level, one
can alwavs use symbolic expressions like 2 + e’ o represent
numbers, And almost by definition, numbers that can be obtained by
simple mathematical operations will correspond to simple such
expressions. But the problem is that there is no telling how difficult it
may be to compute the actual value of a number from the symbolic
expression that is used to represent it.

And in thinking about representations of numbers, it seems
appropriate to restrict oneself to cases where the effort required to find
the value of a number from its representation is essentially the same for
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all numbers. If one does this, then the typical experience is that in any
particular representation, some class of numbers will have simple
forms. But other numbers, even though they may be the result of simple
mathematical operations, tend to have seemingly random forms.

And from this it seems appropriate to conclude that numbers
generated by simple mathematical operations are often in some
intrinsic sense complex, independent of the particular representation
that one uses to look at them.
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Mathematical Functions

The last section showed that individual numbers obtained by applying
various simple mathematical functions can have features that are quite
complex, But what about the functions themselves?

The pictures below show curves obtained by plotting standard
mathematical functions. All of these curves have fairly simple,
essentially repetitive forms. And indeed it turns out that almost all the
standard mathematical functions that are defined, for example, in
Mathenutica, yvield similarly simple curves,
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gcignce. In all cases the curves shown haws faily sarmphs repetitive formes.

But if one looks at combinations of these standard functions, it is
fairly easy to get more complicated results. The pictures on the next
page show what happens, for example, if one adds together various sine
functions. In the first picture, the curve one gets has a fairly simple
repetitive  structure, In the second picture, the curve is more
complicated, but still has an overall repetitive structure. But in the
third and fourth pictures, there is no such repetitive structure, and
indeed the curves look in many respects random.
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In the third picture, however, the points where the curve crosses
the axis come in two regularly spaced families. And as the pictures on
the tacing page indicate, for any curve like Sinlx] + Sin|a x| the relative
arrangements of these crossing points turn out to be related to the
output of a generalized substitution system in which the rule at each
step i obtained from a term in the continued fraction representation of
=11+ 1}).

When o is a square root, then as discussed in the previous

section, the continued fraction representation is purely repetitive,
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making the generated pattern nested. But when o is not a square root
the pattern can be more complicated. And if more than two sine
functions are involved there no longer seems to be any particular
connection to generalized substitution systems or continued fractions.

Amaong all the various mathematical functions defined, say, in
Malhematica it turns out that there are also a few—not traditionally
common in natural science—which vield complex curves but which do
not appear to have any explicit dependence on representations of
individual numbers. Many of these are related to the so-called Riemann
zeta function, a version of which is shown in the picture below.

The basic definition of this function is fairly simple, But in the
end the function turns out to be related to the distribution of primes—
and the curve it generates is quite complicated. Indeed, despite
immense mathematical effort for over a century, it has so far been
impossible even to establish for example the so-called Riemann

Hypothesis, which in effect just states that all the peaks in the curve lie

abowve the axis, and all the valleys below,

| UL W | HA TP IJ.Jil.ILH..l. Jlnlll“l“ l,n “l_.ull L L
TIT'T'IIH '”l'r! |Il| |r|||11 |'||, |I”1

1"T

& curve sescoisted with the sc-called Rwmann zets funclion. The zeta functon Jetafs) is defined &8 Sun{ 1485, ik, = The
curwa showen here is tha so-called Riermann-Siagel £ funcion, which is essentmally fetaf 1.2 +i1). Tha calabratsd Rmmann
Hypothasis m affact states that all psaks after the first ona in this curva must lig abova the axis

148



Iterated Maps and the Chaos Phenomenon

The basic idea of an iterated map is to take a number between 0 and 1,
and then in a sequence of steps to update this number according to a
tixed rule or “map™. Many of the maps T will consider can be expressed
in terms of standard mathematical functions, but in general all that is
needed is that the map take any possible number between 0 and 1 and
yield some definite number that is also between 0 and 1.

The pictures on the next two pages show examples of behavior
obtained with four different possible choices of maps.

Cases (a) and (b] on the first page show much the same kind of
complexity that we have seen in many other systems in this chapter—
in both digit sequences and sizes of numbers, Case (¢} shows complexity
in digit sequences, but the sizes of the numbers it generates rapidly tend
to 0. Case |d), howewver, seems essentially trivial—and shows no
complexity in either digit sequences or sizes of numbers.

On the first of the next two pages all the examples start with the
number 1/2—which has a simple digit sequence. But the examples on
the second of the next two pages instead start with the number 7/d4—
which has a seemingly random digit sequence,

Cases [a), (b} and (¢ look very similar on both pages, particularly
in terms of sizes of numbers. But case (d] looks quite different. For on
the first page it just yields 0%. But on the second page, it yields numbers
whose sizes continually vary in a seemingly random way.

If one looks at digit sequences, it is rather clear why this happens,
For as the picture illustrates, the so-called shife map used in case {d)
simply serves to shift all digits one position to the left at each step. And
this means that over the course of the evolution of the system, digits
turther to the right in the original number will progressively end up all
the way to the left—so that insofar as these digits show randomness,
this will lead to randomness in the sizes of the numbers generated.

It is important to realize, however, that in no real sense is any
randomness actually being generated by the evolution of this system.
Instead, it is just that randomness that was inserted in the digit

sequence of the original number shows up in the results one gets.
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This is very different from what happens in cases (a) and (b). For
in these cases complex and seemingly random resules are obtained even
on the first of the previous two pages—when the original number has a
very simple digit sequence. And the point is that these maps actually do
intrinsically generate complexity and randomness; they do not just
transcribe it when it is inserted in their initial conditions.

In the context of the approach I have developed in this book this
distinetion is easy to understand. But with the traditional mathematical
approach, things can get quite confused. The main issue—already
mentioned at the beginning of this chapter—is that in this approach the
only attribute of numbers that is usually considered significant is their
size. And this means that any issue based on discussing explicit digit
sequences for numbers—and whether for example they are simple or
complicated—tends to seem at best bizarre.

Indeed, thinking about numbers purely in terms of size, one
might imagine that as spon as any two numbers are sufficiently close in
size they would inevitably lead to results that are somehow also close.
And in fact this is for example the basis for much of the formalism of
calculus in traditional mathematics.

But the essence of the so-called chaos phenomenon s that there
are some systems where arbitrarily small changes in the size of a
number can end up having large effects on the resules that are produced.
And the shift map shown as case (d} on the previous two pages turns out
to be a classic example of this.

The pictures at the top of the facing page show what happens if
one uses as the initial conditions for this system two numbers whose
sizes differ by just one part in a billion billion. And looking at the plots
of sizes of numbers produced, one sees that for gquite a while these two
ditferent initial conditions lead to results that are indistinguishably
close, But at some point they diverge and soon become quite different.

And at least if one looks only at the sizes of numbers, this seems
rather mysterious. But as soon as one looks ar digit sequences, it
immediately becomes much clearer. For as the pictures at the top of the
facing page show, the fact that the numbers which are used as initial
conditions differ only by a very small amount in size just means that
their first several digits are the same. And for a while these digits are
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what is important, But since the evolution of the system continually
shifts digits to the left, it is inevitable that the differences that exist in
later digits will eventually become important.,

The fact that small changes in initial conditions can lead to large
changes in results is a somewhat interesting phenomenon. But as I will
discuss at length in Chapter 7 one must realize that on its own this
cannot explain why randomness—or complexity—should occur in any
particular case. And indeed, for the shift map what we have seen is that
randomness will cccur only when the initial conditions that are given
happen to be a number whose digit sequence is random.

But in the past what has often been confusing is that traditional
mathematics implicitly tends to assume that initial conditions of this
kind are in some sense inevitable. For if one thinks about numbers
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purely in terms of size, one should make no distinction between
numbers that are sufficiently close in size. And this implies that in
choosing initial conditions for a system like the shift map, one should
therefore make no distinction between the exact number 1/2 and
numbers that are sufficiently close in size w 12,

But it turns out that if one picks a number at random subject only
to the constraint that its size be in a certain range, then it is
overwhelmingly likely that the number one gets will have a digit
sequence that is essentially random, And if one then uses this number
as the initial condition for a shift map, the results will also be
correspondingly random—just like those on the previous page.

In the past this fact has sometimes been taken to indicate that
the shift map somehow fundamentally produces randomness. But as 1
have discussed above, the only randomness that can actually come out
of such a system is randomness that was explicitly put in through the
details of its initial conditions, And this means that any claim that the
system produces randomness must really be a claim about the details of
what initial conditions are typically given for it.

I suppose in principle it could be that nature would effectively follow
the same idealization as in traditional mathematics, and would end up
picking numbers purely according to their size. And if this were so, then it
would mean that the initial conditions for systems like the shifce map
would naturally have digit sequences that are almost always random.

But this line of reasoning can ultimately never be too useful. For
what it says is that the randomness we see somehow comes from
randomness that is already present—but it does not explain where that
randomness comes from. And indeed—as T will discuss in Chapter 7—if
one looks only at systems like the shift map then it is not clear any new
randomness can ever actually be generated.

But a crucial discovery in this book is that systems like [a] and [b)
on pages 150 and 151 can show behavior that seems in many respects
random even when their initial conditions show no sign of randomness
and are in fact extremely simple.

Yet the fact that systems like (a) and (b) can intrinsically generate
randomness even from simple initial conditions does not mean that they



do not also show sensitive dependence on initial conditions. And indeed
the pictures below illustrate that even in such cases changes in digit
sequences are progressively amplitied—just like in the shift map case [d].

CHAPTER
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But the crucial point that I will discuss more in Chapter 7 is that
the presence of sensitive dependence on initial conditions in systems
like [a] and (b] in no way implies that it is what is responsible for the
randomness and complexity we see in these systems. And indeed, what
locking at the shift map in terms of digit sequences shows us is that
this phenomenon on its own can make no contribution at all to what

we can reasonably consider the ultimate production of randomness.

Continuous Cellular Automata

Despite all their differences, the various kinds of programs discussed in
the previous chapter have one thing in common: they are all based on
elements that can take on only a discrete set of possible forms, typically
just colors black and white. And in this chapter, we have introduced a

similar kind of disereteness into our study of systems based on numbers
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by considering digit sequences in which each digit can again have only a
discrete set of possible values, typically just 0 and 1.

S0 now a question that arises is whether all the complexity we
have seen in the past three chapters somehow depends on the
discreteness of the elements in the systems we have looked at.

And to address this question, what I will do in this section is to
consider a generalization of cellular automata in which each cell is not
just black or white, but instead can have any of a continuous range of
possible levels of gray, One can update the gray level of each cell by
using rules that are in a sense a cross between the totalistic cellular
automaton rules that we discussed at the beginning of the last chapter
and the iterated maps that we just discussed in the previous section.

The idea is to look at the average gray level of a cell and its
immediate neighbors, and then to get the gray level for that cell at the
next step by applying a fixed mapping to the result, The picture below
shows a very simple case in which the new gray level of each cell is
exactly the average of the one for that cell and its immediate neighbors.
Starting from a single black cell, what happens in this case is that the
gray essentially just diffuses away, leaving in the end a uniform pattern.

_ 3
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& continuous  callular automaton o
which sach call can have any lewal of
gray batwsan whita {0l and black (1),
The mle showwn here tskes the new 2 |enr| anE | @i
greny lewal of each call 1o be the aversgs
of s owen gray lavel and those of its
imimiedaie neghbors.,
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The picture on the facing page shows what happens with a
slightly more complicated rule in which the average gray level is
multiplied by 3/2, and then only the fractional part is kept if the result
of this is greater than 1.
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picture shows that starting from a single hlack cell thes rule viekis
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And what we see is that despite the presence of continuous gray

levels, the behavior that is produced exhibits the same kind of

complexity that we have seen in many ordinary cellular automata and

other systems with discrete underlying elements.
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In fact, it turns out that in continuous cellular automata it takes
only extremely simple rules to generate behavior of considerable
complexity. 50 as an example the picture below shows a rule that
determines the new gray level for a cell by just adding the constant 1/4
to the average gray level for the cell and its immediate neighbors, and

then taking the fractional part of the result.

ems‘ = EEEEE (i n ) ]
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aEm

A continuous callular autamaten whoss mls adds the constant 154 to the
semraga gray keerl for & cell and s immedizte nmghbors, and takes tha
fractional part of the result. The background simply repeats every 4 slapa,
bt the rman pettern has a complex and = meny respects randam fomn

Frachaal et s+ 1/ ]

The facing page and the one after show what happens when one
chooses different values for the constant that is added. A remarkable
diversity of behavior is seen, Sometimes the behavior is purely
repetitive, but often it has features that seem effectively random.

And in fact, as the picture in the middle of page 160 shows, it is
even possible to find cases that exhibit localized structures very much

like those occasionally seen in ordinary cellular automata.

Contmusus callular avtamata wath the same kend of robes &350 the pciurs
abiea, but with a variety of differant constants baing added. Mate that it is not
a0 ruch the eiza of the constant as properties like its digit sequenca that
saam to determine tha swerall form of behawor produced in each cass. b
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Partial Differential Equations

By introducing continuous cellular automata with a continuous range
of gray levels, we have successfully removed some of the discreteness
that exists in ordinary cellular automata. But there is nevertheless
much discreteness that remains: for a continuous cellular automaton is
still made up of discrete cells that are updated in discrete time steps.

S0 can one in fact construct systems in which there is absolutely
no such discreteness! The answer, it turns out, is that at least in
principle one can, although to do so requires a somewhat higher level of
mathematical abstraction than has so far been necessary in this book,

The basic idea is to imagine that a quantity such as gray level can
be set up to vary continuously in space and time. And what this means
is that instead of just having gray levels in discrete cells at discrete time
steps, one supposes that there exists a definite gray level at absolutely
every point in space and every moment in time—as if one took the limit
of an infinite collection of cells and time steps, with each cell being an
infinitesimal size, and each time step lasting an infinitesimal time,

But how does one give rules for the evolution of such a system?
Having no explicit time steps o work with, one must instead just
specify the rate at which the gray level changes with time at every point
in space. And typically one gives this rate as a simple formula that
depends on the gray level at each point in space, and on the rate at
which that gray level changes with position.

Such rules are known in mathematics as partial differential
equations, and in fact they have been widely studied for about two
hundred vears. Indeed, it turns out that almost all the traditional
mathematical models that have been used in physics and other areas of
science are ultimately based on partial ditferential equations. Thus, for
example, Maxwells equations for electromagnetism, Einstein's
equations for gravity, Schridinger’s equation for quantum mechanics
and the Hodgkin-Huxley equation for the electrochemistry of nerve
cells are all examples of partial differential equations.

It is in a sense surprising that systems which involve such a high

level of mathematical abstraction should have become so widely used
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in practice. For as we shall see later in this book, it is certainly not that
nature fundamentally follows these abstractions.

And T suspect that in fact the current predominance of partial
differential equations is in many respects a historical accident—and
that had computer technology been developed earlier in the history of
mathematics, the situation would probably now be very different.

But particularly before computers, the great attraction of partial
ditferential equations was that at least in simple cases explicit
mathematical formulas could be found for their behavior, And this
meant that it was possible to work out, for example, the gray level at a
particular point in space and time just by evaluating a single
mathematical formula, without having in a sense to follow the
complete evolution of the partial differential equation.

The pictures on the facing page show three common partial
differential equations that have been studied over the years.

The first picture shows the diffusion equation, which can be
viewed as a limiting case of the continuous cellular automaton on page
156. Its behavior is always very simple: any initial gray progressively
diffuses away, so that in the end only uniform white is left.

The second picture shows the wave equation. And with this
equation, the initial lump of gray shown just breaks into two identical
pieces which propagate to the lefe and right without change,

The third picture shows the sine-Gordon equation. This leads two
slightly more complicated behavior than the other equations—though
the pattern it generates still has a simple repetitive form.

Considering the amount of mathematical work that has been
done on partial differential equations, one might have thought that a
vast range of different equations would by now have been studied. But
in fact almost all the work—at least in one dimension—has
concentrated on just the three specific equations on the facing page,
together with a few others that are essentially equivalent to them.

And as we have seen, these equations yield only simple behavior.

S0 is it in fact possible to get more complicated behavior in
partial differential equations? The results in this book on other kinds of
systems  strongly  soggest that it should be. But traditional
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mathematical methods give very little guidance about how to find such
behavior, Indeed, it seems that the best approach is essentially just to
search through many ditferent partial differential equations, looking for
ones that turn out to show complex behavior,

But an immediate difficulty is that there is no obvious way tw
sample possible partial differential equations. In discrete systems such
as cellular automata there are always a discrete set of possible rules. But
in partial differential equations any mathematical formula can appear.

Mevertheless, by representing formulas as symbolic expressions
with discrete sets of possible components, one can devise at least some
schemes for sampling partial differential equations,

But even given a particular partial differential equation, there is
no guarantee that the equation will yield self-consistent results. Indeed,
tor a very large fraction of randomly chosen partial differential equations
what one finds is that after just a small amount of time, the gray level
one gets either becomes infinitely large or starts to vary infinitely
quickly in space or time. And whenever such phenomena occur, the
original equation can no longer be used to determine future behavior,

But despite these difficulties I was eventually able to find the
partial ditferential equations shown on the next two pages.

The mathematical statement of these equations is fairly simple.
But as the pictures show, their behavior is highly complex.,

Indeed, strangely enough, even though the underlying equations
are continuous, the patterns they produce seem to involve patches that
have a somewhat discrete structure.

But the main point that the pictures on the next two pages make
is that the kind of complex behavior that we have seen in this book is in
no way restricted to systems that are based on discrete elements. It is
certainly much easier to find and to study such behavior in these
discrete systems, but from what we have learned in this section, we
now know that the same kind of behavior can also occur in completely

continuous systems such as partial differential equations.
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Continuous Yersus Discrete Systems

One of the most obvious differences between my approach to science
based on simple programs and the traditional approach based on
mathematical equations is that programs tend to involve discrete
elements while equations tend to involve continuous quantities.

But how significant is this difference in the end?

One might have thought that perhaps the basic phenomenon of
complexity that I have identified could only occur in discrete systems. But
from the results of the last few sections, we know that this is not the case.

What is true, however, is that the phenomenon was immensely
easier to discover in discrete systems than it would have been in
continuous ones. Probably complexity is not in any fundamental sense
rarer in continuous systems than in discrete ones, But the point is that
discrete systems can typically be investigated in a much more direct
way than continuous ones.

Indeed, given the rules for a discrete system, it is usually a rather
straightforward matter to do a computer experiment to find out how
the system will behave, But given an equation for a continuouws systein,
it often requires considerable analysis to work out even approximately
how the system will behave. And in fact, in the end one typically has
rather little idea which aspects of what one sees are actually genuine
features of the system, and which are just artifacts of the particular
methods and approximations that one is using to study it,

With all the work that was done on continuous systems in the
history of traditional science and mathematics, there were undoubtedly
many cases in which effects related to the phenomenon of complexity
were seen. But because the basic phenomenon of complexity was not
known and was not expected, such etfects were probably always
dismissed as somehow not being genuine features of the systems being
studied. Yet when I came to investigate discrete systems there was no

A Solutions to the same eguations &s on the previous page over a longar pariod of tima. Mote
the appsaranca of discrate structures. Pariculary in the lest pictura some datails are sansitive
to the numencal approomation schemsa wsed in computing the solution to the equation
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possibility of dismissing what [ saw in such a way. And as a result I was
in a sense forced into recognizing the basic phenomenon of complexity.

But now, armed with the knowledge that this phenomenon
exists, it is possible vo go back and look again at continuous systems,

And although there are significant technical difficulties, one finds
as the last few sections have shown that the phenomenon of complexity
can occur in continuous systems just as it does in discrete ones.

It remains much easier to be sure of what is going on in a discrete
system than in a continuous one, But I suspect that essentially all of the
various phenomena that we have observed in discrete systems in the
past several chapters can in face also be found even in continuous
systems with fairly simple rules.



Two Dimensions and Beyond

Introduction

The physical world in which we live involves three dimensions of
space. Yet so far in this book all the systems we have discussed have
effectively been limited to just one dimension,

The purpose of this chapter, therefore, is to see how much of a
difference it makes to allow more than one dimension.

At least in simple cases, the basic idea—as illustrated in the
pictures below—is to consider systems whose elements do not just lie
along a one-dimensional line, but instead are arranged for example on a

two-dimensional grid.

STk TSN

I cwrmitvis

Examplas ol simple arangements of alements n oone, Two and thaas dimensssrs, In beig
dirnengions, what is shaown is a squass grid; triangular and hexagonal grids ara aleo pozsibla. In thees
dirnensicns, what i3 shown is a cubic latbee; vancus other latices, analogous to thoes for regulsr
crystals, ara also possible—as ars arrangsments that are not repsfiive
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Traditional science tends to suggest that allowing more than one
dimension will have very important consequences. Indeed, it turns out
that many of the phenomena that have been most studied in traditional
science simply do not occur in just one dimension.

Phenomena that involve geometrical shapes, for example, usually
require at least two dimensions, while phenomena that rely on the
existence of knotted structures require three dimensions. But what about
the phenomenon of complexity? How much does it depend on dimension?

It could be that in going beyond one dimension the character of
the behavior that we would see would immediately change, And indeed
in the course of this chapter, we will come across many examples of
specific effects that depend on having more than one dimension.

But what we will discover in the end is that at an overall level the
behavior we see is not fundamentally much different in two or more
dimensions than in one dimension. Indeed, despite what we might
expect from traditional science, adding more dimensions does not
ultimately seem to have much effect on the occurrence of behavior of
any significant complexity.

Cellular Automata

The cellular automata that we have discussed so far in this book are all
purely one-dimensional, so that at each step, they involve only a single
line of cells, But one can also consider two-dimensional cellular
autoimata that involve a whole grid of cells, with the color of each cell
being updated according to a rule that depends on its neighbors in all
four directions on the grid, as in the picture below.

Thee form of the rube for a typecal twee-dirmenaional cellular sutormeaton.
In the cases discusead in thes section, each cell is aither black or

whita. Usually | consider so-caled totakstic rules in which the news - .
cior of tha canter ¢sll depands only on the average of tha pravicus

codars off i four rmghibors, as veell a5 on ks oevn praveous color
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The pictures below show what happens with an especially simple
rule in which a particular cell is taken to become black if any of its four

neighbors were black on the previous step.
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Starting from a single black cell, this rule just yields a uniformly
expanding diamond-shaped region of black cells. But by changing the
rule slightly, one can obtain more complicated patterns of growth, The
pictures below show what happens, for example, with a rule in which
each cell becomes black if just one or all four of its neighbors were black
on the previous step, but otherwise stays the same color as it was before.
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The patterns produced in this case no longer have a simple
geometrical form, but instead often exhibit an intricate structure
somewhat reminiscent of a snowtlake. Yet despite this intricacy, the
patterns still show great regularity, And indeed, if one takes the
patterns from successive steps and stacks them on top of cach other to
form a three-dimensional object, as in the picture below, then this

object has a very regular nested structure.

A threa-dirnersional abject

formed by stacking the fao-dimenzional

patterres from the bottom of the previcus page. Such

pciures ars the analogs for teo-dmansioral cellulas avtomata of the
two=timansional pictunes that | olten genesate for cnes=dimengional celular sutomata

But what about other rules? The facing page and the one that
follows show patterns produced by two-dimensional cellular automata
with a sequence of different rules. Within each pattern there is often
considerable complexity. But this complexity turns out to be very

similar to the complexity we have already seen in one-dimensional
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cellular automata. And indeed the previous page shows that if one
looks at the evolution of a one-dimensional slice through each
two-dimensional pattern the results one gets are strikingly similar to
what we have seen in ordinary one-dimensional cellular automata.

But looking at such slices cannot reveal much about the overall
shapes of the two-dimensional patterns. And in fact it turns out that for
all the two-dimensional cellular automata shown on the last few pages,
these shapes are always very regular,

But it is nevertheless possible to find two-dimensional cellular
automata that yield less regular shapes, And as a first example, the
picture on the facing page shows a rule that produces a pattern whose
surface has seemingly random irregularities, at least on a small scale.

In this particular case, however, it turns out that on a larger scale
the surface follows a rather smooth curve, And indeed, as the picture on
page 178 shows, it is even possible to find cellular automata that yield
overall shapes that closely approximate perfect circles,

But it is certainly not the case that all two-dimensional cellular
autpmata produce only simple overall shapes. The pictures on pages
179-181 show one rule, for example, that does not. The rule is actually
rather simple: it just states that a particular cell should become black
whenever exactly three of its eight neighbors—including diagonals—are
black, and otherwise it should stay the same color as it was before,

In order to get any kind of growth with this rule one must start
with at least three black cells. The picture at the top of page 179 shows
what happens with various numbers of black cells. In some cases the
patterns produced are fairly simple—and typically stop growing after
just a few steps. But in other cases, much more complicated patterns are
produced, which often apparently go on growing forever.

The pictures on page 181 show the behavior produced by starting
from a row of eleven black cells, and then evolving for several hundred
steps. The shapes obtained seem continually to go on changing, with no
simple overall form ever being produced,

And so it seems that there can be great complexity not only in
the detailed arrangement of black and white cells in a two-dimensional
cellular automaton pattern, but also in the overall shape of the pattern.
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many of thea other patterns apparenthy go on growing foraver

S0 what about three-dimensional cellular automata? It is
straightforward to generalize the setup for two-dimensional rules to the
three-dimensional case. But particularly on a printed page it is fairly
difficult to display the evoluton of a three-dimensional cellular
autematon in a way that can readily be assimilated.

Pages 182 and 183 do however show a few examples of
three-dimensional cellular automata. And just as in the two-dimensional
case, there are some specific new phenomena that can be seen. But overall
it seems that the basic kinds of behavior produced are just the same as in
one and two dimensions. And in particular, the basic phenomenon of
complexity does not seem to depend in any crucial way on the

dimensionality of the system one looks at.
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Examples of thres-dirnensional cellular sutormata In the top set of pictures, the rule specifws that &
o3l should become black whanevar army of tha so neighbors with whech it shares a face were black
@ _— on tha stap bafore. In the bottom picturss, the nds speofies that a sl should bacoms black onby

wihipn At hy Sne ol 105 S nmghbors seas black an the step beforn, 0 both cases, the il condetn
centains & single black cell Inthe top petures, the imiting sheps obteined 18 a regular actshadron. In
tha bottorn pictures, it is 8 nested pattarn enalogous to the teo-demensional ons on page 171,
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Further emamnples of three-dimensional callulsr sutomata, but now with niles that depend on sll 26
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condition contains a single black call; in the botbomn picturas, & contains a ine of thees black cells

1831



STEFPHEMN WOLFRE AM |AHEWIIH|_'.- DF SCIEMCE

184

Turing Machines

Much as for cellular automata, it is straightforward to generalize
Turing machines to two dimensions. The basic idea—shown in the
picture below—is to allow the head of the Turing machine to move
around on a two-dimensional grid rather than just going backwards and
forwards on a one-dimensional tape.
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st 3 o d S0 6 g 6 s & st 8
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Steg TG

An exarmple of a two-dirmenssonal Twnrg  meshins

whoae head has three possible states. The bladk dot M- [~ B - . -l B—= i =]+ Q
raprassnts the positien of the hsad at sach stap, and

=g 51 Stog A0 soap 41 g B2

tha thees possible orientations of the amow on this dot corraspond to tha three possible states of tha head, The nile spacites
w1 which af the faur psibde degctions thae hmad should move 81 each step, Mote that The orientation o The arrow representing
the state of the head has no direct rlationsheg to directons on the ged—or to whath way the head wall rove at the next atep

When we looked at one-dimensional Turing machines earlier in
this book, we found that it was possible for them to exhibit complex
behavior, but that such behavior was rather rare.

In going to two dimensions we might expect that complex behavior
would somehow immediately become more common. But in fact what
we find is that the situation is remarkably similar to one dimension.

For Turing machines with two or three possible states, only
repetitive and nested behavior normally seem to occur, With four
states, more complex behavior is possible, but it is still rather rare.

The facing page shows some examples of two-dimensional Turing
machines with four states. Simple behavior is overwhelmingly the most
commeon. But out of a million randomly chosen rules, there will typically
be a few that show complex behavior. Page 186 shows one example where
the behavior seems in many respects completely random,
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Examples of patterns produesed by tevo-dirmensenal Tuning machines
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spacifiad number of steps. Mote that m the later cases shown, tha
hiegd often vesita the same pasition on the grid many times,
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Substitution Systems and Fractals

One-dimensional substitution systems of the kind we discussed on page
82 can be thought of as working by progressively subdividing each
element they contain into several smaller elements.

One can construct two-dimensional substitution systems that

work in essentially the same way, as shown in the pictures below,

ey 4

sieg 7 =an F

armaller equares 8t evary step according to the rule shown on the left. The pattern

‘ A weedirmernsional substitulion SyEtaay nowhich sach Square 15 feplaced by four
ganaratad has a nasted form.,

[ B s

The next page gives some more examples of two-dimensional
substitution systems. The patterns that are produeced are certainly quite
intricate, But there is nevertheless great regularity in their overall
forms. Indeed, just like patterns produced by one-dimensional
substitution systems on page 83, all the patterns shown here ultimately
have a simple nested structure.

Why does such nesting occur? The basic reason is that at every
step the rules for the substitution svstem simply replace cach black
square with several smaller black squares, And on subsequent steps,

each of these new black squares is then in turn replaced in exactly the
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same way, so that it ultimately evolves to produce an identical copy of
the whole pattern.

But in fact there is nothing about this basic process that depends
on the squares being arranged in any kind of rigid grid. And the picture
below shows what happens if one just uses a simple geometrical rule to

replace each black square by two smaller black squares. The result, once

again, is that one gets an intricate but highly regular nested pattern.

CHAPTER &
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a8 s san 10

that square. The fnal pattarn obtainad has an intricate nested structura

In a substitution system where black squares are arranged on a
grid, one can be sure that different squares will never overlap. But if
there is just a geometrical rule that is used to replace each black square,
then it is possible for the squares produced to overlap, as in the picture
on the next page. Yet at least in this example, the overall pattern that is
ultimately obtained still has a purely nested structure.

The general idea of building up patterns by repeatedly applying
geometrical rules is at the heart of so-called fractal geometry. And the

sitmp {1

Theie pattisrn Stdsinmd by starting with a singhs Black squasse and then gl avery step replacing sach

black coll with two smaller black cells sceording to the simphs geometrcal rule shawan on the lef.
. - Mote that in apphyng the rule to 8 particular sguare, ona must teke account of tha onentation of
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pictures on the facing page show several more examples of fractal
patterns produced in this way.

The details of the geometrical rules used are different in each
case. But what all the rules have in common is that they involve
replacing one black square by two or more smaller black squares. And
with this kind of setup, it is ultimately inevitable that all the patterns
produced must have a completely regular nested structure,

So what does it take wo ger patterns with more complicated
structure! The basic answer, much as we saw in one-dimensional
substitution systems on page 85, is some form of interaction between
different elements—so that the replacement for a particular element at
a given step can depend not only on the characteristics of that element
itself, but also on the characteristics of other neighboring elements.

But with geometrical replacement rules of the kind shown on the
facing page there is a problem with this. For elements can end up
anywhere in the plane, making it difficult to define an obvious notion
of neighbors. And the result of this has been that in traditional fractal
geometry the idea of interaction between elements is not considered—

so that all patterns that are produced have a purely nested form.
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Examples of fractal patterns produgsed by
repeatadly applying the geornatrical riles
eheann for a total of 12 stepa. The details of
each pattem are different, but in all cases
the pattems hava a rested cverall structure,
Thiz presence of this nested struciurm 15 an
invitabhe congequence of 1hae Tact that the
rube for replacing en slement at a partsules
position dogs not depand in any way on
othar alamants

Yet if one sets up elements on a grid it is straightforward o allow

the replacements for a given element o depend on its neighbors, as in
the picture at the wp of the next page. And if one does this, one
immediately gets all sorts of fairly complicated patterns that are often
not just purely nested—as illustrated in the pictures on the next page.
In Chapter 3 we discussed both ordinary  one-dimensional
substitution systems, in which every element is replaced at each step,
e block of

elements are replaced at each step. And what we did to find which

and sequential substitution systems, in which just a sing

block of elements should be replaced at a given step was to scan the
whaole sequence of elements from left to right.
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So how can this be peneralized to higher dimensions! On a
two-dimensional grid one can certainly imagine snaking backwards and
forwards or spiralling outwards to scan all the elements. But as soon as
one defines any particular order for elements—however they may be laid
out—this in effect reduces one to dealing with a one-dimensional system.

And indeed there seems to be no immediate way to generalize
sequential substitution systems to two or more dimensions. In Chapter
9, however, we will see that with more sophisticated ideas it is in fact
possible in any number of dimensions to set up substitution systems in
which elements are scanned in order—but whatever order is used, the
results are in some sense always the same,



Network Systems

One feature of systems like cellular automata is that their elements are
always set up in a regular array that remains the same from one step to
the next. In substitution systems with geometrical replacement rules
there is slightly more freedom, but still the elements are ultimately
constrained to lie in a two-dimensional plane.

Indeed, in all the systems that we have discussed so far there is in
effect always a fixed underlying geometrical structure which remains
unchanged throughout the evolution of the system.

It turns out, however, that it is possible to construct systems in
which there is no such invariance in basic structure, and in this section
[ discuss as an example one version of what I will call network systems.

A network system is fundamentally just a collection of nodes
with various connections between these nodes, and rules that specify
how these connections should change from one step to the next.

At any particular step in its evolution, a network system can be
thought of a little like an electric circuit, with the nodes of the network
corresponding to the components in the circuit, and the connections tw
the wires joining these components together.

And as in an electric circuit, the properties of the system depend
only on the way in which the nodes are connected together, and not on
any specitic layout for the nodes that may happen to be used.

Of course, to make a picture of a network system, one has to
choose particular positions for each of its nodes, But the crucial point is
that these positions have no fundamental significance: they are
introduced solely for the purpose of visual representation.

In constructing network systems one could in general allow each
node to have any number of connections coming from it, But at least for
the purposes of this section nothing fundamental turns out to be lost if
one restricts oneself o the case in which every node has exactly two
outgpoing connections—each of which can then either go o another
node, or can loop back to the original node itself.

With this setup the very simplest possible network consists of

just one node, with both connections from the node looping back, as

CHAPTER &
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in the top picture below. With two nodes, there are already three
possible patterns of connections, as shown on the second line below.
And as the number of nodes increases, the number of possible
different networks grows very rapidly.

e OO
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Possabds natworks formed by haveng ona, two ar three nodes, with teo connactions coming out of
each nede. Tha pcture showvws all inequivalant cases ignoning bels, but sxcludes natworks inowhach
thwnrie ang nodies which cannat be reached by connecbors Trom othe nodes,

For most of these networks there is no way of laying out their
nodes so as to get a picture that looks like anything much more than a
random jumble of wires. But it is nevertheless possible to construct
many specific networks that have easily recognizable forms, as shown
in the pictures on the facing page.

Each of the networks illustrated at the top of the facing page
consists at the lowest level of a collection of identical nodes. But the
remarkable fact that we see is that just by changing the pattern of
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Examples of networks that comespond to amays inone, two and three dimengions, At an underbyng level, each network
consists just of a collacton of nodss with two gonnections comang from sach node, But by settng up appropriate
patterns for thess connections, one can get nebwceks waith vary differant effective geometncal structunss,

connections between these nodes it 1s possible to get structures that
effectively correspond to arrays with different numbers of dimensions.

Example (a) shows a network that is effectively one-dimensional.
The network consists of pairs of nodes that can be arranged in a
sequence in which each pair is connected to one other pair on the left
and another pair on the right.

But there is nothing intrinsically one-dimensional about the
structure of network systems. And as example (b] demonstrates, it is
just a matter of rearranging connections to get a network that looks like
a two-dimensional rather than a one-dimensional array. Each individual
node in example (b] still has exactly two connections coming out of it,
but now the overall pattern of connections is such that every block of
nodes is connected to four rather than two neighboring blocks, so that
the network effectively forms a two-dimensional square grid.
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Example [} then shows that with appropriate connections, it is also
possible to get a three-dimensional array, and indeed using the same
principles an array with any number of dimensions can easily be obtained.

The pictures below show examples of networks that form infinite
trees rather than arrays, Notice that the first and last networks shown
actually have an identical pattern of connections, but they look different
here because the nodes are arranged in a different way on the page.
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E:-lamphcs ol reebweorks That comespond 1o inlinie trees, Mole thatl netwarks {8 and (S are identical, thaugh they ook diffarant
Pocause the nocdes ane lad oul -:I'If-mll-r o thie pagee. &1 the nefworks shoswn ane truncabed a8 the lesees of each trom,
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In general, there is great variety in the possible structures that
can be set up in network systems, and as one further example the
picture below shows a network that forms a nested pattern.

In the pictures above we have seen various examples of
individual networks that might exist at a particular step in the
evolution of a network system. But now we must consider how such
networks are transformed from one step in evolution to the next,

The basic idea is to have rules that specify how the connections
coming out of each node should be rerouted on the basis of the local
structure of the network around that node.

But to see the effect of any such rules, one must first find a
unitorm way of displaying the networks that can be produced. The
pictures at the top of the next page show one possible approach based on
alwavs arranging the nodes in each network in a line across the page.

And although this representation can obscure the geometrical structure

CHAPTER &

An axampke of a nebteork that forms a nested
gecmetrical stuctura. As m all the other networks
shonwn, each node here is identical, and hes pust
fws connections corming out of i
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of a particular network, as in the second and third cases above, it more
readily allows comparison between different networks.

In setting up rules for network systems, it is convenient to
distinguish the two connections that come out of each node. And in the
pictures above one connection is therefore always shown going above
the line of nodes, while the other is always shown going below.,

The pictures on the facing page show examples of evolution
obtained with four different choices of underlying rules. In the first
case, the rule specifies that the “above” connection from each node
should be rerouted so that it leads to the node obtained by following the
“helow” connection and then the “above” connection from that node,
The “below’ connection is left unchanged.

The other rules shown are similar in structure, except that in
cases [c] and (d), the “above” connection from each node 1s rerouted so
that it simply loops back to the node itself.

In case |d], the result of this is that the network breaks up into
several disconnected pieces. And it terns out that none of the rules 1
consider here can ever reconnect these pieces again, S0 as a
consequence, what I do in the remainder of this section is to track only
the piece that includes the first node shown in pictures such as those
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The swehton of netyaork systams with four difersnt choices of urdsrying ndes, Successive staps in the sealuton are shown
on Sucoessnie lines down the page, In case (&, the "above”™ connechaon of each node 15 rerouted at each stap 10 kead to the
niode reached by following first the belowy connection and then the above connection from that node; the below conmection s
laft unchanged. In case (bl the above comnection of each node is rerouted to the node reached by follewing the abowve
connaction and then the sbawe conmsction agasn; the below connection is laft unchangsd. In cass (), the abowe connection of
mach node 15 rerauted $o & (o loop back 1o the node dsell, while the below connechon 15 it undhanged, &nd in casae (G, the
abowse connechion 1% rerouled %o &5 1o loop back, while the below connection 15 serouled 1o ledd to the node reached by
follwwing the above connecton. With the “above” connection kabelled a2 1 and the “helow” connection az 2, theae rules
correspond to replacing connachions (1), (211 at aach node by Gal (§2, 10 (200, | 000 2L r2 . tel (F L f25), and {db S5 fT )

above, And in effect, this then means that other nodes are dropped from
the network, so that the total size of the network decreases.

By changing the underlying rules, however, the number of nodes
in a network can also be made to increase, The basic way this can be
done is by breaking a connection coming from a particular node by
inserting a new node and then connecting that new node to nodes
obtained by following connections from the original node,

The pictures on the next page show examples of behavior
produced by two rules that use this mechanism. In both cases, a new
node is inserted in the “above” connection from each existing node in
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the network. In the first case, the connections from the new node are
exactly the same as the connections from the existing node, while in
the second case, the "above™ and "below” connections are reversed.
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Evclubon of natwaork systams whose nles involes the addition of new nodas. In both casas, the new nodas are irsartad in
tha “above™ connection from each noda In casa lal, tha connections from the mew node lead to the sams nodes as tha
cafmgchiong Tram the snginal node. by case (B, the abowe and Bedaw conmections tor the new fnode are revarsed. 0 the
pictures abods, now nodes are placed immediately after the nodes that give rige to thein, and gray lines are waed to indicate
the crmgin of asch noda. Mota that the initial conditions consist of & netweork that contains onby & sngla nods.

But in both cases the behavior obtained is quite simple. Yet much
like neighbor-independent substitution systems these network systems
have the property that exactly the same operation is always performed
at each node on every step.

In general, however, one can set up network systems that have
rules in which different operations are performed at different nodes,
depending on the local strocture of the network near each node.

One simple scheme for doing this is based on looking at the two
connections that come out of each node, and then performing one
operation if these two connections lead to the same node, and another if
the connections lead to different nodes.

The pictures on the facing page show some examples of what can
happen with this scheme, And again it turns out that the behavior is
always quite simple—with the network having a structure that
inevitably grows in an essentially repetitive way.

But as soon as one allows dependence on slightly longer-range
features of the network, much more complicated behavior immediately
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hiosensar, mora complicated behavior doss not appaar to ba saan

hecomes possible, And indeed, the pictures on the next two pages show
examples of what can happen if the rules are allowed to depend on the
number of distinct nodes reached by following not just one but up w
two successive connections from each node.

With such rules, the sequence of networks obtained no longer
needs to form any kind of simple progression, and indeed one finds that
even the total number of nodes at each step can vary in a way that
seems in many respects completely random,

When we discuss issues of fundamental physics in Chapter 9 we
will encounter a variety of other types of network systems—and I
suspect that some of these systems will in the end turn out to be closely
related to the basic structure of space and spacetime in our universe,
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Multiway Systems

The network systems that we discussed in the previous section do not
have any underlying grid of elements in space. But they still in a sense
have a simple one-dimensional arrangement of states in time. And in fact,
all the systems that we have considered so far in this book can be thought
of as having the same simple structure in time. For all of them are
ultimately set up just to evolve progressively from one state to the next,
Multiway systems, however, are defined so that they can have not
just a single state, but a whole collection of possible states at any given step.
The picture below shows a very simple example of such a system.

I___I\
IN 5|
& wary simple multheay systam n

wyhich ore eherment s osach Sequanco O 0O 11
= raplaced &l each step by aither one
of tewn alemants. The main featura of
multhwey  systems is that all the
destinct sequances that result ara kapt,
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Each state in the system consists of a sequence of elements, and
in the particular case of the picture above, the rule specifies that at each
step each of these elements either remains the same or is replaced by a
pair of elements. Starting with a single state consisting of one element,
the picture then shows that applying these rules immediately gives two
possible states: one with a single element, and the other with two.

Multiway systems can in general use any sets of rules that define
replacements for blocks of elements in sequences. We already saw
exactly these kinds of rules when we discussed sequential substitution
systems on page 88, But in sequential substitution systems the idea was
to do just one replacement at each step. In multiway systems, however,
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the idea is to do all possible replacements at each step—and then to
keep all the possible different sequences that are generated.

The pictures below show what happens with some very simple
rules, In each of these examples the behavior turns out to be rather
simple—with for example the number of possible sequences always
increasing uniformly from one step to the next.
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Examples of sample rmultedy Systems, The number of distmal sequences &t stop ¢ ;o these thrme syStoms S respectively
Calngl /2] 1 and Fibonacalt + 1) lwhich increases approximataly ke 18187

In general, however, this number need not exhibit such uniform

growth, and the pictures below show examples where fluctuations cceur.
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But in both these cases it turns out to be not too long before these

Huctuations essentially repeat. The picture below shows an example
where a larger amount of apparent randomness is seen. Yet even in this
case one finds that there ends up again being essential repetition—
although now only every 1071 steps,

= oo oy | P

= gt it

——

e
o e e i s e e ,

A rhultiedy system with Babhavior that shows some Signs of apparent randormness. The rnde for this System imdolms three possibhe
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containing 2ero elemeants tharsfore aometimas appear At least with the initial condition used here, deapite considerable sarly spparant
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204



If one looks at many multiway systems, most either grow
exponentially quickly, or not at all; slow growth of the kind seen on the
tacing page is rather rare. And indeed even when such growth leads to a
certain amount of apparent randomness it typically in the end seems w
exhibit some form of repetition. It one allows more rapid growth,
however, then there presumably start to be all sorts of multiway
systems that never show any such regularity. But in practice it tends to
be rather ditficult to study these kinds of multiway systems—since the
number of states they generate quickly becomes too large to handle.

Omne can get some idea about how such systems behave, however,
just by looking at the states that occur at early steps. The picture below

shows an example—with ultimately fairly simple nested behavior,
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with rapid groweth ghown on page 205 The particular rule used hare eventualby
penerates all states baginning with a white cell. At step ¢ there are Flboracclft + 1)
stales, & grven stabe wath mowhite calls and o black cells appears at stap 2m+n-1

|E| H| The collections of states genarated on successne steps by a aimple multnesay eyetam

The pictures on the next page show some more examples.
Sometimes the set of states that get generated at a particular step show
essential repetition—though often with a long period. Sometimes this
set in efect includes a large fraction of the possible digit sequences of a
given length—and so essentially shows nesting. But in other cases there
is at least a hint of considerably more complexity—even though the

total number of states may still end up growing quite smoothly.
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Looking carefully at the pictures of multiway system evolution
on previous pages, a feature one notices is that the same sequences
often occur on several different steps. Yet it is a consequence of the
basic setup for multiway systems that whenever any particular
sequence oceurs, it must always lead to exactly the same behavior.

S0 this means that the complete evolution can be represented as
in the picture at the top of the facing page, with each sequence shown
explicitly only once, and any sequence generated more than once
indicated just by an arrow going back to its first cccurrence.
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But there is no need to arrange the picture like this: for the whole
hehavior of the multiway system can in a sense be captured just by
giving the network of what sequence leads to what other. The picture
below shows stages in building up such a network. And what we see is
that just as the network systems that we discussed in the previous
section can build up their own pattern of connections in space, so also
multiway systems can in effect build up their own pattern of
connections in time—and this pattern can often be quite complicated.
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Systems Based on Constraints

In the course of this book we have looked at many different kinds of
systems. But in one respect all these systems have ultimately been set
up in the same basic way: they are all based on explicit rules that
specify how the system evolves from step to step.

In traditional science, however, it is common to consider systems
that are set up in a rather different way: instead of having explicit rules
for evolution, the SYStems are Just given constraints to s.atiﬂl'}r_

As a simple example, consider a line of cells in which each cell is
colored black or white, and in which the arrangement of colors is subject
to the constraint that every cell should have exactly one black and one
white neighbor, Enowing only this constraint gives no explicit procedure
for working out the color of each cell, And in fact it may at first not be
clear that there will be any arrangement of colors that can satisfy the

constraint. But it turns out that there is—as shown below.

A mystemn consisting of a line of black and whita cells whose form s defined by the constraint that
svary ool shoukd hava sxactly one klack and one white naighbor, The pattarn shown is the only
possbls ons that satesfies thes constramt, The idea of implicsly determining tha bshavior of a systam
Dy gwing conatrants that it must satisfy @ cormrmon in traditiensl acience and mathernatics

And having seen this picture, one might then imagine that there
must be many other patterns that would also satisfy the constraint.
After all, the constraint is local to neighboring cells, so one might
suppose that parts of the pattern sufficiently far apart should always be
independent. But in fact this is not true, and instead the system works a
bit like a puzzle in which there is only one way to fit in each piece. And
in the end it is only the perfectly repetitive pattern shown above that
can satisfy the required constraint at every cell.

Other constraints, however, can allow more freedom. Thus, for
example, with the constraint that every cell must have at least one
neighbor whose color is different from its own, any of the patterns in the
picture at the top of the facing page are allowed, as indeed is any pattern

that involves no more than two suceessive cells of the same color.
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A systam consisting of a Bng of black and white calls whoss form is definad by the constramt that
every cell sheuld heve at lesst one nesghlbor whose color is dfferent fromm itz own. There are many
poesible arrangameants of colors that satisfy this constrant. Some, like the first arrangermeant akxcews,
look guite ramdom. But othars, like the second beo arrangements skaova, ars sampla and rapatitive. it
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But while the first arrangement of colors shown above looks
somewhat random, the last two are simple and purely repetitive.

So what about other choices of constraints! We have seen in this
book many examples of systems where simple sets of rules give rise to
highly complex behavior, But what about systems based on constraints?
Are there simple sets of constraints that can force complex patterns?

It turns out that in one-dimensional systems there are not. For in
one dimension it is possible to prove that any local set of constraints
that can be satisfied at all can always be satisfied by some simple and
purely repetitive arrangement of colors,

But what about two dimensions? The proof for one dimension
breaks down in two dimensions, and so it becomes at least conceivable
that a simple set of constraints could force a complex pattern to occur,

As a first example of a two-dimensional system, consider an array
of black and white cells in which the constraint is imposed that every
black cell should have exactly one black neighbor, and every white cell
should have exactly two white neighbors.

A system consisting of a grid of black and
whhite cella defined by the constraint that
evary bhack o=l should heve exactly one
black neighbor among #s four reighbors,
and ey while coll showld bave exaatly
twecs  whiter mamghbors,  The  mhireds
repetitive pattern shovwn hers, together
with i2a rotatiens and reflections, iz the
only ona that satishes thes constraint
(Tha piciura is assumad to wrag arsund
21 aach adge. | The pattorn can b weevegsd
g5 a tassallaton of & = & blocks of calls.
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As in one dimension, knowing the constraint does not
immediately provide a procedure for finding a pattern which satisfies it.
But a little experimentation reveals that the simple repetitive pattern
above satisfies the constraint, and in fact it is the only pattern to do so,
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Fattarns satsfying constrants which spscify that every black osll and evary whita call must hava a certain fixed numbar of black
and white neighbors, The blank rectanglss in the upper night indicate constraints that cannot be satisfied by any pattemn
whatscavar, Most af the constramis anme satisliod by a single pattarn, ogaeibes saith s ratations and rafhecions, b somn cases,
twer digtinet patterns are possible, and ina few ceses, an infinite set of pattems ere posaible In 8l cases where the constraints can
be satsfied at &l a simple epatitive patterm nevartheless suffices

212



What about other constraints? The pictures on the facing page
show schematically what happens with constraints that require each
cell to have various numbers of black and white neighbors,

Several kinds of results are seen, In the two cases shown as blank
rectangles on the upper right, there are no patterns at all that satisfy the
constraints. But in every other case the constraints can be satisfied, though
typically by just one or sometimes two simple infinite repetitive patterns.
In the three cases shown in the center 2 whole range of mixtures of different
repetitive patterns are possible. But ultimately, in every case where some
pattern can work, a simple repetitive pattern is all that is needed,

S0 what about more complicated constraints? The pictures below
show examples based on constraints that require the local arrangement

of colors around every cell to match a fixed set of possible templates,
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Svsterns specihad By the consiraint that thie lesal arangamant af aolars araund ey sl must rmalch
the fixed sat of possible templates showeno Mote that these ternplatas apply to avary call with
tarnpdatas of nesghborng celds ovedspping. Pattenn (al can ba viewed as formed from a tesselsation of
5 = 1} blocks of cslls; pafern (&) frem a tessallation of 24 = 24 blods, With the numbsning schame for
constranls used on the rnaxt hao pages the cases shown hare comaspored o 1384774 and 328775730

There are a wotal of 4,294,967 295 possible sets of such wemplates.
And of these, 766,979,044 lead to constraints that cannot be satisfied by
any pattern. But among the 3,527,988,252 that remain, it turns out that
every single one can be satisfied by a simple repetitive pattern. In fact the
number of different repetitive patterns that are ever needed is quite small:
if a particular constraint can be satisfied by any pattern, then one of the

set of 171 repetitive patterns on the next two pages is always sufficient.
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Tha cornplete collaction of all 171 patterns neadad to satisfy constraints of the typa shown on the previous page. If none of thees 171
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S0 how can one force more complex patterns to occur?

The basic answer is that one must extend at least slightly the
kinds of constraints that one considers. And one way to do this is to
require not only that the colors around each cell match a set of
templates, but also that a particular template from this set must appear
at least somewhere in the array of cells.

The pictures below show a few examples of patterns determined
by constraints of this kind, A typical feature is that the patterns are
divided into several separate regions, often emanating from some kind
of center. But at least in all the examples below, the patterns that ocour
inn each individual region are still simple and repetitive.

Exarnples of pattarns produced by systerns in which not only rmust the amangerment of colors in each nesghborhocd match one of a
i st of termplates, but also a coarteen template trom this set mast occur at kast once in the gaern The constrans am numbared

a5 belore, and moeach preiune the termplatse that must ooour 15 Showwn &1 the cente, Congtraent 112E628237 leads 19 a patiem that
repeats n 98 « 98 blocks. The last patient Showvn 5 aEo repetinee, eoeating eseny o6 cels on the disgaonal.

&

So how can one find constraints that force more complex
patterns? To do so0 has been fairly difficult, and in fact has taken almost
as much computational effort as any other single result in this book.

The basic problem is that given a constraint it can be extremely
difficult to find out what pattern—if any—will satisfy the constraint.

In a system like a cellular automaton that is based on explicit
rules, it is always straightforward to take the rule and apply it to see



what pattern is produced. But in a system that is based on constraints,
there is no such direct procedure, and instead one must in effect always
go outside of the system to work out what patterns can occur,

The most straightforward approach might just be to enumerate
every single possible pactern and then see which, if any, of them satisfy
a particular constraint. But in systems containing more than just a few
cells, the total number of possible patterns is absolutely astronomical,
and so enumerating them becomes completely impractical.

A more practical alternative is to build up patterns iteratively,
starting with a small region, and then adding new cells in essentially all
possible wavs, at each stage backtracking if the constraint for the
system does not end up being satisfied.

The pictures on the next page show a few sequences of patterns
produced by this method, In some cases, there emerge quite quickly
simple repetitive patterns that satisfy the constraint. But in other
cases, a huge number of possibilities have to be examined in order to
find any suitable pattern,

And what if there is no pattern at all that can satisfy a particular
constraint? One might think that to demonstrate this would effectively
require examining every conceivable pattern on the infinite grid of
cells, But in fact, if one can show that there is no pattern that satisfies
the constraint in a limited region, then this proves that no pattern can
satisfy the constraint on the whole grid. And indeed for many
constraints, there are already quite small regions for which it is possible
to establish that no pattern can be found.

But occasionally, as in the third picture on the next page, one
runs into constraints that can be satisfied for regions containing
thousands of cells, but not for the whole grid. And to analvze such cases
inevitably requires examining huge numbers of possible patterns.

But with an appropriate collection of tricks, it is in the end
feasible to take almost any system of the type discussed here, and
determine what pattern, if any, satisfies its constraint.

S0 what kinds of patterns can be needed? In the vast majority of
cases, simple repetitive patterns, or mixtures of such patterns, are the
only ones that are needed.

CHAPTER &

2T



STEPHEMNM WOLFRE AM

I8

Stagms i linding patterns that sabishy consiraints Gl 4670324, |b) 37E3ELETL, and (o) SETEZI0E. Gray &
uaed 10 irdicate calls whose colors have not yet been determmed. The frat stage shown in each casa
comasponds to calls whose colors can be deducad immediately from the presancs of a parbicular
template at tha cantar In casa (al choicss for additional csdls can ba made steeghtforvandhy and an nfirite
regular pattem can ba bult up wathout amy backtracking. In casa (&, many choces for addiberal cells hava
b b tried, wath rnuoch backtraciing, and n the end the automatic procedure fada to find 8 repettive
pattem. Mewarthaless, a5 the l&st stege demorstrates, a rapetitive paftarn doss i fact ewet. bn casae (g,
the autornatic procedurs fings a farly lange and efmost regulsr pattarn that satisfies the constraints, bt in
I CAgay o huens aul Dnal "IZ:III'IrIIIH!' AL mxisls

But if one systematically examines possible constraints in the
order shown on pages 214 and 215, then it torns out that after
examining more than 18 million of them, one finally discovers the
system shown on the facing page. And in this system, unlike all others
before it, no repetitive pattern is possible; the only pattern that satisties
the constraint is the non-repetitive nested pattern shown in the picture.

After testing millions of constraintgs, and tens of billions of
candidate patterns, therefore, it is finally possible to establish that a
system based on simple constraints of the type discussed here can be

torced to exhibit behavior more complex than pure repetition.



5 [ CHAFTER &

The semplest ayaiern besed on constramis that 18 forced to

Iﬂj||:!:|||:b|l:El E::I|*‘% ﬂ:lci||:§:|||%—h||:ﬁj| achibit a non-repetitve pattarn. The constraint requires that the
- arangament of colors around sach csll must match one of tha

12 termplates shown, and that &t least somepschane in the pathern & template confaimeng & par of $tacked bladk calls must accur, In tha

numbering Sschems used on precading pages, the constramt 15 numbes TERG2388, The paltern shown s uniguae, i that no varations of
it, axcept for trivial translations, will satsfy the constraints. The nasted structure on the diagonal eseantally comesponds to 8
prograssien of basa 2 digit sequances for positive and negathe numbsrs

2y



STEFPHEMN WOLFREAM |AHEWIIH|_'.- DAF SCIEMCE

What about still more complex behavior?

There are altogether 137,43%,953,472 constraints of the type
shown on page 216. And of the millions of these that T have tested, none
have forced anything more complicated than the kind of nested
behavior seen on the previous page. But if one extends again the type of
constraints one considers, it turns out to become possible to construct
examples that force more complex behavior.

The idea is to set up templates that involve complete 3 = 3 blocks
of cells, including diagonal neighbors, The picture below then shows an
example of such a system, in which by allowing only a specific set of 33
templates, a nested pattern is forced to occur.
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An example of a systemn based on a constraint inwelving
3w d femplates o cells, In thes parbcular System, only
the 33 termplates shown abess lout of the B12 possible
ones) e allowed to ocown. This constraint, together
with the requirsrment theat the first ternplate must appear
Al leas! somesbuere, then Wwwrns oul (o lorce & sedsted
pattarn o aoceur, Tha system Shawn was specihcally
constructed  in corrsapondence  with  the ok 60
alementary one-dimansional cellular automatan,

What about more complex patterns? Searches have not succeeded
in finding anything. But explicit construction, based on correspondence
with one-dimensional cellular automata, leads to the example shown at
the top of the facing page: a system with 56 allowed templates in which
the only pattern satisfying the constraint is a complex and largely
random one, derived from the rule 30 cellular automaton.
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So finally this shows that it is indeed possible to force complex
behavior to occur in systems based on constraints, But from what we
have seen in this section such behavior appears to be quite rare: enlike
many of the simple rules that we have discussed in this book, it seems

that almost all simple constraints lead only to fairly simple patterns.

Any phenomenon based on rules can always ultimately also be

described in terms of constraints, But the results of this section indicate
that these descriptions can have to be fairly complicated for complex
hehavior to occur, So the fact that traditional science and mathematics
tends to concentrate on equations that operate like constraints provides

yvet another reason for their failure w identify the fundamental

phenomenon of complexity that I discuss in this book.
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Starting from Randomness

The Emergence of Order

In the past several chapters, we have seen many examples of behavior
that simple programs can produce. But while we have discussed a whole
range of different kinds of underlying rules, we have for the most part
considered only the simplest possible initial conditions—so that for
example we have usually started with just a single black cell.

My purpose in this chapter is to go to the opposite extreme, and
to consider completely random initial conditions, in which, for
example, every cell is chosen to be black or white at random.

One might think that starting from such randomness no order
would ever emerge, But in fact what we will find in this chapter is that
many systems spontaneously tend to organize themselves, so that even
with completely random initial conditions they end up producing
behavior that has many features that are not at all random.

The picture at the top of the next page shows as a simple first
example a cellular automaton which starts from a typical random
initial condition, then evolves down the page according to the very
simple rule that a cell becomes black if either of its neighbors are black.

What the picture then shows is that every region of white that
exists in the initial conditions progressively gets filled in with black, so

that in the end all that remains is a uniform state with every cell hlack.
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this case wwas Test shown on page 24, and S number 284 10 the schama descnbed on page B3, It specilmes that & coll
ghould become Hack whenaver aither of s naighbors is slraady Black.

The pictures below show examples of other eellular automata
that exhibit the same basic phenomenon. In each case the initial
conditions are random, but the system nevertheless quickly organizes

itself to become either unitormly white or unitormly black,
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Four rore examples of cellular automats that evobee from random iretal condibons to completely uniform states. The
nilas showen hare correspond to numbers O, 32, 160 and 250

The facing page shows cellular automata that exhibit slightly
more complicated behavior. Starting from random initial conditions,
these cellular automata again quickly sectle down to stable states. But
now these stable states are not just uniform in color, but instead
involve a collection of definite structures that either remain fixed on
successive steps, or repeat periodically.

So if they have simple underlying rules, do all cellular automata
started from random initial conditions eventually settle down to give

stable states that somehow look simple?
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It turns out that they do not. And indeed the picture on the next
page shows one of many examples in which starting from random
initial conditions there continues to be very complicated behavior
forever, And indeed the behavior that is produced appears in many
respects completely random. But dotted around the pictore one sees
many definite white triangles and other small structures that indicate

at least a certain degree of organization.
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The pictures above and on the previous page show more
examples of cellular automata with similar behavior. There is
considerable randomness in the patterns produced in each case, But
despite this randomness there are always triangles and other small
structures that emerge in the evolution of the system,

S0 just how complex can the behavior of a cellular automaton
that starts from random initial conditions be! We have seen some
examples where the behavior quickly stabilizes, and others where it
continues to be quite random forever. But in a sense the greatest
complexity lies between these extremes—in systems that neither
stabilize completely, nor exhibit close to uniform randomness forever.

The facing page and the one that follows show as an example the
cellular automaton that we first discussed on page 32. The initial
conditions used are again completely random. But the cellular
automaton quickly organizes itself into a set of definite localized
structures, Yet now these stroctures do not just remain fixed, but
instead move around and interact with each other in complicated wayvs.
And the result of this is an elaborate pattern that mixes order and

randomness—and is as complex as anything we have seen in this book.
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Four Classes of Behavior

In the previous section we saw what a number of specific cellular
automata do if one starts them from random initial conditions. But in
this section T want to ask the more general question of what arbitrary
cellular automata do when started from random initial conditions,

One might at first assume that such a general question could
never have a useful answer, For every single cellular automaton afeer all
ultimately has a different underlying rule, with different properties and
potentially different consequences.

But the next few pages show various sequences of cellular
automata, all starting from random initial conditions.

And while it is indeed true that for almost every rule the specific
pattern produced is at least somewhat different, when one looks at all
the rules wogether, one sees something quite remarkable: that even
though each pattern is different in detail, the number of fundamentally
different types of patterns is very limited.

Indeed, among all kinds of cellular automata, it seems that the
patterng which arise can almost always be assigned quite easily to one
of just four basic classes illustraced below,
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developed this classification in 1363,

These classes are conveniently numbered in order of increasing
complexity, and each one has certain immediate distinctive features.

In class 1, the behavior is very simple, and almost all initial
conditions lead to exactly the same uniform final state,
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In class 2, there are many different possible final states, but all of
them consist just of a certain set of simple structures that either remain
the same forever or repeat every few steps,

In class 3, the behavior is more complicated, and seems in many
respects random, although triangles and other small-scale structures are
essentially always at some level seen.

And finally, as illustrated on the next few pages, class 4 involves a
mixture of order and randomness: localized structures are produced
which on their own are fairly simple, but these structures move around
and interact with each other in very complicated ways,

I originally discovered these four classes of behavior some nineteen
years ago by looking at thousands of pictures similar to those on the last
few pages. And at first, much as I have done here, [ based my classification
purely on the general visual appearance of the patterns I saw,

But when I studied more detailed properties of cellular automata,
what T found was that most of these properties were closely correlated
with the classes that I had already identified. Indeed, in wrying wo predict
detailed properties of a particular cellular automaton, it was often
enough just to know what class the cellular automaton was in.

And in a sense the situation was similar to what is seen, say, with
the classitication of materials into solids, liquids and gases, or of living
organisims into plants and animals, At first, a classification is made
purely on the basis of general appearance. But later, when more detailed
properties become known, these properties turn out to be correlated
with the classes that have already been identified.

Often it is possible to use such detailed properties to make more
precise definitions of the original classes. And typically all reasonable
definitions will then assign any particular system to the same class.

Exarmples of class 4 cellular sutormats seith totalizte: rules swoling nearest neighbors and thres peasible
colors for @ach call. Each picture shows 1500 staps of evsluticn from randam inital conditions. b
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But with almost any general classification scheme there are
inevitably borderline cases which get assigned to one class by one
definition and another class by another definition. And so it is with
cellular automata: there are occasionally rules like those in the pictures
below that show some features of one class and some of another.

¥ ST T B

WP B

code F19 oce 160 cade 1835
Harm exampbes of bordedme celllar auvdormata that do nat it squarely into amy one of the Towr basic classes descnbad in tha text
Diflerent delirmions based on ditferent specle propems will place these callular autamata into different classes, The nles showen

ara totalistic ones irvohbing nearast neighbore and three possible colors for esch cell, The first rule can be esthar class 2 or clese 4,
the second clase 3 or 4, the third class 2 or 3 and the fourth class 1, 2 ar 3.
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But such rules are quite unusual, and in most cases the behavior
one sees instead falls squarely into one of the four classes described above.

50 given the underlying rule for a particular cellular automaton,
can one tell what class of behavior the cellular avtomaton will produce?

In most cases there is no easy way to do this, and in fact there is
little choice but just to run the cellular automaton and see what it does.

But sometimes one can tell at least a certain amount simply from
the form of the underlying rule. And so for example all rules that lie in
the first two columns on page 232 can be shown to be unable ever to
produce anything besides class 1 or class 2 behavior.,

In addition, even when one can tell rather little from a single rule,
it is often the case that rules which occur next to each other in some
sequence have similar behavior. This can be seen for example in the
pictures on the facing page. The top row of rules all have class |
behavior. But then class 2 behavior is seen, followed by class 4 and then
class 3. And after that, the remainder of the rules are mostly class 3,

The fact that class 4 appears between class 2 and class 3 in the
pictures on the facing page is not uncommon. For while class 4 is above

class 3 in terms of apparent complexity, it is in a sense intermediate
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between class 2 and class 3 in terms of what one might think of as
overall activity,

The point is that class 1 and 2 systems rapidly settle down to
states in which there is essentially no further activity. But class 3
systems continue to have many cells that change at every step, so that
they in a sense maintain a high level of activity forever. Class 4 systems
are then in the middle: for the activity that they show neither dies out
completely, as in class 2, nor remains at the high level seen in class 3.

And indeed when one looks at a particular class 4 system, it often
seems to waver between class 2 and class 3 behavior, never firmly
settling on eicher of them,

In some respects it is not surprising that among all possible
cellular automata one can identify some that are effectively on the
boundary between class 2 and class 3, But what is remarkable about
actual class 4 systems that one finds in practice is that they have
definite characteristics of their own—most notably the presence of
localized structures—that seem to have no direct relation to being
somehow on the boundary between class 2 and class 3.

And it turns out that class 4 systems with the same general
characteristics are seen for example not only in ordinary cellular
automata but also in such systems as continuous cellular automata.

The facing page shows a sequence of continuous cellular
automata of the kind we discussed on page 155, The underlying rules in
such systems involve a parameter that can vary smoothly from 0 to 1.

For different values of this parameter, the behavior one sees is
different. But it seems that this behavior falls into essentially the same
four classes that we have already seen in ordinary cellular automata.
And indeed there are even quite direct analogs of for example the
triangle structures that we saw in ordinary class 3 cellular automata.

But since continuous cellular automata have underlying rules
based on a continuous parameter, one can ask what happens if one
smoothly varies this parameter—and in particular one can ask what
sequence of classes of behavior one ends up seeing.

The answer is that there are normally some stretches of class 1 or
2 behavior, and some stretches of class 3 behavior. But at the transitions
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it turns out that class 4 behavior is typically seen—as illustrated on the
facing page. And what is particularly remarkable is that this behavior
involves the same kinds of localized structures and other features that
we saw in ordinary discrete class 4 cellular automata.

S0 what about two-dimensional cellular automata? Do these also
exhibit the same four classes of behavior that we have seen in one
dimension? The pictures on the next two pages show various steps in
the evolution of some simple two-dimensional cellular automata
starting from random initial conditions, And just as in one dimension a
few distinet classes of behavior can immediately be seen.

But the correspondence with one dimension becomes much more
obvious il one looks not at the complete state of a two-dimensional
cellular automaton at a few specific steps, but rather at a one-dimensional
slice through the system for a whole sequence of steps.

The pictures on page 248 show examples of such slices, And what
we see is that the patterns in these slices look remarkably similar to the
patterns we already saw in ordinary one-dimensional cellular avtomata,
Indeed, by looking at such slices one can readily identify the very same
four classes of behavior as in one-dimensional cellular automata.

S0 in particular one sees class 4 behavior. In the examples on page
248, however, such behavior always seems to occur superimposed on
some kind of repetitive background—much as in the case of the rule
110 one-dimensional cellular automaton on page 229,

So can one get class 4 behavior with a simple white background?
Much as in one dimension this does not seem to happen with the very
simplest possible kinds of rules, But as soon as one goes to slightly more
complicated rules—though still very simple—one can find examples.

And so as one example page 249 shows a two-dimensional
cellular automaton often called the Game of Life in which all sorts of
localized structures occur even on a white background. If one watches a
maovie of the behavior of this cellular automaton its correspondence to a
one-dimensional class 4 system is not particularly obvious, But as soon
as one looks at a one-dimensional slice—as on page 24%—what one sees
is immediately strikingly similar to what we have seen in many
one-dimensional class 4 cellular automata,
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Sensitivity to Initial Conditions

In the previous section we identified four basic classes of cellular
automata by looking at the overall appearance of patterns they produce.
But these four classes also have other significant distinguishing
features—and one important example of these is their sensitivity to
small changes in initial conditions,

The pictures below show the effect of changing the initial color of
a single cell in a typical cellular automaton from each of the four classes
of cellular automata identified in the previous section.

u | E:I*II:¢$$¥

e NS0

The effect of changing the color of & single cell in the initigl conditions for tepical cellular automata from each of the
four classes identified in the previous section. The blesk dots indicate all the cells that changs The waey that such
changes behava is charsctaristically diffarant for each of the four cleases of systams.

The results are rather different for each class.

In class 1, changes always die out, and in fact exactly the same
final state is reached regardless of what initial conditions were used. In
class 2, changes may persist, but they always remain localized in a
small region of the system. In class 3, however, the behavior is quite
different. For as the facing page shows, any change that is made
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typically spreads at a uniform rate, eventually affecting every part of the
system. In class 4, changes can also spread, but only in a sporadic way—
as illustrated on the facing page and the one that follows,

S0 what is the real significance of these different responses to
changes in initial conditions? In a sense what they reveal are basic
differences in the way that each class of systems handles information.

In class 1, information about initial conditions is always rapidly
torgotten—for whatever the initial conditions were, the system quickly
evolves to a single final state that shows no trace of them,

In class 2, some information about initial conditions is retained
in the final configuration of structures, but this information always
remains completely localized, and is never in any way communicated
from one part of the system to another,

A characteristic feature of class 3 systems, on the other hand, is
that they show long-range communication of information—so that any
change made anvwhere in the system will almost alwavs eventually be
communicated even to the most distant parts of the system.

Class 4 systems are once again somewhat intermediate between
class 2 and class 3. Long-range communication of information is in
principle possible, but it does not always occur—for any particular
change is only communicated to other parts of the system if it happens
to affect one of the localized structures that moves across the system,

There are many characteristic differences between the four
classes of systems that we identified in the previous section. But their
differences in the handling of information are in some respects
particularly fundamental. And indeed, as we will see later in this book,
it is often possible to understand some of the most important features
of s¥stems that occur in nature just by looking at how their handling of
information corresponds to what we have seen in the basic classes of
systems that we have identified here.

Tha effact of small changas in inital conditors in tha rde 110 dass 4 calkdar automaton. The changas
spread only whan thay are n eflect carmad by localizad structurss that propagates across the system,
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Systems of Limited Size and Class 2 Behavior

In the past two sections we have seen two important features of class 2
systems: first, that their behavior is always eventually repetitive, and
second, that they do not support any kind of long-range communication.

S0 what is the connection between these two features?

The answer is that the absence of long-range communication
etfectively forces each part of a class 2 system to behave as if it were a
gystem of limited size. And it is then a general result that any system of
limited size that involves discrete elements and follows definite rules
must always eventually exhibit repetitive behavior, Indeed, as we will
discuss in the next chapter, it is this phenomenon that is ultimately
responsible for much of the repetitive behavior that we see in nature.

The pictures below show a very simple example of the basic
phenomenon. In each case there is a dot that can be in one of six possible
positions. And at every step the dot moves a fixed number of positions to
the right, wrapping around as soon as it reaches the right-hand end,
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Looking at the pictures we then see that the behavior which
results is always purely repetitive—though the period of repetition is
different in different cases. And the basic reason for the repetitive
behavior is that whenever the dot ends up in a particular position, it
must always repeat whatever it did when it was last in that position,

But since there are only six possible positions in all, it is
inevitable that after at most six steps the dot will always get to a
position where it has been before. And this means that the behavior
must repeat with a period of at most six steps.

The pictures below show more examples of the same setup,
where now the number of possible positions is 10 and 11, In all cases,
the behavior is repetitive, and the maximum repetition period is equal
to the number of possible positions.
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Sometimes the actual repetition period is equal to this maximum
value. But often it is smaller. And indeed it is a common feature of
systems of limited size that the repetition period one sees can depend
greatly on the exact size of the system and the exact rule that it follows.

In the type of system shown on the facing page, it turns out that
the repetition period is maximal whenever the number of positions
maoved at each step shares no common factor with the total number of
possible positions—and this is achieved for example whenever either of
these quantities is a prime number,

The pictures below show another example of a system of limited
size based on a simple rule. The particular rule is at each step to double
the number that represents the position of the dot, wrapping around as
soon as this goes past the right-hand end.

iz
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Once again, the behavior that results is always repetitive, and the
repetition period can never be greater than the total number of possible
positions for the dot. But as the picture shows, the actual repetition
period jumps around considerably as the size of the svstem is changed.
And as it turns out, the repetition period is again related o the factors
of the number of possible positions for the dot—and tends to he
maximal in those cases where this number is prime.

S0 what happens in systems like cellular automata?

The pictures on the facing page show some examples of cellular
automata that have a limited number of cells. In each case the cells are
inn effect arranged around a circle, so that the right neighbor of the
rightmost cell is the leftmost cell and vice versa.

And once again, the behavior of these systems is ultimately
repetitive, But the period of repetition is often quite large.

The maximum possible repetition period for any svstem is
always equal o the wtal number of possible states of the system,

For the systems involving a single dot that we discussed above,
the possible states correspond just to possible positions for the dot, and
the number of states is therefore equal to the size of the system.

But in a cellular automaton, every possible arrangement of black
and white cells corresponds to a possible state of the system. With » cells
there are thus 27 possible states, And this number increases very rapidly
with the size u: for 5 cells there are already 32 states, for 10 cells 1024
states, for 20 cells 1,048 576 states, and for 30 cells 1,073,741 824 states.

The pictures on the next page show the actual repetition periods
for various cellular automata. In general, a rapid increase with size is
characteristic of class 3 behavior, Of the elementary rules, however,
only rule 45 seems to yield periods that alwavs stay close to the
maximum of 27, And in all cases, there are considerable fluctuations in
the periods that occur as the size changes.

S0 how does all of this relate to class 2 behavior? In the examples
we have just discussed, we have explicitly set up systems that have
limited size. But even when a svstem in principle contains an infinite
number of cells it is still possible that a particular pattern in that
system will only grow to occupy a limited number of cells. And in any



CHAPTER &

The behavicr of callular sutomata with a lirited number of cellz, In each caae the rght neighbiers of the nghtrmost cell is
takan to ba the Eftmost cell and vice varsa, The pattem produced aheays aventually repeats, bt tha pericd of
rpatieen can inc s Sse rapedly with the Si2e o the systam

5%



STEPHEMNM WOLFRE AM

280

Hapatition penods for vanous cellular automata as & functien ol Size, The imtial condidans oSed inoaesch casas consist ol
a single bladk call, &5 0 the pohees on the prevous page, The dashed gray ine ieboalns the maamum possabhs
repetition penicd of 2° . The maximem repetition padod for rule 20 is 2% - 1 For rule 30, the peak repstition pericds
are of ardar 2757 whila for rula 45, thay are close to 2 ifor n = 29, for axample, the period s 463, 347535, which is
88% of the maximum possibis). For nuls 110, the peaks seam 1o moreasa roughly like n”

such case, the pattern must repeat itself with a period of at most 2°
steps, where 1 1s the size of the pattern.

In a class 2 system with random initial conditions, a similar
thing happens: since different parts of the system do not
communicate with each other, they all behave like separate patterns
of limited size. And in fact in most class 2 cellular automata these
patterns are effectively only a few cells across, so that their repetition

periods are necessarily quite shore,
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Randomness in Class 3 Systems

When one looks at class 3 systems the most obvious feature of their
hehavior is its apparent randomness. But where does this randomness
ultimately come from? And is it perhaps all somehow just a reflection
of randomness that was inserted in the initial conditions?

The presence of randomness in initial conditions—together with
sensitive dependence on initial conditions—does imply at least some
degree of randomness in the behavior of any class 3 system. And indeed
when [ first saw class 3 cellular automata 1 assumed that this was the
hasic origin of their randomness,

But the crucial point that I discovered only some time later is
that random behavior can also occur even when there is no randomness
in initial conditions. And indeed, in earlier chapters of this book we
have already seen many examples of this fundamental phenomenon.

The pictures below now compare what happens in the rule 30
cellular automaton from page 27 if one starts from random initial
conditions and from initial conditions involving just a single black cell.
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The behavior we see in the two cases rapidly becomes almost
indistinguishable. In the first picture the random initial conditions
certainly affect the detailed pattern that is obtained. But the crucial
point is that even without any initial randomness much of what we see
i1 the second picture still looks like typical random class 3 behavior.

S0 what about other class 3 cellular automata? Do such systems
always produce randomness even with simple initial conditions?

The pictures below show an example in which random class 3
behavior is obtained when the initial conditions are random, but where
the pattern produced by starting with a single black cell has just a
simple nested form.

i
.
Sk
W
- &
&
a

Fatterns produced by the rule 22 celular autormaton starting from randorn nitiel cond®ticns and from an initial condition containing
a single black o2, With randorn initis! condibsons typical class 3 beahawor is seen. But vath tha spacfic inital condition shown on
the right. a simpla nasted pattarn 5 produced

Mevertheless, the pictures on the facing page demonstrate that if
one uses initial conditions that are slightly different—though still
simple—then one can still see randomness in the behavior of this

particular cellular automaton.
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simnple initial conditiong. [ the top four cases, the pattern produced ufimately has a

simpla nestad form. But m the bottom case, it e irstead in many respacis rmndonn, maech like le 30,

Rz 22 wath vanous different
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There are however a few cellular automata in which class 3
behavior is obtained with random initial conditions, but in which no
significant randomness is ever produced with simple initial conditions.

The pictures below show one example. And in this case it turns
out that all patterns are in effect just simple superpositions of the basic
nested pattern that is obtained by starting with a single black cell.

-
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iunEE SEEEEEEEEEEEEEDEE aanl mandom neal conditians

Pattarns ganarated by rala 80 with various initial conditions, Thie particular calular autornaton rule hae the epacial property of
addhinaily wehch imgdies thal wath amy imbie! cordil ens The patterns that 1 produces can be oblared a5 smmple Ssuparposions
al the hirst patienm showen abose, Sny imlial condition That contams black calls onby in @ hmited region swll thus Iead o & palierm
that ultirmatedy fas 8 sampbe nested form. Unlike rule 30 or ke 22 thersfore, rule 90 cannot intrinsically gensrate randomness
starting from simple initigd conditions. The randomness in the kst poture shewwn hera is thus purely a consaquance of the
randomnsss n 45 iretial conditons. BMote that tha pictures abovs show onby balf as mamy steps of evolution &5 tha
comssponding picturas of nuls 22 on the previcus pags

As a result, when the initial conditions involve only a limited
region of black cells, the overall pattern produced always ultimately has
a simple nested form. Indeed, at each of the steps where a new white
triangle starts in the center, the whole pattern consists just of two
copies of the region of black cells from the initial conditions.

The only wav to get a random pattern therefore is to have an

infinite number of randomly placed black cells in the initial conditions.

&4
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And indeed when random initial conditions are used, rule 90 does
manage to produce random behavior of the kind expected in class 3.

But if there are deviations from perfect randomness in the initial
conditions, then these will almost inevitably show up in the evolution
of the system. And thus, for example, if the initial density of black cells
is low, then correspondingly low densities will occur again at various
later steps, as in the second picture below.

With rule 22, on the other hand, there is no such ettect, and
instead after just a few steps no visible trace remains of the low density
of initial black cells.

Examplas of ewokgion from random initial conditons with a lowr density of black calks, In ke 22 the lowr initial dansity has no
largerm aftest. Bul in e 20 ds effect contriues forsaer The resson for this dMenencs & that in ke 22 the @ndarmness wie
2 ig intrisically genenated by the svelutien of the ayatem, wwhile in nile 90 i comes from randominess in the initial conditaons,
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A couple of sections ago we saw that all class 3 systems have the
property that the detailed patterns they produce are highly sensitive to
detailed changes in initial conditions, But despite this sensitivity at the
level of details, the point is that any svstem like rule 22 or rule 30 yields
patterns whose overall properties depend very little on the form of the
initial conditions that are given.

By intrinsically generating randomness such systems in a sense
have a certain fundamental stability: for whatever is done to their
initial conditions, they still give the same overall random behavior,
with the same large-scale properties. And as we shall see in the next few
chapters, there are in fact many systems in nature whose apparent

stahility is ultimately a consequence of just this kind of phenomenon.

Special Initial Conditions

We have seen that cellular automata such as rule 30 generate seemingly
random behavior when they are started bhoth from random initial
conditions and from simple ones, So one may wonder whether there are
it fact any initial conditions that make rule 30 behave in a simple way.

As a rather trivial example, one certainly knows that if its initial
state is uniformly white, then rule 30 will just vield uniform white forever.
But as the pictures below demonstrate, it is also possible to find less trivial

initial conditions that still make rule 30 behave in a simple way.

— -:lll:.l | ||:-|I:l:|||:I ]  Erxsmples of spacal initial concitions that maka the ke 30 calluler sutomaton vield smplke
“HE"HENE NN rapetitive bahavior. Small patchas with the same structures as shown hare can ba sasn

mrbaddad in byl rardam pattens produced by rose 300 &1 ks a reprasantaban of rbe 300 Firdkng etsl cordibions that make calllar

automala yied behavior wath cartain repehtion penaeds = clossly related 1 the problam af EEI1IE-'.'.-1I'|§| torstranta discussad on page 210,

P13



In fact, it turns out that in any cellular automaton it is inevitable
that initial conditions which consist just of a fixed block of cells
repeated forever will lead to simple repetitive behavior.

For what happens is that each block in effect independently acts
like a system of limited size, The right-hand neighbor of the rightmost
cell in any particular block is the leftmost cell in the next block, but
since all the blocks are identical, this cell always has the same color as
the leftmost cell in the block itself. And as a result, the block evolves
just like one of the systems of limited size that we discussed on page
255, S0 this means that given a block that is w cells wide, the repetition
period that is obtained must be at most 2" steps,

But if one wants a short repetition period, then there is a question
of whether there is a block of any size which can produce it. The
pictures on the next page show the blocks that are needed to get
repetition periods of up to ten steps in rule 30, It turns out that no block
of any size gives a period of exactly two steps, but blocks can be found
for all larger periods at least up to 15 steps.

But what about initial conditions that do not just consist of a
single block repeated forever? It turns out that for rule 30, no other kind
of initial conditions can ever yield repetitive behavior,

But for many rules—including a fair number of class 3 ones—the
situation is different. And as one example the picture on the right below
shows an initial condition for rule 126 that involves two different

blocks but which nevertheless yields repetitive behavior.

Fube 126 wath a typical randarm mi@l sondiien, andwath an inehal condesn that consists o a random
sgpaticn of the blocks B and mmn. Hubs 126 0 general shows cdass 3 behaar, as an the ki, Bul
walh the special infal conditien on the aght i acis lke a canple alass 2 rule. Mote the patches of
class # bebavior evan in the pictura on tha ksft
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In a sense what is happening here is that even though rule 126
usually shows class 3 behavior, it is possible to find special initial
conditions that make it behave like a simple class 2 rule.

And in fact it turns out to be gquite common for there to exist
special initial conditions for one cellular automaton that make it
behave just like some other cellular automaton.

Rule 126 will for example behave just like rule 90 if one starts it
trom special initial conditions that contain only blocks consisting of
pairs of black and white cells.

The pictures below show how this works: on alternate steps the
arrangement of blocks in rule 126 corresponds exactly o the
arrangement of individual cells in rule 90. And among other things this
explains why it is that with simple initial conditions rule 126 produces

exactly the same kind of nested pattern as rule 90,
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P meamphes of the Tact that wath special imbal condibions rde 126 babavas exacthy e ruhe

. — . m —+ | o0, The ealml conditians thal are used consist o blocks ol calls swwhare sach block contams

satfesr Dwie black cells or twe whate celis. If one keks only on every oifer atep, then the

blocks behava axacthy lika individual cals i rule 20, This correspondanca is the basic raasen that s 126 producss tha sama

kird of nested pattarns as mla 20 when it i started from sampls initial conditiens
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The point is that these initial conditions in effect contain only
blocks for which rule 126 behaves like rule 90, And as a result, the
overall patterns produced by rule 126 in this case are inevitably exactly
like those produced by rule 90,

S0 what about other cellular automata that can vield similar
patterns! In every example in this book where nested patterns like
those from rule 90 are obtained it turns out that the underlying rules
that are responsible can be set up to behave exactly like rule 90,
Sometimes this will happen, say, for any initial condition that has black
cells only in a limited region. But in other cases—Ilike the example of
rule 22 on page 263—rule 90 behavior is obtained only with rather
specific initial conditions.

S0 what about rule 90 itself? Why does it vield nested patterns?

The basic reason can be thought of as being that just as other
ritles can emulate rule 90 when their initial conditions contain only
certain blocks, so also rule 90 is able to emulate ieself in this way.

The picture below shows how this works, The idea is o consider
the initial conditions not as a sequence of individual cells, but rather as
a sequence of blocks each containing two adjacent cells. And with an
appropriate  form  for these blocks what one finds is that the
configuration of blocks evolves exactly according to rule 94,

The fact that both individual cells and whole blocks of cells
evolve according to the same rule then means that whatever pattern is

s B0 o S

consaequenca of thes is that tha pattarns producad by rile 90 have a nested or salf-sirmdar fom

| H — . | | | | . | ] & dernonetration of tha fact that inrule 90 blocks of calls can bahave just ke indvadual cells, Cna
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produced must have exactly the same structure whether it is looked at
in terms of individual cells or in terms of blocks of cells. And this can
be achieved in only two ways: either the pattern must be essentially
uniform, or it muest have a nested structure—ijust like we see in rule 90,

S0 what happens with other rules? Tt turns out that the property
of self-emulation is rather rare among cellular automaton rules. But one

other example is rule 150—as illustrated in the picture below.

ke 150

Arcther exarmpls of a mle in which Blocks of ces can behaws just lika indiidusl c=lls. Rule

E - . m e |:| 0 and rule 150 are slso assantialy the cnly fundarmentally different elementary callular
autamaton rulss that have the progsdy of baing additva {559 page 264)

50 what else is there in common between rule 90 and rule 1507 It
turns out that they are both additive rules, implying that the patterns
they produce can be superimposed in the way we discussed on page 264,
And in fact one can show that any rule that is additive will be able to
emulate itself and will thus yvield nested patterns. But there are rather
few additive rules, and indeed with two colors and nearest neighbors
the only fundamentally different ones are precisely rules 90 and 150.

Ultimately, however, additive rules are not the only ones that can
emiulate themselves. An example of another kind is rule 184, in which
blocks of three cells can act like a single cell, as shown below.

-0 -]

] .. & nile that is not edditiee, butin
wiuch blocks ol cells can again

brabever just ke mdnoadual cells
e TR aen TR
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With simple initial conditions of the tvpe we have used so far this
rizle will alwavs produce essentially trivial behavior, But one way to see
the properties of the rule is to use nested initial conditions, obtained for
example from substitution systems of the kind we discussed on page 82.

With most rules, including 90 and 150, such nested initial
conditions typically yield results that are ultimately indistinguishable
from those obtained with typical random initial conditions. But for rule
1584, an appropriate choice of nested initial conditions yields the highly
regular pattern shown below,

e e e | he petiern produced By rule 182 {showen at laft] evobing from a nested initial

B O @ /= ®m|0j0)|0O condition. Tha particular initial condition shown can be obtamed By apphyng the
subsiitution systern B — W, O- [T, stating from a single black alement m [see page B3). With this initial conditon, rule 154
axhibits an equel nurmber of black and white stripes, which anninilate n pairs 2o 89 toyeld a regular nested pattam
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The nested structure seen in this pattern can then be viewed as a
consequence of the fact that rule 184 is able to emulate itself, And the
picture below shows that rule 184—unlike any of the additive rules—
still produces recognizably nested patterns even when the initial
conditions that are used are random.

Fule 184 evolving from & random inidal condition. Nested strecturs similar to what we saer in the previous pictlure is st visiba
Tha presance of such stuctyrs is mest obvious whan there ara aqual numbaers of blagk and white cslls in the initiad conditions,
hut 7 doas not raby on ary regufarity in the arranpsment of these cells

As we will see on page 338 the presence of such patterns is
particularly elear when there are equal numbers of black and white cells
in the initial conditions—but how these cells are arranged does not
usually matter much at all. And in general it is possible to find quite a
few cellular automata that vield nested patterns like rule 184 even from
random initial conditions, The picture on the next page shows a
particularly striking example in which explicit regions are formed that

contain patterns with the same overall structure as rule 90.
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dnother example of & cellutar autormaton that producas e nested pattemn evan from random initial conditions. The particular ruks shown
imihves next-nearsst as well as nearsst naghbors and has rule membse 4067213884 As innla 184, the nested bahavior seen hera is
maost abvious when the density of Black and whits cslls m the mitial conditons is equa

274



The Notion of Attractors

In this chapter we have seen many examples of patterns that can he
produced by starting from random initial conditions and then following
the evolution of cellular automata for many steps.

But what can be said about the individual configurations of black
and white cells that appear at each step? In random initial conditions,
absolutely any sequence of black and white cells can be present. Bue it
is a feature of most cellular automata that on subsequent steps the
sequences that can be produced become progressively more restricted.

The first picture below shows an extreme example of a class 1
cellular automaton in which after just one step the only sequences that
can occur are those that contain only black cells.

CHAPTER &

Exarnples of sinmple callular autesnata that evole after just ore step o attractons inwhich only cartain sequences of blad and
wihite cels can ocour, Inthe first case, the sequencas that can occur ana ones that involve only black cals. n the second case,
tha sequancas are onas incwhich svary black call is surrounded by white calls. The rules shovan are rumbears 255 and 4

The resulting configuration can be thought of as a so-called
attractor for the cellular automaton evolution. It does not matter what
initial conditions one starts from: one always reaches the same all-black
attractor in the end. The situation is somewhat similar to what happens
in a mechanical system like a physical pendulum. One can start the
pendulum swinging in any configuration, but it will always tend to
eviolve to the configuration in which it is hanging straight down.

The second picture above shows a class 2 cellular automaton that
pnce again evolves to an attractor after just one step. But now the

attractor does not just consist of a single configuration, but instead

175



STEPHEMNM WOLFR AM

consists of all configurations in which black cells occur only when they
are surrounded on each side by at least one white cell,

The picture below shows that for any particular configuration of
this kind, there are in general many different initial conditions that can
lead to it. In a mechanical analogy cach possible final configuration is
like the lowest point in a basin—and a ball started anywhere in the

basin will then alwavys roll to that lowest point.

Four dgifferent initial conditions that all lead o the sames final atabe in the noe 4 cellular autamaton shown on the previous page.
Tha final state can ba thought of as one of the possible attrectors for the evclution of the callulsr eutornaten; tha mitial
conditions shown then reprasent different slamants in the basin of attractsen for this attractor

Py

For one-dimensional cellular automata, it turns out that there is a
rather compact way to summarize all the possible sequences of black
and white cells that can occur at any given step in their evolution,

The basic idea is to construct a network in which each such
sequence of black and white cells corresponds to a possible path,

In the pictures at the top of the facing page, the first network in
each case represents random initial conditions in which any possible
sequence of black and white cells can occur, Starting from the node in
the middle, one can go around either the left or the right loop in the
network any number of times in any order—representing the fact that
black and white cells can appear any number of times in any order.

At step 2 in the rule 255 example on the facing page, however, the
network has only one loop—representing the fact that at this step the
only sequences which can occur with this rule are ones that consist
purely of black cells, just as we saw on the previous page.

The case of rule 4 is slightly more complicated: at step 2, the
possible sequences that can occur are now represented by a network
with two nodes. Starting at the right-hand node one can go around the

loop to the right any number of times, corresponding to sequences of
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any number of white cells. At any point one can follow the arrow to the
left to get a black cell, but the form of the network implies that this
black cell must always be followed by at least one white cell.

The pictures on the next page show more examples of class 1 and
2 cellular automata, Unlike in the picture above, these rules do not
reach their final states after one step, but instead just progressively
eviolve towards these states. And in the course of this evolution, the set
of sequences that can occur becomes progressively smaller,

In rule 128, for example, the fact that regions of black shrink by
one cell on each side at each step means that any region of black that
exists after r steps muost have at least ¢ white cells on either side of it.

The networks shown on the next page capture all effects like this.
And to do this we see that on successive steps they become somewhat
more complicated. But at least for these class 1 and 2 examples, the
progression of networks always continues to have a fairly simple form.

CHAPTER &

Metworks represanting possble
spcpunrees of bBlack and wwhale
celle that can ocour 81 Sucoessie
steps in the evolution of the teo
cellular automata shown on the
aft. In @ach case the possibla
SLnncmEs cormspond o posstbe
peithe through the natwork, Both
niles start on stap 1 from randiom
nital condtions in which  all
seunnces of black and whaie
cellz are alkewad, On subsaguent
stepe, e FE5 allkaws  only
sequances containing st biad
cells, whise nke 24 allows
spcpunrees hal contan balh biad
and whita cels, but reguires that
avary black o=l be surmounded by
whita calls
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Metworks reprasenting possibla sequencas of Black and white calls that can gour at successive steps in the evolubon of sevaral
chss 1.and 2 cellular automata. These networks never have more than about +° nodes after t steps.

S0 what happens with class 3 and 4 systems? The pictures on the
facing page show a couple of examples. In rule 126, the only effect at
step 2 is that black cells can no longer appear on their own: they must
always be in groups of two or more, By step 3, it becomes difficult to see
any change if one just looks at an explicit picture of the cellular
automaton evolution. But from the network, one finds that now an
infinite collection of other blocks are forbidden, beginning with the
length 12 block ressresrwss. And on later steps, the set of sequences
that are allowed rapidly becomes more complicated—as reflected in a
rapid increase in the complexity of the corresponding networks.
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Malevar ks reprasantng possiblo sequencss of blad and white calls that can ceour 81 Succnssews Shees in tha avaluban of typical

chss 3 and 4 colluar aulamata, The rurmber of nodies in These netaorks senms o increase 218 rate that 15 a0 st axponanteal

Indeed, this kind of rapid increase in network complexity is a
seneral characteristic of most class 3 and 4 rules. But it turns out that
there are a few rules which at first appear to be exceptions.

The pictures at the top of the next page show four different rules
that each have the property that if started from initial conditions in
which all possible sequences of cells are allowed, these same sequences
can all still oecur at any subsequent step in the evolution.

The first two rules that are shown exhibit very simple class 2
hehavior. But the last two show typical class 3 behavior,

What is going on, however, is that in a sense the particular initial
conditions that allow all possible sequences are special for these rules.

Ty
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Exampies of callular sutamata whikh sonbinue 1o allew all passible sequances o Black and whale cells a1 ary step in

thair eealutsen. Such cellubar automata moelthect deline what are known as serpectnvm o onto magppngs

And indeed if one starts with almost any other initial
conditions—say for example ones that do not allow any pair of black
cells wogether, then as the pictures below illustrate, rapidly increasing

complexity in the sets of sequences that are allowed is again ohserved.

wiap 1 mfmo 3 mimp 2 wiep 4

Metworks representing possibés sequences that ¢an acour in the evclution of the cellulsr automats at the top of the
page, starting from ngial condstions imwhich black cslls ara only allowwsd to appear in pairs
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Structures in Class 4 Systems

The next page shows three typical examples of class 4 cellular
automata. In each case the initial conditions that are used are
completely random. But after just a few steps, the systems organize
themselves to the point where definite structures become visible,

Muost of these structures eventually die out, sometimes in rather
complicated wavs. But a crucial feature of any class 4 systems is that
there must always be certain structures that can persist forever in it.

S0 how can one find out what these structures are for a particular
cellular automaton? One approach is just to try each possible initial
condition in turn, looking to see whether it leads to a new persistent
structure. And taking the code 20 cellular automaton from the top of
the next page, the page that follows shows what happens in this system
with each of the first couple of hundred possible initial conditions.

In most cases everything just dies out. But when we reach initial
condition number 151 we finally see a structure that persists.

This particular structure is fairly simple: it just remains fixed in
position and repeats every two steps, But not all persistent structures are
that simple. And indeed at initial condition 187 we see a considerably
more complicated structure, that instead of stayving still moves
systematically to the right, repeating its basic form only every 9 steps.

The existence of structures that move is a fundamental feature of
class 4 systems. For as we discussed on page 252, it is these kinds of
structures that make it possible for information to be communicaced
from one part of a class 4 system to another—and that ultimately allow
the complex behavior characteristic of class 4 to occur,

But having now seen the structure obtained with initial condition
187, we might assume that all subsequent structures that arise in the
code 20 cellular automaton must be at least as complicated. Tt turns
out, however, that initial condition 189 suddenly yields a much simpler
structure—that just stays unchanged in one position at every step.

But going on to initial condition 195, we again find a more

complicated structure—this time one that repeats only every 22 steps.
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S0 just what set of structures does the code 20 cellular automaton
ultimately support? There seems to be no easy way to tell, but the
picture below shows all the structures that T found by explicitly looking
at evolution from the first twenty-five billion possible initial conditions.
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Are other structures possible? The largest structure in the picture
above starts from a block that is 30 cells wide. And with the more than
ten billion blocks between 30 and 34 cells wide, no new structures at all
appear. Yet in fact other structures are possible. And the way to well this
is that for small repetition periods there is a systematic procedure that
allows one to find absolutely all structures with a given period.

The picture on the facing page shows the results of using this
procedure for repetition periods up o 15, And for all repetition periods
up to 10—with the exception of 7—at least one fixed or moving
structure ultimately turns out to exist. Often, however, the smallest
structures for a given period are quite large, so that for example in the

case of perind & the smallest possible structure is 64 cells wide.
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The picture below shows the structures one finds by explicitly
testing the first two billion possible initial conditions for the code 357
cellular automaton from page 282,
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Already with initial condition number 28 a fairly complicated
structure with repetition period 4% is seen. But with all the first million
initial conditions, only one other structure is produced, and this
structure is again one that does not move.

S0 are moving structures in fact possible in the code 357 cellular
automaton?! My experience with many different rules is that whenever
sufficiently complicated persistent structures occur, structures that
move can eventually be found. And indeed with code 357, initial

condition 4,803,890 vields just such a structure.
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So if moving structures are inevitable in class 4 systems, what
other fundamentally different kinds of structures might one see if one
were to look at sutficiently many large initial conditions?

The picture below shows the first few persistent structures found
in the code 1329 cellular automaton from the bottom of page 282, The
smallest structures are stationary, but at initial condition 916 a
structure is found that moves—all much the same as in the two other
class 4 cellular automata that we have just discussed.

Parsistent structuras in the code 1329 cellular sutarmaton shown on page #52

But when initial condition 54,889 1s reached, one suddenly sees
the rather different kind of structure shown on the next page. The
right-hand part of this structure just repeats with a period of 256 steps,
hut as this part moves, it leaves behind a sequence of other persistent
structures, And the result is that the whaole structure continues to grow
forever, adding progressively more and more cells.
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Yet looking at the picture above, one might suppose that when
unlimited growth oceurs, the pattern produced must be fairly complicated.
But once again code 1329 has a surprise in store, For the facing page shows
that when one reaches initial condition 97,439 there is again unlimited
growth—but now the pattern that is produced is very simple. And in fact if
one were just to see this pattern, one would probably assume that it came
from a rule whose typical behavior is vastly simpler than code 1329,
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Indeed, it is a general feature of class 4 cellular automata that
with appropriate initial conditions they can mimic the behavior of all
sorts of other systems. And when we discuss computation and the
notion of universality in Chapter 11 we will see the fundamental reason
this ends up being so. But for now the main point is just how diverse
and complex the behavior of class 4 cellular automata can be—even
when their underlying rules are very simple.

And perhaps the most striking example is the rule 110 cellular
automaton that we first saw on page 32, Its rule is extremely simple—
involving just nearest neighbors and two colors of cells, But its overall
behavior is as complex as any system we have seen,

The facing page shows a typical example with random initial
conditions. And one immediate slight difference from other class 4 rules
that we have discussed is that structures in rule 110 do not exist on a blank
background: instead, they appear as disruptions in a regular repetitive
pattern that consists of blocks of 14 cells repeating every 7 steps,

The next page shows the kinds of persistent structures that can be
generated in rule 110 from blocks less than 40 cells wide. And just like in
other class 4 rules, there are stationary structures and moving structures—
as well as structures that can be extended by repeating blocks they contain,

So are there also structures in rule 110 that exhibit unbounded
growth? It is certainly not easy to find them. But if one looks at blocks
of width 41, then such structures do eventually show up, as the picture
on page 293 demonstrates.

S0 how do the varipus structures in rule 110 interact! The
answer, as pages 294-296 demonstrate, can be very complicated.

In soime cases, one structure essentially just passes through another
with a slight delay. But often a collision between two structures produces
a whole cascade of new structures, Sometimes the outcome of a collision
is evident after a few steps. But quite often it takes a very large number of
steps before one can tell for sure what is going to happen.

So even though the individual structures in class 4 systems like
rule 110 may behave in fairly repetitive wavs, interactions between
these structures can lead to behavior of immense complexity.
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Mechanisms in
Programs and Nature

Universality of Behavior

In the past several chapters my main purpose has been to address the
fundamental question of how simple programs behave. In this chapter
my purpose is now to take what we have learned and begin applving it
to the study of actual phenomena in nature,

At the outset one might have thought this would never work, For
one might have assumed that any program based on simple rules would
always lead to behavior that was much too simple to be relevant w
maost of what we see in nature. But one of the main discoveries of this
hook is that programs based on simple rules do not always produce
simple behavior.

And indeed in the past several chaprers we have seen many
examples where remarkably simple rules give rise to behavior of great
complexity. But to what extent is the behavior obtained from simple
programs similar to behavior we see in nature?

One way to get some idea of this is just to look at pictures of
natural systems and compare them with pictures of simple programs,

At the level of details there are certainly differences, But atr an
overall level there are striking similarities. And indeed it is guite
remarkahle just how often systems in nature end up showing behavior
that looks almost identical to what we have seen in some simple

program or another somewhere in this boolk.
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S0 why might this be? It is not, I believe, any kind of coincidence,
or trick of perception. And instead what T suspect is that it reflects a
deep correspondence between simple programs and systems in nature,

When one looks at systems in nature, one of the striking things
one notices is that even when systems have quite different underlying
physical, biological or other components their overall patterns of
behavior can often seem remarkably similar,

And in my study of simple programs T have seen essentially the
same phenomenon: that even when programs have quite different
underlying rules, their overall behavior can be remarkably similar,

So this suggests that a kind of universality exists in the types of
behavior that can occur, independent of the details of underlying rules.

And the crucial point is that I believe that this universality
extends not only across simple programs, but also to systems in nature.
50 this means that it should not matter much whether the components
of a system are real molecules or idealized black and white cells; the
overall behavior produced should show the same universal features.

And if this is the case, then it means that one can indeed expect
to get insight into the behavior of natural systems by studying the
behavior of simple programs. For it suggests that the basic mechanisms
responsible for phenomena that we see in nature are somehow the same
as those responsible for phenomena that we see in simple programs,

In this chapter my purpose is to discuss some of the most
common phenomena that we see in nature, and to study how they
correspond with phenomena that occur in simple programs.

Some of the phenomena I discuss have at least to some extent
already been analyzed by traditional science. But we will find that by
thinking in terms of simple programs it usually becomes possible to see
the basic mechanisms at work with much greater clarity than before.

And more important, many of the phenomena that [ consider—
particularly those that involve significant complexity—have never been
satisfactorily explained in the context of traditional science. But what
we will find in this chapter is that by making use of my discoveries
about simple programs a great many of these phenomena can now for
the first time successtully be explained.



Three Mechanisms for Randomness

In nature one of the single most common things one sees is apparent
randomness. And indeed, there are a great many different kinds of systems
that all exhibit randomness. And it could be that in each case the cause of
randomness is different. But from my investigations of simple programs [
have come to the conclusion that one can in fact identify just three basic
mechanisms for randomness, as illustrated in the pictures below,
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In the first mechanism, randomness is explicitly introduced
into the underlying rules for the system, so that a random color is
chosen for every cell at each step.

This mechanism is the one most commonly considered in the
traditional sciences. It corresponds essentially to assuming that there is
a random external environment which continually attects the system
one is looking at, and continually injects randomness into it.

In the second mechanism shown above, there is no such
interaction with the environment. The initial conditions for the system
are chosen randomly, but then the subsequent evolution of the system

is assumed to follow definite rules that involve no randomness.
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A crucial feature of these rules, however, is that they make the
system behave in a way that depends sensitively on the details of its
initial conditions. In the particular case shown, the rules are simply set
up to shift every color one position to the left at each step.

And what this does is to make the sequence of colors taken on by
any particular cell depend on the colors of cells progressively further
and further to the right in the initial conditions. Insofar as the initial
conditions are random, therefore, so also will the sequence of colors of
any particular cell be correspondingly random,

In general, the rules can be more complicated than those shown in
the example on the previous page. But the basic idea of this mechanism
for randomness is that the randomness one sees arises from some kind of
transcription of randomness that is present in the initial conditions.

The two mechanisms for randomness just discussed have one
important feature in common; they both assume that the randomness
one sees in any particular system must ultimately come from outside of
that system. In a sense, therefore, neither of these mechanisms takes
any real responsibility for explaining the origins of randomness: they
hoth in the end just say that randomness comes from outside whatever
system one happens to be looking at.

Yet for quite a few vears, this rather unsatisfactory type of statement
has been the best that one could make. But the discoveries about simple
programs in this book finally allow new progress to be made.

The crucial point that we first saw on page 27 is that simple
programs can produce apparently random behavior even when they are
given no random input whatsoever, And what this means is that there
is a third possible mechanism for randommness, which this time does not
rely in any way on randomness already being present outside the
system one is looking at.

If we had found only a few examples of programs that could
generate randomness in this way, then we might think that this third
mechanism was a rare and special one, But in fact over the past few
chapters we have seen that practically every kind of simple program
that we can construct is capable of generating such randomness.



And as a result, it is reasonable to expect that this same
mechanism should also occur in many systems in nature. Indeed, as I
will discuss in this chapter and the chapters that follow, T believe that
this mechanism is in fact ultimately responsible for a large fraction, if
not essentially all, of the randomness that we see in the natural world,

But that is not to say that the other two mechanisms are never
relevant in practice. For even though they may not be able to explain
how randomness is produced at the lowest level, they can still be useful
in describing observations about randomness in particular systems,

And in the next few sections, T will discuss various kinds of
systems where the randomness that is seen can be best described by

each of the three mechani=sms for randomness identified here.

Randomness from the Environment

With the first mechanism for randomness discussed in the previous
section, the randomness of any particular system is taken to be the
result of continual interaction between that system and randomness in
its environiment,

As an everyday example, we can consider a boat bobbing up and
down on a rough ocean. There is nothing intrinsically random about the
hoat itself. But the point is that there is randomness in the continually
changing ocean surface that forms the environment for the boat. And since
the motion of the boat follows this ocean surface, it also seems random.

But what is the real origin of this apparent randomness? In a
sense it is that there are innumerable details about an ocean that it is
very difficult to know, but which can nevertheless affect the motion of
the boat. Thus, for example, a particular wave that hits the boat could
be the result of a nearby squall, of an undersea ridge, or perhaps even of
a storm that happened the day before several hundred miles away, But
since one realistically cannot keep track of all these things, the ocean
will inevitably seem in many respects unpredictable and random.

This same basic effect can be even more pronounced when one

looks at smaller-scale systems. A classic example is so-called Brownian
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motion, in which one takes a small grain, say of pollen, puts it in a
liquid, and then looks at its motion under a microscope.,

What one finds is that the grain jumps around in an apparently
random way, And as was suspected when this was first noticed in the
18205, what is going on is that molecules in the liguid are continually
hitting the grain and causing it to move. But even in a tiny volume of
liquid there are already an immense number of molecules. And since
one certainly does not even know at any given time exactly where all
these molecules are, the details of their ettect on the motion of the grain
will inevitably seem quite random,

But to observe random Brownian motion, one needs a
microscope. And one might imagine that randomness produced by any
similar molecular process would also be too small to be of relevance in
everyday life, But in fact such randomness is quite obvious in the
operation of many kinds of electronic devices,

As an example, consider a radio receiver that is tuned to the
wrong frequency or has no antenna connected. The radio receiver is
built to amplify any signal that it receives. But what happens when
there is no signal for it to amplify?

The answer is that the receiver produces noise. And it turns out
that in most cases this noise is nothing other than a highly amplified
version of microscopic processes going on inside the receiver,

In practice, such noise is wsually considered a nuisance, and
indeed modern digital electronics systems are typically designed to get
rid of it at every stage. But since at least the 1940s, there have been
various devices built for the specific purpose of generating randomness
using electronic noise,

Typically these devices work by operating fairly standard
electronic components in extreme conditions where there is usually no
output signal, but where microscopic fluctuations can cause breakdown
processes to occur which vield large output signals.

A large-scale example is a pair of metal plates with air in between.
Usually no current flows across this air gap, but when the voltage
between the plates is large enough, the air can break down, sparks can
be generated, and spikes of current can occur. But exactly when and



where the sparks occur depends on the detailed microscopic motion of
the molecules in the gas, and is therefore potentially quite random.

In an effort to obtain as much randomness as possible, actual
devices that work along these lines have typically vsed progressively
smaller components: first vacuum tubes and later semiconductors, And
indeed, in a modern semiconductor diode, for example, a breakdown
event can be initiated by the motion of just one electron.

But despite such sensitivity to microscopic effects, what has
consistently been found in practice is that the output from such devices
has significant deviations from perfect randomness.

At first, this is quite surprising. For one might think that
microscopic physical processes would always produce the best possible
randomness. But there are two important effects which tend to limit
this randomness, or indeed any randomness that is obtained through
the mechanism of interaction with the environment,

The first of these concerns the internal details of whatever device
is used to sample the randomness in the environment.

Every time the device receives a piece of input, its internal state
changes. But in order for successive pieces of input to be treated in an
independent and uncorrelated way, the device must be in exactly the
same state when it receives each piece of input. And the problem is that
while practical devices may eventually relax to what is essentially the
same state, they can do this only at a certain rate,

In a device that produces a spark, for example, it inevitably takes
some time for the hot gas in the path of the spark to be cleared out. And
it another spark is generated before this has happened, the path of the
second spark will not be independent of the first.

One might think that such effects could be avoided by allowing a
certain “dead time” between successive events, But in fact, as we will
also see in connection with gquantum mechanics, it is a rather general
feature of systems that perform amplification that relaxation to a normal
state can effectively occur only gradually, so that one would have to wait
an infinite time for such relaxation to be absolutely complete.

But even when the device used to sample the environment does no
amplification and has no relevant internal structure, one may still not see
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perfect randomness. And the reason for this is that there are almost
inevitably correlations even in the supposedly random environment.

In an ocean for example, the inertia of the water essentially forces
there to be waves on the surface of certain sizes, And duering the time that a
boat is caught up in a particular one of these waves, its motion will always
be quite regular; it is only when one watches the effect of a sequence of
waves that one sees behavior that appears in any way random,

In a sense, though, this point just emphasizes the incomplete
nature of the mechanism for randomness that we have been discussing
i1 this section, For to know in any real way why the motion of the boat
is random, we must inevitably ask more about the randomness of the
ocean surface. And indeed, it is only at a fairly superficial level of
description that it is useful to say that the randomness in the motion of
the boat comes from interaction with an environment about which one
will say nothing more than that it is random.

Chaos Theory and Randomness from Initial Conditions

At the beginning of this chapter I outlined three basic mechanisms that
can lead to apparent randomness. And in the previous section I discussed
the first of these mechanisms—based on the idea that the evolution of a
system is continually affected by randomness from its environment.

But to get randomness in a particular system it turns out that
there is no need for continual interaction between the system and an
external random environment. And in the second mechanism for
randomness discussed at the beginning of this chapter, no explicit
randomness is inserted during the evolution of a system. But there is
still randomness in the initial conditions, and the point is that as the
system evolves, it samples more and more of this randomness, and as a
result produces behavior that is correspondingly random.

As a rather simple example one can think of a car driving along a
bumpy road. Unlike waves on an ocean, all the bumps on the road are
already present when the car starts driving, and as a result, one can
consider these bumps to be part of the initial conditions for the system.

But the point is that as time goes on, the car samples more and more of



the bumps, and if there is randomness in these bumps it leads to
corresponding randomness in the motion of the car.

A somewhat similar example is a ball rolled along a rough
surface. A question such as where the ball comes to rest will depend on
the pattern of bumps on the surface. But now another featore of the
initial conditions is also important: the initial speed of the ball.

And somewhat surprisingly there is already in practice some
apparent randomness in the behavior of such a system even when there
are no significant bumps on the surface. Indeed, games of chance based
on rolling dice, tossing coins and so on all rely on just such randomness.

As a simple example, consider a ball that has one hemisphere
white and the other black. One can roll this ball like a die, and then
look to see which color is on top when the ball comes to rest. And if one
does this in practice, what one will typically find is that the outcome
seems quite random. But where does this randomness come from?

The answer is that it comes from randomness in the initial speed
with which the ball is rolled. The picture below shows the motion of a
hall with a sequence of different initial speeds. And what one sees is
that it takes only a small change in the initial speed to make the ball

come to rest in a completely different orientation,
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The point then is that a human rolling the ball will typically not
be able to control this speed with sufficient accuracy to determine
whether black or white will end up on top. And indeed on successive
trials there will uswvally be sufficiently large random variations in the
initial speed that the outcomes will seem completely random,

Coin tossing, wheels of fortune, roulette wheels, and similar
generators of randomness all work in essentially the same way. And in
each case the basic mechanism that leads to the randomness we see is a
sensitive dependence on randomness that is present in the typical
initial conditions that are provided.

Without randomness in the initial conditions, however, there is
no randomness in the output from these systems. And indeed it is quite
feasible to build precise machines for tossing coins, rolling balls and so
on that always produce a definite outcome with no randomness at all,

But the discovery which launched what has become known as
chaos theory is that at least in principle there can be systems whose
sensitivity to their initial conditions is so great that no machine with
fixed tolerances can ever be expected to yield repeatahle results.

A classic example is an idealized version of the kneading process
which is used for instance to make noodles or taffy. The basic idea is to
take a lump of dough-like material, and repeatedly to stretch this material
to twice its original length, cut it in two, then stack the pieces on top of
each other. The picture at the top of the facing page shows a few steps in
this process. And the important point to notice is that every time the
material is stretched, the distance between neighboring points is doubled.

The result of this is that any change in the initial position of a
point will be amplified by a factor of two at each step. And while a
particular machine may be able to control the initial position of a point
to a certain accuracy, such repeated amplification will eventually lead
tor sensitivity to still smaller changes.

But what does this actually mean for the motion of a point in the
material? The bottom pictures on the facing page show what happens to
two sets of points that start very close together. The most obvious
effect is that these points diverge rapidly on successive steps. But after a
while, they reach the edge of the material and cannot diverge any
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further, And then in the first case, the subsequent motion looks quite

random. But in the second case it is fairly regular. So why is this?

A lictle analysis shows what is going on. The basic idea is to

represent the position of each point at each step as a number, sav x,
which runs from 0 to 1. When the material is stretched, the number is
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doubled. And when the material is cut and stacked, the effect on the
number is then to extract its fractional part.

But it turns out that this process is exactly the same as the one
we discussed on page 153 in the chapter on systems based on numbers.

And what we found there was that it is crucial to think not in
terms of the sizes of the numbers x, but rather in terms of their digit
sequences represented in base 2. And in fact, in terms of such digit
sequences, the kneading process consists simply in shifting all digits
one place to the left at each step, as shown in the pictures below,
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The way digit sequences work, digits further to the right in a
number always make smaller contributions to its overall size, And as a
result, one might think that digits which lie far to the right in the initial
conditions would never be important. But what the pictures above
show is that these digits will always be shifeed to the left, so that
eventually they will in fact be important. As time goes on, therefore,
what is effectively happening is that the system is sampling digits
turther and turther to the right in the initial conditions.

And in a sense this is not unlike what happens in the example of
a car driving along a bumpy road discussed at the beginning of this

section. Indeed in many ways the only real difference is that instead of



heing able to see a sequence of explicit bumps in the road, the initial
conditions for the position of a point in the kneading process are
encoded in a more abstract form as a sequence of digits.

But the crucial point is that the behavior we see will only ever be
as random as the sequence of digits in the initial conditions, And in the
first case on the facing page, it so happens that the sequence of digits for
each of the initial points shown is indeed guite random, so the behavior
we see is correspondingly random. But in the second case, the sequence
of digits is regular, and so the behavior is correspondingly regular,

Sensitive dependence on initial conditions thus does not in and of
itself imply that a system will behave in a random way, Indeed, all it
does is to cause digits which make an arbitrarily small contribution to
the size of numbers in the initial conditions eventually to have a
significant effect. But in order for the behavior of the system to be
random, it is necessary in addition that the sequence of digits be
random. And indeed, the whole idea of the mechanism for randomness
in this section is precisely that any randomness we see must come from
randomness in the initial conditions for the system we are looking at.

It is then a separate question why there should be randomness in
these initial conditions. And ultimately this question can only be
answered by going outside of the system one is looking at, and studying
whatever it was that set up its initial conditions,

Accounts of chaos theory in recent years have, however, often
introduced confusion about this point. For what has happened is that
from an implicit assumption made in the mathematics of chaos theory,
the conclusion has been drawn that random digit sequences should be
almost inevitable among the numbers that occur in practice.

The basis for this is the traditional mathematical idealization that
the only relevant attribute of any number is its size. And as discussed on
page 152, what this idealization suggests is that all numbers which are
sufficiently close in size should somehow be equally common. And
indeed if this were true, then it would imply that typical initial
conditions would inevitably involve random digit sequences,

But there is no particular reason to believe that an idealization
which happens to be convenient for mathematical analysis should
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apply in the natural world. And indeed to assume that it does is
effectively just to ignore the fundamental question of where
randumncss in nature comes FI!'I{H'I'L

But bevond even such matters of principle, there are serious
practical problems with the idea of getting randomness from initial
conditions, at least in the case of the kneading process discussed above.

The issue is that the description of the kneading process that we
have used ignores certain obvious physical realities. Most important
among these is that any material one works with will presumably be
made of atoms, And as a result, the notion of being able to make
arbitrarily small changes in the position of a point is unrealistic.

One might think that atoms would always be so small that their size
would in practice be irrelevant. But the whole point is that the kneading
process continually amplifies distances, And indeed after just thirty steps,
the description of the kneading process given above would imply that two
points initially only one atom apare would end up nearly a meter apart.

Yet long before this would ever happen in practice other effects
not accounted for in our simple description of the kneading process
would inevitably also become important. And often such effects will
tend to introduce new randomness from the environment. 5o the idea
that randomness comes purely from initial conditions can be realistic
only for a fairly small number of steps; randomness which is seen after
that must therefore typically be attributed to other mechanisms.

One might think that the kneading process we have been
discussing is just a bad example, and that in other cases, randomness
trom initial conditions would be more significant,

The picture on the facing page shows a system in which a beam
of light repeatedly bounces off a sequence of mirrors. The system is set
up 50 that every time the light goes around, its position is modified in
exactly the same way as the position of a point in the kneading process.
And just as in the kneading process, there is very sensitive dependence
on the details of the initial conditions, and the behavior that is seen
reftlects the digit sequence of these initial conditions.

But once again, in any practical implementation, the light waould
go around only a few tens of times before being affected by microscopic
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perturbations in the mirrors and by other phenomena that are not
accounted for in the simple description we have given.

At the heart of the system shown on the previous page is a
slightly complicated arrangement of parabolic mirrors, But it turns out
that almost any convex reflector will lead to the divergence of
trajectories necessary to get sensitive dependence on initial conditions.

Indeed, the simple pegboard shown below exhibits the same
phenomenon, with balls dropped at even infinitesimally different initial
positions eventually following very different trajectories.

The details of these trajectories cannot be deduced quite as
directly as before from the digit sequences of initial positions, but

Faths follwad by four idsalized balls droppad from insial poesitions differsng by one part m a thousand into an amay of idertical circular
s, Thin Balls s taken to fall e gravity, and 10 hounce elashically whenewer thry ik & peg, S (lustirated n e insel, srmall
diffsrancas in direction are amplified—roughly doubling—at sach bounce, with the result that after a few bounces the trapctonss of tha
threa balls are gquite dfferent. In e physical version of the system wath balls of the same sctual size as an thiz page perurbations from
tha arvirgnmant will nevitably bs amplfsd 1o hava a significant effact on the trapsctories attar rewghly the number of bouncss showem,
Varsaons of the systerm llustrated hare—pariulady wath smaller peg Spacings—arn somelimes Enosn &5 Galton o uansudny boards,
and have been wsed smoe the [ate 1B00S 1o demonsirate pranciphss af probabilitg thecey, 1 balls are assumad to fall randaomly cn mach
sige of each pag then with a langs number of balls the fmal positiors will approzirnate a bincmial dsstribution.
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exactly the same phenomenon of successively sampling less and less
significant digits still occurs. And once again, at least for a while, any
randomness in the motion of the ball can be attributed to randomness
in this initial digit sequence,

But after at most ten or so collisions, many other effects, mostly
associated with continual interaction with the environment, will
always in practice become important, so that any subsequent
randomness cannot solely be attributed to initial conditions.

And indeed in any system, the amount of time over which the
details of initial conditions can ever be considered the dominant source
of randomness will inevitably be limited by the level of separation that
exists between the large-scale features that one observes and small-scale
features that one cannot readily control.

S0 in what kinds of systems do the largest such separations ocour?
The answer tends to be systems in astronomy. And as it turns out, the
so-Called three-body problem in astronomy was the very first place where
sensitive dependence on indtial conditions was extensively studied,

The three-body problem consists in determining the motion of
three bodies—such as the Earth, Sun and Moon—that interact through
gravitational attraction, With just two bodies, it has been known for
nearly four hundred yvears that the orbits that occur are simple ellipses
or hyperbolas, But with three bodies, the motion can be much more
complicated, and—as was shown at the end of the 1800s—can be
sensitively dependent on the initial conditions that are given.

The pictures on the next page show a particular case of the
three-body problem, in which there are two large masses in a simple
elliptical orbit, together with an infinitesimally small mass moving up and
down through the plane of this orbit, And what the pictures demonstrate is
that even if the initial position of this mass is changed by just one part in a
hundred million, then within 50 revolutions of the large masses the
trajectory of the small mass will end up being almost completely different.

S0 what happens in practice with planets and other bodies in our
solar system? Observations suggest that at least on human timescales
maost of their motion is quite regular. And in fact this regularity was in
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the past taken as one of the key pieces of evidence for the idea that
simple laws of nature could exist.

But calculations imply that sensitive dependence on initial
conditions should ultimately occur even in our solar system. Needless
to say, we do not have the option of explicitly setting up different initial
conditions. But if we could watch the solar system for a few million
vears, then there should be significant randomness that could be
attributed to sensitive dependence on the digit sequences of initial
conditions—and whose presence in the past may explain some observed
present-day features of our solar system.
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The Intrinsic Generation of Randomness

In the past two sections, we have studied two possible mechanisms that
can lead to observed randomness. But as we have discussed, neither of
these in any real sense themselves generate randomness, Instead, what
they essentially do is just to take random input that comes from
outside, and transfer it to whatever system one is looking at.

One of the important results of this book, however, is that
there is also a third possible mechanism for randomness, in which no
random input from outside is needed, and in which randomness is
instead generated intrinsically inside the systems one is looking at.

The picture below shows the rule 30 cellular automaton in which
I first identified this mechanism for randomness. The basic rule for the
system is very simple. And the initial condition is also very simple.
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Yet despite the lack of anything that can reasonably be considered
random input, the evolution of the system nevertheless intrinsically
yields behavior which seems in many respects random.

As we have discussed before, traditional intuition makes it hard

believe that such complexity could arise from such a simple
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underlying process. But the past several chapters have demonstrated
that this is not only possible, but actually quite common.

Yet looking at the cellular automaton on the previous page there
are clearly at least some regularities in the pattern it produces—like the
diagonal stripes on the left. Bue if, sav, one specifically picks out the
color of the center cell on successive steps, then what one gets seems
like a completely random sequence.

But just how random is this sequence really?

For our purposes here the most relevant point is that so far as one
can tell the sequence is at least as random as sequences one gets from
any of the phenomena in nature that we typically consider random,

When one says that something seems random, what one usually
means in practice is that one cannot see any regularities in it. S0 when we
say that a particular phenomenon in nature seems random, what we
mean is that none of our standard methods of analysis have succeeded in
finding regularities in it. To assess the randomness of a sequence produced
by something like a cellular automaton, therefore, what we must do is to
apply to it the same methods of analysis as we do to natural systems.

As I will discuss in Chapter 10, some of these methods have been
well codified in standard mathematics and statistics, while others are
etfectively implicit in our processes of visual and other perception. But
the remarkable face is that none of these methods seem to reveal any
real regularities whatsoever in the rule 30 cellular automaton sequence.
And thus, so far as one can tell, this sequence is at least as random as
anything we see in nature.

But is it truly random?

Over the past century or so, a variety of definitions of true
randomness have been proposed. And according to most of these
definitions, the sequence is indeed truly random. But there are a certain
class of definitions which do not consider it truly random.

For these definitions are based on the notion of classifying as truly
random only sequences which can never be generated by any simple
procedure whatsoever. Yet starting with a simple initial condition and
then applving a simple cellular automaton rule constitutes a simple



procedure. And as a result, the center column of rule 30 cannot be
considered truly random according to such definitions.

But while definitions of this type have a certain conceptual
appeal, they are not likely to be useful in discussions of randomness in
nature, For as we will see later in this book, it is almost certainly
impossible for any natural process ever to generate a sequence which is
guaranteed to be truly random according to such definitions.

For our purposes more useful definitions tend to concentrate not
so much on whether there exists in principle a simple way to generate a
particular sequence, but rather on whether such a way can realistically
be recognized by applying various kinds of analysis to the sequence, And
as discussed above, there is good evidence that the center column of rule
30 iz indeed random according to all reasonable definitions of this kind.

S0 whether or not one chooses to say that the sequence is truly
random, it is, as far as one can tell, at least random for all practical
purposes, And in fact sequences closely related to it have been used
very successfully as sources of randomness in practical computing,

For many vears, most kinds of computer systems and languages
have had facilities for generating what they usually call random numbers.
And in Mathematica—ever since it was first released—Random|Integer|
has generated s and 1's using exactly the rule 30 cellular automaton,

The way this works is that every time Random[Integer] is called,
another step in the cellular automaton evolution is performed, and the
value of the cell in the center is returned. But one difference from the
picture two pages ago is that for practical reasons the pattern is not
allowed to grow wider and wider forever, Instead, it is wrapped around
in a region that is a few hundred cells wide,

One consequence of this, as discussed on page 259, is that the
sequence of 0% and 1% that is generated must then eventually repeat. But
even with the fastest foreseeable computers, the actual period of repetition
will typically be more than a billion billion times the age of the universe.

Another issue is that if one always ran the cellular automaton
trom page 315 with the particular initial condition shown there, then
one would always get exactly the same sequence of 0% and 1's. But by
using different initial conditions one can get completely different
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sequences. And in practice if the initial conditions are not explicitly
specified, what Mathematica does, for example, is to use as an initial
condition a representation of various features of the exact state of the
computer system at the time when Random was first called,

The rule 30 cellular avtomaton provides a particularly clear and
goodd example of intrinsic randomness generation. But in previous
chapters we have seen many other examples of systems that also
intrinsically produce apparent randomness, And it turns out that one of
these is related to the method used since the late 1940s for generating
random nuimbers in almost all practical computer systems,

The pictures on the facing page show what happens if one
successively multiplies a number by various constant factors, and then
looks at the digit sequences of the numbers that result. As we first saw
on page 119, the patterns of digits obtained in this way seem quite
random. And the idea of so-called linear congruential random number
generators is precisely to make use of this randomness,

For practical reasons, such generators typically keep only, say, the
rightmost 31 digits in the numbers at each step. Yet even with this
restriction, the sequences generated are random enough that at least
until recently they were almost universally what was used as a source
of randomness in practical computing.

S0 in a sense linear congruential generators are another example
of the general phenomenon of intrinsic randomness generation. But it
turns out that in some respects they are rather unusual and misleading.

Keeping only a limited number of digits at each step makes it
inevitable that the sequences produced will eventually repeat. And one of
the reasons for the popularity of linear congruential generators is that
with fairly straightforward mathematical analysis it is possible to tell
exactly what multiplication factors will maximize this repetition period.

It has then often been assumed that having maximal repetition
period will somehow imply maximum randomness in all aspects of the
sequence one gets, But in practice over the years, one after another
linear congruential generator that has been constructed to have
maximal repetition period has turned out to exhibit very substantial
deviations from perfect randomness,
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A typical kind of failure, illustrated in the pictures on the next
page, is that points with coordinates determined by successive numbers
from the generator turn out to be distributed in an embarrassingly
regular way. At first, such failures might suggest that more complicated
schemes must be needed if one is to get good randomness. And indeed
with this thought in mind all sorts of elaborate combinations of linear
congruential and other generators have been proposed. But alchough
some aspects of the behavior of such systems can he made quite
random, deviations from perfect randomness are still often found.

And seeing this one might conclude that it must be essentially
impossible to produce good randomness with any kind of system that has
reasonably simple rules. But the rule 30 cellular automaton that we

discussed above demonstrates that in fact this is absolutely not the case.
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Indeed, the rules for this cellular automaton are in some respects much
simpler than for even a rather basic linear congruential generator. Yet the
sequences it produces seem perfectly random, and do not suffer from any
of the problems that are typically found in linear congruential generators.

So why do linear congruential generators not produce better
randomness! Ironically, the basic reason is also the reason for their
popularity. The point is that unlike the rule 30 cellular automaton that
we discussed abowve, linear congruential generators are readily amenable
to detailed mathematical analysis. And as a result, it is possible for
example o guarantee that a particular generator will indeed have a
maximal repetition period.

Almost inevitably, however, having such a maximal period
implies a certain regularity. And in fact, as we shall see later in this
boolk, the very possibility of any detailed mathematical analysis tends to
imply the presence of at least some deviations from perfect randomness.

But if one is not constrained by the need for such analvsis, then as
we saw in the cellular automaton example above, remarkably simple
rules can successfully generate highly random behavior.

And indeed the existence of such simple rules is crucial in
making it plausible that the general mechanism of intrinsic
randomness generation can be widespread in nature, For if the only way
for intrinsic randomness generation to occur was through  very
complicated sets of rules, then one would expect that this mechanism
would be seen in practice only in a few very special cases.

But the fact that simple cellular automaton rules are sufficient to
give rise to intrinsic randomness generation suggests that in reality it is
rather easy for this mechanism to occur. And as a result, one can expect
that the mechanism will be found often in nature.

S0 how does the occurrence of this mechanism compare to the
previous two mechanisms for randomness that we have discussed?

The basic answer, 1 helieve, is that whenever a large amount of
randomness is produced in a short time, intrinsic randomness
generation is overwhelmingly likely to be the mechanism responsible.

We saw in the previous section that random details of the initial
conditions for a system can lead to a certain amount of randomness in

CHAPTER T

12



STEPHEMNM WOLFRE AM |

112

the behavior of a system. But as we discussed, there is in most practical
situations a limit on the lengths of sequences whose randomness can
realistically be attributed to such a mechanism. With intrinsic
randomness generation, however, there is no such limit: in the cellular
automaton above, for example, all one need do to get a longer random
sequence is to run the cellular automaton for more steps.

But it is also possible to get long random sequences by continual
interaction with a random external environment, as in the first
mechanism for randomness discussed in this chapter,

The issue with this mechanism, however, is that it can take a
long time to get a given amount of good-quality randomness from it.
And the point is that in most cases, intrinsic randomness generation
can produce similar randomness in a much shorter time.

Indeed, in general, intrinsic randomness generation tends to be
much more efficient than getting randomness from the environment.
The basic reason is that intrinsic randomness generation in a sense puts
all the components in a system to work in producing new randomness,
while getting randomness from the environment does not.

Thus, for example, in the rule 30 cellular automaton discussed
ahove, every cell in effect actively contributes to the randomness we
see. But in a system that just amplifies randomness from the
environment, none of the components inside the system itself ever
contribute any new randomness at all. Indeed, ironically enough, the
more components that are involved in the process of amplification, the
slower it will typically be to get each new piece of random output. For
as we discussed two sections ago, each component in a sense adds what
one can consider to be more inertia to the amplification process,

But with a larger number of components it becomes progressively
easier for randomness to be generated through intrinsic randomness
generation. And indeed unless the underlying rules for the system
somehow explicitly prevent it, it turns out in the end that intrinsic
randomness generation will almost inevitably occur—often producing
s0 much randomness that it completely swamps any randomness that
might be produced from either of the other two mechanisms.



Yet having said this, one can ask how one can tell in an actual
experiment on some particular system in nature to what extent
intrinsic randomness generation is really the mechanism responsible
for whatever seemingly randoim behavior one observed.

The clearest sign is a somewhat unexpected phenomenon: that
details of the random behavior can be repeatable from one run of the
experiment to another. It is not surprising that general features of the
behavior will be the same, But what is remarkable is that if intrinsic
randomness generation is the mechanism at work, then the precise
details of the behavior can also be repeatable,

In the mechanism where randomness comes from continual
interaction with the environment, no repeatability can be expected. For
every time the experiment is run, the state of the environment will be
different, and so the behavior one sees will also be correspondingly
different. And similarly, in the mechanism where randomness comes
from the details of initial conditions, there will again be lictle, if any,
repeatability, For the details of the initial conditions are typically
affected by the environment of the system, and cannot realistically he
kept the same from one run to another.

But the point is that with the mechanism of intrinsic randomness
generation, there is no dependence on the environment. And as a result,
s0 long as the setup of the system one is looking at remains the same,
the behavior it produces will be exactly the same. Thus for example,
however many times one runs a rule 30 cellular automaton, starting
with a single black cell, the behavior one gets will always be exactly the
same. And so for example the sequence of colors of the center cell,
while seemingly random, will also be exactly the same.

But how easy is it to disturb this sequence? If one makes a fairly
drastic perturbation, such as changing the colors of cells all the way
from white to black, then the sequence will indeed often change, as
illustrated in the pictures at the top of the next page.

But with less drastic perturbations, the sequence can be quite
robust. As an example, one can consider allowing each cell to be not
just black or white, but any shade of gray, as in the continuous cellular
automata we discussed on page 155, And in such systems, one can
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investigate what happens if at every step one randomly perturbs the
gray level of each cell by a small amount.

The pictures on the facing page show results for perturbations of
various sizes. What one sees is that when the perturbations are
sufficiently large, the sequence of colors of the center cell does indeed
change. But the crucial point is that for perturbations below a certain
critical size, the sequence always remains essentially unchanged.

Even though small perturbations are continually being made, the
evolution of the system causes these perturbations to be damped out,
and produces behavior that is in practice indistinguishable from what
would be seen if there were no perturbations.

The question of what size of perturbations can be tolerated without
significant effect depends on the details of the underlving rules. And as
the pictures sugpest, rules which vield more complex behavior tend to be
able to tolerate only smaller sizes of perturbations. But the crucial point is
that even when the behavior involves intrinsic randomness generation,
perturbations of at least some size can still be tolerated,

And the reason this is important is that in any real experiment,
there are inevitably perturbations on the system one is looking at.

With more care in setting up the experiment, a higher degree of
isolation from the environment can usually be achieved. But it is never

possible to eliminate absolutely all interaction with the environment.
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And as a result, the system one is looking at will be subjected to at least
some level of random perturbations from the environment,

But what the pictures on the previous page demonstrate is that
when such perturbations are small enough, they will have essentially no
effect. And what this means is that when intrinsic randomness generation
is the dominant mechanism it is indeed realistic to expect at least some
level of repeatability in the random behavior one sees in real experiments.

50 has such repeatability actually been seen in practice!?

Unfortunately there is so far very little good information on this
point, since without the idea of intrinsic randomness generation there
was never any reason to look for such repeatability when behavior that
seemed random was observed in an experiment.

But scattered around the scientific literature—in various corners
of physics, chemistry, biology and elsewhere—I have managed to find at
least some cases where multiple runs of the same carefully controlled
experiment are reported, and in which there are clear hints of
repeatability even in behavior that looks quite random.

If one goes beyond pure numerical data of the kind traditionally
collected in scientific experiments, and instead looks for example at the
visual appearance of systems, then sometimes the phenomenon of
repeatability becomes more obvious, Indeed, for example, as T will
discuss in Chapter 8, different members of the same biological species
often have many detailed visual similarities—ewven in features that on
their own seem complex and apparently quite random.

And when there are, for example, two symmetrical sides to a
particular system, it is often possible to compare the visual patterns
produced on each side, and see what similarities exist. And as various
examples in Chapter 8 demonstrate, across a whole range of physical,
biological and other systems there can indeed be remarkable similarities.

So in all of these cases the randomness one sees cannot
reasonably be attributed to randomness that is introduced from the
environment—either continually or through initial conditions. And
instead, there is no choice but to conclude that the randomness must in
fact come from the mechanism of intrinsic randomness generation that
I have discovered in simple programs, and discussed in this section.



The Phenomenon of Continuity

Many systems that we encounter in nature have behavior that seems in
some way smooth or continuous. Yet cellular automata and most of the
other programs that we have discussed involve only discrete elements,
S0 how can such systems ever reproduce what we see in nature?

The crucial point is that even though the individual components
in a system may be discrete, the average behavior that is obtained by
looking at a large number of these components may still appear to be
smooth and continuous. And indeed, there are many familiar systems
in nature where exactly this happens.

Thus, for example, air and water seem like continuous fluids,
even though we know that at a microscopic level they are both in fact
made up of discrete molecules, And in a similar way, sand flows much
like a continuous fluid, even though we can easily see that it is actually
made up of discrete grains. S0 what is the basic mechanism that allows
systems with discrete components to produce behavior that seems
smooth and continuous?

Muost often, the key ingredient is randomness,

If there is no randomness, then the overall forms that one sees
tend to reflect the discreteness of the underlying components. Thus, for
example, the faceted shape of a crystal reflects the regular microscopic
arrangement of discrete atoms in the crystal.

But when randomness is present, such microscopic details often
get averaged out, so that in the end no trace of discreteness is left, and
the results appear to be smooth and continuous, The next page shows a
classic example of this phenomenon, based on so-called random walks.

Each random walk is made by taking a discrete particle, and then
at each step randomly moving the particle one position to the left or
right. If one starts off with several particles, then at any particular time,
each particle will be at a definite discrete position. But what happens if
one looks not at the position of each individual particle, but rather at
the overall distribution of all particles?

The answer, as illustrated on the next page, is that if there are

enough particles, then the distribution one sees takes on a smooth and

CHAPTER 7T
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continuous form, and shows no trace of the underlying discreteness of
the system; the randomness has in a sense successfully washed out
essentially all the microscopic details of the system.

The pictures at the top of the facing page show what happens if one
uses several different underlying rules for the motion of each particle. And
what one sees is that despite differences at a microscopic level, the overall
distribution obtained in each case has exactly the same continuous form.
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Indeed, in the particular case of systems such as random walks,
the Central Limit Theorem suggested over two centuries ago ensures
that for a very wide range of underlying microscopic rules, the same
continuous so-called Gaussian distribution will always be obtained.,

This kind of independence of microscopic details has many
important consequences, The pictures on the next page show, for
example, what happens if one looks at two-dimensional random walks
on square and hexagonal lattices.

One might expect that the different underlyving forms of these
lattices would lead to different shapes in overall distributions. But the
remarkable fact illustrated on the next page is that when enough
particles are considered, one gets in the end distributions that have a
purely circular shape that shows no trace of the different discrete
structures of the underlying lattices.
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Beyond random walks, there are many other systems based on
discrete components in which randomness at a microscopic level also
leads to continuous behavior on a large scale. The picture below shows
as one example what happens in a simple aggregation model.
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ultimately an almost parfect circla.
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The idea of this model is to build up a cluster of black cells by
adding just one new cell at each step. The position of this cell is chosen
entirely at random, with the only constraint being that it should be
adjacent to an existing cell in the cluster.

At early stapes, clusters that are grown in this way look quite
irregular. But after a few thousand steps, a smooth overall roughly
circular shape begins to emerge. Unlike for the case of random walks,
there is as yet no known way to make a rigorous mathematical analysis
of this process. But just as for random walks, it appears once again that
the details of the underlying rules for the system do not have much
effect on the main features of the behavior that is seen.

The pictures below, for example, show generalizations of the
aggregation model in which new cells are added only at positions that

have certain numbers of existing neighbors, And despite such changes

Patterns producsd by ganaralized apgregation models o S
which a naw cell is added onby if (al it would have only cns H
reuediate neighbor (ot of four, o (2 it seald have st
cabe of four neighbora. The pictures above ches step
J0.000, whike those on the right show step 200, Deszpite
the diferencs i undedang mles, the same basic overall

shage of patiern & eweniually prodeced




in underlying rules, the overall shapes of the clusters produced remain
very much the same.

In all these examples, however, the randomness that is involved
comes from the same basic mechanism: it is explicitly inserted from
outside at each step in the evolution of the system.

But it turns out that all that really seems to matter is that
randomness is present: the mechanism through which it arises appears
to be largely irrelevant. And in particular what this means is that
randomness which comes from the mechanism of intrinsic randomness
generation discussed in the previous section is able to make systems
with discrete components behave in seemingly continuous ways,

The picture on the next page shows a two-dimensional cellular
autpmaton where this happens. There is no randomness in the rules or
the initial conditions for this system, But through the mechanism of
intrinsic randomness generation, the behavior of the system exhibits
considerable randomness. And this randomness turns out to lead to an
overall pattern of growth that vields the same basic kind of smooth
roughly circular form as in the aggregation model.

Having seen this, one might then wonder whether in fact any
system that involves randomness will ultimately produce smooth
overall patterns of growth, The answer is definitely no. In discussing
two-dimensional cellular automata in Chapter 5, for example, we saw
many examples where randomness occurs, but where the overall forms
of growth that are produced have a complicated structure with no
particular smoothness or continuity.

As a rough guide, it seems that continuous patterns of growth are
possible only when the rate at which small-scale random changes occur
is substantially greater than the overall rate of growth. For in a sense it
is only then that there is enough time for randomness to average out the
effects of the underlying discrete structure.

And indeed this same issue also exists for processes other than
growth, In general the point is that continuous behavior can arise in
systems with discrete components only when there are features that
evolve slowly relative to the rate of small-scale random changes.
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The pictures on the next page show an example where this
happens. The detailed pattern of black and white cells in these pictures
changes at every step. But the point is that the large domains of black
and white that form have boundaries which move only rather slowly,
And at an overall level these boundaries then behave in a way that
looks gquite smooth and continuous.

It is still true, however, that at a small scale the boundaries
consist of discrete cells. But as the picture below shows, the detailed
configuration of these cells changes rapidly in a seemingly random way,
And just as in the other systems we have discussed, what then emerges
on average from all these small-scale random changes is owverall

behavior that again seems in many ways smooth and continuous.
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Origins of Discreteness

In the previous section we saw that even though a system may on a
small scale consist of discrete components, it is still possible for the
system overall to exhibit behavior that seems smooth and continuous,
And as we have discussed before, the vast majority of traditional
mathematical models have in fact been based on just such continuity.

But when one looks at actual systems in nature, it turns out that
one often sees discrete behavior—so that, for example, the coat of a
zehra has discrete black and white stripes, not continuous shades of
gray. And in fact many systems that exhibit complex behavior show at
least some level of overall discreteness.

So what does this mean for continuous models? In the previous
section we found that discrete models could yield continuous behavior.
And what we will find in this section is that the reverse is also true:
continuous models can sometimes yield behavior that appears discrete.

MNeedless to say, if one wants to study phenomena that are based
on discreteness, it usually makes more sense to start with a model that
is fundamentally discrete. But in making contact with existing
scientific models and resules, it is useful to see how discrete behavior
can emerge {Iﬂl'ﬂ CONLINWusS ProCesscs.

The boiling of water provides a classic example. If one takes some
water and continuously increases its temperature, then for a while
nothing much happens. But when the temperature reaches 100°C, a
discrete transition ocours, and all the water evaporates into steam.

It turns out that there are many kinds of systems in which
continuous changes can lead to such discrete transitions.

The pictures at the top of the next page show a simple example
based on a one-dimensional cellular automaton, The idea is to make
continuous changes in the initial density of black cells, and then to see
what effect these have on the overall behavior of the system.

One might think that if the changes one makes are always
continuous, then effects would be correspondingly continuous. But the

pictures on the next page demonstrate that this is not so.
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When the initial density of black cells has any value less than
50%, only white stripes ever survive, But as soon as the initial densicy
increases above 50%, a discrete transition occurs, and it is hlack stripes,
rather than white, that survive.

The pictures on the facing page show another example of the
same basic phenomenon, When the initial density of black cells is less
than 50%, all regions of black eventually disappear, and the system
becomes completely white. But as soon as the density increases above
50%, the behavior suddenly changes, and the system eventually
becomes completely black.

It turns out that such discrete transitions are fairly rare among
one-dimensional cellular antomata, but in two and more dimensions
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they become increasingly common, The pictures on the next page show
two examples—the second corresponding to a rule that we saw in a
different context at the end of the previous section.

In both examples, what essentially happens is that in regions
where there is an excess of black over white, an increasingly large
fraction of cells become black, while in regions where there is an excess
of white over black, the reverse happens. And so long as the boundaries
of the regions do not get stuck—as happens in many one-dimensional
cellular automata—the result is that whichever color was initially more

common eventually takes over the whole system.
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In most cellular automata, the behavior obtained after a long
time is either largely independent of the initial density, or varies quite
smoothly with it. But the special feature of the cellular automata
shown on the facing page is that they have two very different stable
states—either all white or all black—and when one changes the initial
density a discrete transition occurs between these two states.

One might think that the existence of such a discrete transition
must somehow be associated with the discrete nature of the underlying
cellular automaton rules. But it turns out that it is also possible o get
such transitions in systems that have continuwous underlying rules,

The pictures below show a standard very simple example of how this
can happen. If one starts to the left of the center hump, then the ball will
always roll into the left-hand minimum. But if one progressively changes
the initial position of the ball, then when one passes the center a discrete
transition occurs, and the ball instead rolls into the right-hand minimuem.

A gtandard sirmpla exarnpla of 5 continwaus systarm in which there is & discrete changa in bahavior es
a gonesguance of a contineous changs in mital condtons, When the bell starts ameewvhers 1o the left
of the cantar line, it rells into the laft-hand minimum. But if instsad it starts on tha right, then it rolls
inte the nght-hand mimmum, Thezre arm rrary Syslemd in raiune 1hat Tl thiz Sarmes ganaral Tarm
of mathematical equatens as those that descabe the enargy and motien of the ball

Thus even though the mathematical equations which govern the
maotion of the ball have a simple continuous form, the behavior they
produce still involves a discrete transition. And while this particular
example may seem contrived, it turns out that essentially the same
mathematical equations also occur in many other situations—such as
the evolution of chemical concentrations in various chemical reactions.

And whenever such equations arise, they inevitably lead w a limited
number of stable states for the system, with discrete transitions occurring
between these states when the parameters of the system are varied.
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So even if a system at some level follows continuous rules it is
still possible for the system to exhibit discrete overall behavior. And in
tact it is quite common for such behavior to be one of the most obvious
features of a system—which is why discrete systems like cellular
automata end up often being the most appropriate models.

The Problem of Satisfying Constraints

One feature of programs is that they immediately provide explicit rules
that can be followed to determine how a system will behave. But in
traditional science it is commaon to try to work instead with constraints
that are merely supposed implicitly to force certain behavior to occur,

At the end of Chapter 5 1 gave some examples of constraints, and
I showed that constraints do exist that can force quite complex behavior
tor oceur. But despite this, my strong suspicion is that of all the
examples of complex behavior that we see in nature almost none can in
the end best be explained in terms of constraints.

The basic reason for this is that to work out what pattern of
behavior will satisfy a given constraint wsually seems far woo difficult
for it to be something that happens routinely in nature.

Many types of constraints—including those in Chapter 5—have
the property that given a specific pattern it is fairly easy to check
whether the pattern satisfies the constraints. But the crucial point is
that this fact by no means implies that it is necessarily easy to go from
the constraints to find a pattern that satisfies them.

The situation is quite different from what happens with explicit
evolution rules. For if one knows such rules then these rules
immediately vield a procedure for working out what behavior will
occur. Yet if one only knows constraints then such constraints do not
on their own immediately vield any specific procedure for working out
what behavior will occur.

In principle one could imagine looking at every possible pattern,
and then picking out the ones that satisfy the constraints, But even

with a 10 = 10 array of black and white squares, the number of possible
patterns is already 1,267 650,600,228 229 401 496,703 205376, And with a



20 % 20 array this number is larger than the total number of particles in
the universe. 50 it seems quite inconceivable that systems in nature
could ever carry out such an exhaustive search.

One might imagine, however, that if such systems were just to
try patterns at random, then even though incredibly few of these
patterns would satisfy any given constraint exactly, a reasonable
number might at least still come close. But typically it turns out that
even this is not the case. And as an example, the pictures below show
what fraction of patterns chosen at random have a given percentage of
squares that violate the constraines described on page 211,

B Fary I & 1 Ay

0% e 508 5% [ e} 0% e SN A5 1A%

Tha fracton of sll possible patterns in which a certain percentage of sguares wickate the
constrants discussad on page 211, Only a handiul of pattamns satsfy tha constramits sxacthy [so
that (% of tha squares ars wrongl For larga arrays, the wast majority of possibla pattarns hava
about 0% of the squeares wrang.

For the majority of patterns around 70% of the squares turn out
to violate the constraints, And in a 10 = 10 array the chance of finding a
pattern where the fraction of squares that violate the constraints is even
less than 50% is only one in a thousand, while the chance of finding a
pattern where the fraction is less than 25% is one in four trillion.

And what this means is that a process based on picking patterns
at random will be incredibly unlikely to vield results that are even close
to satisfying the constraints.

So how can one do better! A common approach used both in
natural systems and in practical computing is to have some form of

iterative procedure, in which one starts from a pattern chosen at
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random, then progressively modifies the pattern so as to make it closer
to satistying the constraints,

As a specific example consider taking a series of steps, and at each
step picking a square in the array discussed above at random, then
reversing the color of this square whenever doing so will not increase
the total number of squares in the array that violate the constraints.

The picture below shows results obtained with this procedure.
For the first few steps, there is rapid improvement. But as one goes on,
one sees that the rate of improvement gets slower and slower. And even
after a million steps, it turns out that 15% of the squares in a 10= 10
array will on average still not satisfy the constraints,

In practical situations this kind of approximate result can
sometimes be useful, but the pictures at the top of the facing page show
that the actual patterns obtained do not look much at all like the exact
results that we saw for this system in Chapter 5.
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Tha rasults of a procedurs mtandad to producs pattems that get prograssivaly closar to satisfying the constraints descrbed on
page 211, The procedure starts with a randemdy chossn pattemn, then at sach step picks a sqwara in the pattern at random, and
raverses this color all 1hes suAng vebraeder doing $o does ndl incredass the Total rude af Sruargs m Ehe patiarn thal weclabe the
conatramits, The top picture shows one garticular un of this procedurs. The sacond picturs shows the average behavier obtaanad
frorn mary runs. And fnalbg the bottom pacturs shoees how the frection of pattams wath dfferent percentages of equares violating
tha canstraints changas &3 the procedure progreseas. Inall cases 0= 10 pattarnz sra wsad,
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Case (Al uses the sarmn consiramts a5 in the prmssus pesturg, (bl requines ey Blask squanes ard aveny sehibo souars
to hawe exeothy two adjgcant black squaras, and o) raquiras evary blsck squars to have 3 ediacent black equares and 1
whita squara, and evary whita squans to havs 4 adiacent white souaras, In casss (a) and (b it is possible (o satisty the
constraints exacthy in case (it is not, The pictures shoey the evolution of @ 30 = 30 amay, which is naarly 10 times the
area of the arrey shown in the previous peeturs. Athough the frection of squares that wolate the constrants i leas

than 20% after 100,000 eteps, The oversll patterns atill do not keok much like the exaat rsults

S0 why does the procedure not work better? The problem turns
out to be a rather general one. And as a simple example, consider a line
of black and white squares, together with the constraint that each
square should have the same color as its right-hand neighbor. This
constraint will be satistied only if every square has the same color—
either black or white, But to what extent will an iterative procedure
succeed in finding this solution?

As a first example, consider a procedure that at each step picks a
square at random, then reverses its color whenever doing so reduces the
total number of squares that violate the constraint. The pictures at the top

of the next page show what happens in this case. The resules are

T
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Fesults of four tries at applving an iterateee procedure fo fnd configurations which satsfy the
sampla constraint that svery squans should ba tha sama color &s tha sguara ta ks right. [Tha squares
arg assumad to bs aranged syclically 5o that the nght neighbor of the rightmost square s the
lefimeat couare.) The procedure stams from a rendom configuration of squanes, and then at eadh
step picks & squans at rendon, then reverses the color of this square whenswer deing so reduces
the totsl numbsr of squares that wiolate the constraint. The only configurators that ultinmately
satisly thir corgtrainds ane all wehitie and all BHack. But the procedune gets stuck ong Bedore i reaches
thisse confgurations. The problem 5 that o arg block more than one souane aorcss chanming 1he
podar al & souane ab enkher and wall not reduce the 1ofal nomber of squanes that woiEate the
conatraint. And a8 a result, such blocks rermeain fixad and cannot disappear.

remarkably poor: instead of steadily evolving to all black or all white, the
system quickly gets stuck in a state that contains regions of different eolors.

And as it turns out, this kind of behavior is not unecmmon among
iterative procedures; indeed it is even seen in such simple cases as trying to
tind the lowest point on a curve, The most obvious iterative procedure to
use for such a problem involves taking a series of small steps, with the
direction of each step being chosen so as locally to go downhill.

And indeed for the first curve shown below, this procedure works

just fine, and gquickly leads to the lowest point. But for the second

Three examples of curvas. In the first cese, the most obvicus mechanicsl or mathermatical
procedurs of continualty going dossenbi wall succassfully lesd one to the lewest point. But = the
cthar two cases, this procsdurs will usually snd up getting stuck at a local minemum, This is tha
basic phendrmenan svhich makes o dificed 1o Tind patberns that satisly constramnds macthy using &
procedurs that is based on progressive improvernent. The thrd picture sbeve s & representation of
the kind of curve that arses in almost all discrate ayatemns bassd on constraints



curve, the procedure will already typically not work; it will usually get
stuck in one of the local minima and never reach a global minimum.

And for discrete systems involving, say, just black and white squares,
it turns out to be almost inevitable that the curves which arise have the
kind of jagged form shown in the thind picture at the bottom of the facing
page. So this has the consequence that a simple iterative procedure that
always tries to go downhill will almost invariably get stuck.

How can one avoid this? One general strategy is to add
randomness, so that in essence one continually shakes the system to
prevent it from getting stuck. But the details of how one does this tend
to have a great effect on the results one pets.

The procedure at the top of the facing page already in a sense
involved randomness, for it picked a square at random at each step. But
as we saw, with this particular procedure the system can still get stuck,

Muodifying the procedure slightly, however, can avoid this. And as
an example the pictures below show what happens if at each step one
reverses the color of a random square not only if this will decrease the
total number of squares violating the constraints, but also if it leaves this
number the same. In this case the system never gets permanently stuck,

and instead will always eventually evolve to satisfy the constraints,

Results from a slight modification 1 the
procadura usad in tha pctura at the top of
tha facing page, & random squarm 15 agam
picked at each step. But now the color of
that square is ressssed not anby if doing 2o
Jil aciualy changss the total numbar of
Squares that wialate tha constraint Bl
alsa o o leaves has numbege this same
With this procaedure, awclution from any
inital conditson can wisit ewery possible
configuration, so that the configurations
which satisly the corsiraints will at beas
eentually be resched.
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But this process may still take a very long time. And indeed in
the two-dimensional case discussed earlier in this section, the number
of steps required can be quite astronomically long.

So can one speed this up? The more one knows about a particular
system, the more one can invent tricks that work for that system. But
usually these turn out to lead only to modest speedups, and despite
various hopes over the vears there seem in the end to be no technigues
that work well across any very broad range of systems,

S0 what this suggests is that even if in some idealized sense a
system in nature might be expected to satisfy certain constraints, it is
likely that in practice the system will actually not have a way wo come
even close to doing this.

In traditional science the notion of constraints is often
introduced in an attempt to summarize the etfects of evolution rules.
Typically the idea is that after a sufficiently long time a system should
be found only in states that are invariant under the application of its
evolution rules. And quite often it turns out that one can show that any
states that are invariant in this way must satisfy fairly simple
constraints. But the problem is that except in cases where the behavior
as a whole is very simple it tends not to be true that systems in fact
evolve to strictly invariant states.

The two cellular automata on the left both have all white and all
black as invariant states. And in the first case, starting from random
initial conditions, the system quickly settles down to the all black
invariant state. But in the second case, nothing like this happens, and
instead the system continues to exhibit complicated and seemingly
random behavior forever.

The two-dimensional patterns that arise from the constraints at
the end of Chapter 5 all turn out to correspond to invariant states of
various two-dimensional cellular automata. And so for example the
pattern of page 211 is found to be the unique invariant state for 572,522
of the 4294967296 possible five-neighbor cellular automaton rules.
But if one starts these rules from random initial conditions, one
typically never gets the pattern of page 211. Instead, as the pictures at
the top of the facing page show, one sees a variety of patterns that very
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Typazal bahavior of twio-dirmensionsl cellular autornata that laeve only the patiern on the right imsariant. Tha
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much more reflect explicit rules of evolution than the constraint
associated with the invariant state.

S0 what about actual systems in physics? Do they behave any
differently? As one example, consider a large number of circular coins
pushed together on a table. One can think of such a system as having an
invariant state that satisfies the constraint that the coins should be
packed as densely as possible. For identical coins this constraint is
satistied by the simple repetitive pattern shown on the right. And it
turns out that in this particular case this pattern is quickly produced if
one actually pushes coins together on a table,

But with balls in three dimensions the situation is quite different.
In this case the constraint of densest packing 15 known to be satisfied
when the balls are laid out in the simple repetitive way shown on the
right. But if one just tries pushing balls together they almost always get
stuck, and never take on anvthing like the arrangement shown, And if
one jiggles the balls around one still essentially never gets this
arrangement. Indeed, the only way o do it seems to be to lay the balls
down carefully one after another.

In two dimensions similar issues arise as soon as one has coins of
maore than one size, Indeed, even with just two sizes, working out how
to satisfy the constraint of densest packing is already so difficult that in
most cases it is still not known what configuration does it.

The densast packing of
wenhical cwckes i thae

plane. Each  cecle s
quUToUndked by s olfers,

The dermest packing of
identeal spheras m thee
teramrsional  space  Each
sphiere is sumounded by 12
othiars
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The pictures on the facing page show what happens if one starts
with a single circle, then successively adds new circles in such a way
that the center of each one is as close to the center of the first circle as
possible, When all circles are the same size, this procedure vields a
simple repetitive pattern. But as soon as the circles have significantly
different sizes, the pictures on the facing page show that this procedure
tends to produce much more complicated patterns—which in the end
may or may not have much to do with the constraint of densest packing.

One can look at all sorts of other physical systems, but so far asTcan
tell the story is always more or less the same: whenever there is behavior of
significant complexity its most plavsible explanation tends to be some
explicit process of evolution, not the implicit satisfaction of constraints.

One might still suppose, however, that the situation could be
different in biological systems, and that somehow the process of natural
selection might produce forms that are successtully determined by the
satisfaction of constraints.

But what I strongly believe, as T discuss in the next chapter, is
that in the end, much as in physical systems, only rather simple forms
can actually be obtained in this way, and that when more complex
forms are seen they once again tend to be associated not with
constraints but rather with the effects of explicit evolution rules—
maostly those governing the growth of an individual organism,

Origins of Simple Behavior

There are many systems in nature that show highly complex behavior.
But there are also many systems that show rather simple behavior—
most often either complete uniformity, or repetition, or nesting,

And what we have found in this book is that programs are very
much the same: some show highly complex behavior, while others
show only rather simple behavior,

Traditional intuition might have made one assume that there
must be a direct correspondence between the complexity of observed
behavior and the complexity of underlying rules. But one of the central

discoveries of this book is that in fact there is not.
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For even programs with some of the very simplest possible rules
yvield highly complex behavior, while programs with fairly complicated
rules often vield only rather simple behavior. And indeed, as we have
seen many tmes in this book, and as the pictures below illustrate, even
rules that are extremely similar can produce quite different behavior,
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A sequenca of elermentary callular automata whosa rukss deffer frorm ane to the naxt onby at one
poeiticn @& Gray code sequencel. Daspete the similanty of thair rules, the ovarsll behavior of thess
cellular aulsmata diflers consideralbly

If one just looks at a rule in its raw form, it is usually almost
impossible to tell much about the overall behavior it will produce, But
in cases where this behavior ends up being simple, one can often
recognize in it specific mechanisms that seem to be at work.,

If the behavior of a system is simple, then this inevitably means
that it will have many regularities. And usually there is no definite way
to say which of these regularities should be considered causes of what
one sees, and which should be considered effects,

But it is still often useful to identify simple mechanisms that can
at least serve as descriptions of the behavior of a system.

In many respects the very simplest possible type of behavior in
any system is pure uniformity. And uniformity in time is particularly
straightforward, for it corresponds just to no change occurring in the
evolution of a system. But uniformity in space is already slightly more
complicated, and indeed there are several different mechanisms that can
be involved in it. A rather straightforward one, illustrated in the pictures



below, is that some process can start at one point in space and then

progressively spread, doing the same thing at every point it reaches.

Homogenous growth from a single point &
ane Sirasghtforward way that eriformity in

Space can be produced, haoe Sestrated n a
rmiabile autornaton and 8 cellular aulomaton

Another mechanism is that every part of a system can evolve

completely independently to the same state, as in the pictures below.

Uniformity in space can ba achieved
pdmost tivially it each alament m &
syelorm independientl ovalvas o the
aae state.
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A slightly less straightforward mechanism is illustrated in the
pictures below. Here different elements in the system do interact, but

the result is still that all of them evolve to the same state.

PP :EH::"E'::'I w :-IIZII Claas 1 celdar autormata
: i TR that exhilit evolution to a
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So far all the mechanisms for uniformity I have mentioned
involve behavior that is in a sense simple at every level. But in nature
uniformity often seems to be associated with quite complex
microscopic behavior, Most often what happens is that on a small scale
a system exhibits randomness, but on a larger scale this randomness

averages out to leave apparent uniformicy, as in the pictures below.

fweraging cut amall-scale randomness yiekds apparent uniformity, s shaown bara for & ruke 30 pattem
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It is common for uniform behavior to be guite independent of
initial conditions or other input to a system. But sometimes different
uniform behavior can be obtained with different input.

One way this can happen, illustrated in the pictures below, is for
the system to conserve some quantity—such as total density of black—
and for this quantity to end up being spread uniformly throughout the

An alternative is that the system may alwavs evolve to certain
specific uniform phases, but the choice of which phase may depend on

the total value of some guantity, as in the pictures below.

R

system by its evolution.

Wiith each cell at sach step hawing a
gray bewed that B the awerage of its
prgciecEssor and 0% e rmghixors the
total amount of back is conserved, but
spaniually becomes spread uniformby
throwghiout thes systam

With diffarant initial condibons this callular automaton from pags 339 can evolva sither to wndorm whita or
vniform Black. Swch discrate transitions are semawhat ksss commen in ona dimansion than elsawhans

Constraints are vet another basis for uniformity. And as a trivial
example, the constraint in a line of black or white cells that every cell
should be the same color as both its neighbors immediately implies that
the whole line must be either uniformly black or uniformly white.

Beyond uniformity, repetition can be considered the next-simplest
form of behavior. Repetition in time corresponds just to a system
repeatedly returning to a particular state.

This can happen if, for example, the behavior of a system in
effect follows some closed curve such as a circle which always leads
back to the same point. And in general, in any system with definite

rules that only ever wvisits a limited number of states, it is
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inevitable—as discussed on page 255 and illustrated above—that the
behavior of the system will eventually repeat.

In some cases the basic structure of a system may allow only a
limited number of possible states. But in other cases what happens is
instead just that the actwal evolution of a system never reaches more
than a limited number of states.

Often it is very difficult to predict whether this will be so just by
looking at the underlying rules. But in a system like a cellular
automaton the typical reason for it is just that in the end effects never

spread beyond a limited region, as in the examples shown below.

Examples  of  bBeheior in mobile
autornata and cefular autornata that
remans localized to a limitad regon

and thus abavaes aveniualy repaals
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Given repetition in time, repetition in space will follow
whenever elements that repeat systematically move in space, The
pictures below show two cases of this, with the second picture

illustrating the notion of waves that is common in traditional physics.

Examplas wwhare rapatibion
in fima lesds directly o
repatition in space. Tha
sacond  picturs  shows
standard wave rmalion
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Growth from a simple seed can also readily lead to repetition in

hoth space and time, as in the pictures below.

Colluar  autormata  in
which a rapatine pathern
in bath space ard tima is
peraraled by swsiubon
frasim & simple aaed
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But what about random initial conditions? Repetition in time is
still easy to achieve—say just by different parts of a system behaving
independently. But repetition in space is slightly more difficult to
achieve, For even if localized domains of repetition form, they need to
have some mechanism for combining together.

And the walls between different domains often end up not being

maobile enough to allow this to happen, as in the examples below.
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Cllulas automata in svhich domaens of repaetitive behaviar form, bBut in sehich walls typically remain Torever betwesn these damams
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comiarg o rmake the wwhole
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But there are certainly cases—in one dimension and particularly
above—where different domains do combine, and exact repetition 1s
achieved. Sometimes this happens quickly, as in the picture on the left.

But in other cases it happens only rather slowly. An example is
riule 110, in which repetitive domains form with period 14 in space and
7 in time, but as the picture below illustrates, the localized structures
which separate these domains take a very long time to disappear.
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The behawor of rula 110 starbing from randorn initied conditions. Domeara of rapetitve behevior are fomead, which n most casaes
gradually combinge as the localized structures which separate thern dsappaar,
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As we saw at the end of Chapter 5, many systems based on
constraints also in  principle vield repetition—though from  the
discussion of the previous section it seems likely that this is rarely a
good explanation for actual repetition that we see in nature.



Beyond uniformity and repetition, the one further type of simple
hehavior that we have often encountered in this book is nesting. And as
with unitormity and repetition, there are several quite different ways
that nesting seems to arise,

MNesting can be defined by thinking in terms of splitting into
smaller and smaller elements according to some fixed rule. And as the

pictures below illustrate, nested patterns are generated very directly in

substitution systems by each element successively splitting explicitly
into blocks of smaller and smaller elements.

Mesting  in one-  and  feo-dimensional | nesghborindepandent H
substitubion systermns mowhich each element breaks nic a block of
smallar elameanis at each sisp

An essentially equivalent process involves every element
branching into smaller and smaller elements and eventually forming a
tree-like structure, as in the pictures below.
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Masted pattarns ganeratad by simple branching processes. (Compara page 406 |

S0 what makes a system in nature operate in this way? Part of it
is that the same basic rules must apply regardless of physical scale. But
on its own this would be quite consistent with various kinds of uniform
or spiral growth, and does not imply that there will be what we usuoally
think of as nesting. And indeed to get nesting seems to require that
there also be some type of discrete splitting or branching process in

which several distinct elements arise from an individual element.
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A somewhat related source of nesting relevant in many
mathematical systems is the nested pattern formed by the digit
sequences of successive numbers, as illustrated on page 117,

But in general nesting need not just arise from larger elements
being broken down into smaller ones: for as we have discovered in this
book it can also arise when larger elements are built up from smaller
ones—and indeed I suspect that this is its more common origin in nature.

As an example, the pictures below show how nested patterns
with larger and larger features can be built up by starting with a single
black cell, and then following simple additive cellular avtomaron rules,

e A o

hested patterns built by the svoletion of the mibs 93 and rule 150 additve cellular automata starting
frzm a single Back o=l

It turns out that the very same patterns can also be produced—as
the pictures below illustrate—by processes in which new branches form
at regular intervals, and annihilate when any pair of them collide.

Rl Y P N

Mastad pattarns cbtaned by proceeses in which either tevo or thraa branchas are formad at ragular
mervals, and anmibilatse whan any pas ol tharm collide

But what about random initial conditions? Can nesting also arise
from these! It turns out that it can. And the basic mechanism is
typically some kind of progressive annihilation of elements that are

initially distributed randomly,



The pictures below show an example, based on the rule 184
cellular automaton. Starting from random initial conditions this rule
yields a collection of stripes which annihilate whenever they meet,
leading to a sequence of progressively larger nested regions,

CHAPTER

The generation of 8 neated patterm by rube 124 starting from rendom inetal condibens. The pattern consaats of a eollection of
stripss, highlightad in the sscond picthers, whech form the tres-like struciura shoem e tha thind pictura. The initial condition usad

has exacthy egual nembers of black and whits calls, cawsing all the stripas evantually fo annihilate

And as the pictures show, these regions form a pattern that
corresponds to a random tree that builds up from its smallest branches,
much in the way that a river builds up from its tributaries.

MNesting in rule 184 is easiest to see when the inital conditions
contain exactly equal numbers of black and white cells, so that the
numbers of left and right stripes exactly balance, and all stripes
eventually annihilate. But even when the initial conditions are such
that some stripes survive, nested regions are still formed by the stripes
that do annihilate. And indeed in essentially any system where there
are domains that grow fairly independently and then progressively
merge the same basic overall nesting will be seen,

As an example, the picture below shows the rule 110 cellular

automaton evolving from random initial conditions. The picture

4 highty compressed rapresentation of
tha ewzluton of rule 110 from random
initial conditicons mowhich onby tha first call
in spary 14 = T block i samplad,

T
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samples just the first cell in every 14 = 7 block of cells, making each
domain of repetitive behavior stand out as having a unitorm color.

In the detailed behavior of the various localized structures that
separate these domains of repetitive behavior there is all sorts of
complexity, But what the picture suggests is that at some rough overall
level these structures progressively tend to annihilate each other, and in
doing so form an approximate nested pattern.

It turns out that this basic process is not restricted to systems
which produce simple uniform or repetitive domains. And the
pictures below show for example cases where the behavior inside each
domain is quite random.

Fmd dorafakt code 1685

b il o T8 (oo’ |

Examples ivelving domains containing apparant randomness. In the second picturs, sach alament showen represants a
2= 2 block of onginal cals, In both casss, the boundaries bstween domains appear to followe random walks, annihilating

wehign they mest and thus farm ng 8 nealed sesnall pariean.

Instead of following simple straight lines, the boundaries of these
domains now execute seemingly random walks. But the fact that they
annihilate whenever they meet once again tends to lead to an overall
nested pattern of behavior,

S0 what about systems based on constraints? Can these also lead
to nesting? In Chapter 5 1 showed that they can, But what I found is that
whereas at least in principle both uniformity and repetition can he
forced fairly easily by constraints, nesting usually cannot be.

At the outset, one might have thought that there would be just
one definite mechanism for each type of simple behavior, But what we
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have seen in this section is that in fact there are usually several
apparently quite different mechanisms possible.

Often one can identify features in common between the various
mechanisms for any particular kind of behavior, But typically these end
up just being inevitable consequences of the fact that some specific
kind of behavior is being produced.

And so, for example, one might notice that most mechanisms for
nesting can at some level be viewed as involving hierarchies in which
higher components affect lower ones, but not the other way around. But
in a sense this observation is nothing more than a restatement of a
property of nesting itself.

S0 in the end one can indeed view most of the mechanisms that I
have discussed in this section as being in some sense genuinely
different. Yet as we have seen all of them can be captured by quite
simple programs. And in Chapter 12 T will discuss how this is related to
the fact that so few fundamentally different types of overall behavior
ultimately seem to ocouor.

CHAPTER 7T
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Implications for
Everyday Systems

Issues of Modelling

In the previous chapter 1 showed how various general forms of
hehavior that are common in nature can be understood by thinking in
terms of simple programs. In this chapter what T will do is to take
what we have learned, and look at a sequence of fairly specitic kinds
of systems in nature and elsewhere, and in each case discuss how the
maost obvious features of their behavior arise,

The majority of the systems 1 consider are quite familiar from
everyday life, and at first one might assume that the origins of their
hehavior would long ago have been discovered. But in fact, in almost all
cases, rather little turns out to be known, and indeed at any
fundamental level the behavior that is observed has often in the past
seemed quite mysterious, But what we will discover in this chapter is
that by thinking in terms of simple programs, the fundamental origins
of this behavior become much less mysterious.

It should be said at the outset that it is not my purpose to explain
every detail of all the various kinds of svstems that T discuss. And in
fact, to do this for even just one kind of system would most likely take
at least another whaole book, if not much more,

But what I do want to do is to identify the basic mechanisms that
are responsible for the most obvious features of the behavior of each

kind of system. T want to understand, for example, how in general
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snowflakes come to have the intricate shapes they do. But I am not
concerned, for example, with details such as what the precise curvature
of the tips of the arms of the snowflake will be,

In most cases the basic approach I take is to try to construct the
very simplest possible model for each system. From the intuition of
traditional science we might think that if the behavior of a system is
complex, then any model for the system must also somehow he
correspondingly complex.

But one of the central discoveries of this book is that this is not in
fact the case, and that at least if one thinks in terms of programs rather
than traditional mathematical equations, then even models that are
hased on extremely simple underlying rules can yield behavior of great
complexity. And in fact in the course of this chapter, I will construct a
whole sequence of remarkably simple models that do rather well at
reproducing the main features of complex behavior in a wide range of
everyday natural and other systems.

Any model is vltimately an idealization in which only certain
aspects of a system are captured, and others are ignored. And certainly
in each kind of system that I consider here there are many details that
the models T discuss do not address. But in most cases there have in the
past never really been models that can even reproduce the most obvious
features of the behavior we see. So it is already major progress that the
models I discuss vield pictures that look even roughly right.

In many traditional fields of science any model which could yvield
such pictures would immediately be considered highly successful. But
in some fields—especially those where traditional mathematics has
been used the most extensively—it has come to be believed that in a
sense the only truly objective or scientific way to test a model is to look
at certain rather specific details.

Most often what is done is to extract a small set of numbers from
the observed behavior of a system, and then to see how accurately these
numbers can be reproduced by the model. And for systems whose
overall behavior is fairly simple, this approach indeed often works quite
well, But when the overall behavior is complex, it becomes impossible
to characterize it in any complete way by just a few numbers,



And indeed in the literature of traditional science I have quite often
seen models which were taken very seriously because they could be made
to reproduce a few specitic numbers, but which are shown up as
completely wrong if one works out the overall behavior that they imply.
And in my experience by far the best first step in assessing a model is not
to look at numbers or other details, but rather just to use one's eyes, and
to compare overall pictures of a system with pictures from the model.

If there are almost no similarities then one can reasonably
conclude that the model is wrong, But it there are some similarities and
some differences, then one must decide whether or not the differences
are crucial. Quite often this will depend, at least in part, on how one
intends to use the model. But with appropriate judgement it is usually
not too difficult from looking at overall behavior to get at least some
sense of whether a particular model is on the right track.,

Typically it is not a good sign if the model ends up being almost
as complicated as the phenomenon it purports to describe, And it is an
even worse sign if when new observations are made the model
constantly needs to be patched in order to account for them.

It is usually a good sign on the other hand if a model is simple,
yvet still manages to reproduce, even quite roughly, a large number of
features of a particular system. And it is an even better sign if a fair
fraction of these features are ones that were not known, or at least not
explicitly considered, when the model was first constructed.

One might perhaps think that in the end one could always tell
whether a model was correct by explicitly looking at sufficiently
low-level underlying elements in a system and comparing them with
elements in the model. But one must realize that a model is only ever
supposed to provide an abstract representation of a system—and there is
nothing to say that the various elements in this representation need
have any direct correspondence with the elements of the system itself.

Thus, for example, a traditional mathematical model might say
that the motion of a planet is governed by a set of differential equations.
But one does not imagine that this means that the planet itself contains
a device that explicitly solves such equations. Rather, the idea is that

CHAPTER &
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the eguations provide some kind of abstract representation for the
physical effects that actually determine the motion of the planet.

When I have discussed models like the ones in this chapter with
other scientists I have however often encountered great confusion about
such issues, Perhaps it is because in a simple program it is s0 easy to see
the underlying elements and the rules that govern them. But countless
times [ have been asked how models based on simple programs can
possibly be correct, since even though they may successtully reproduce
the behavior of some system, one can plainly see that the system itself
does not, for example, actually consist of discrete cells that, say, follow
the rules of a cellular avtomaton.

But the whole point is that all any model is supposed to do—
whether it is a cellular automaton, a differential equation, or anything
else—is to provide an abstract representation of effects that are
important in determining the behavior of a system., And below the level
of these effeces there is no reason that the model should actoally
operate like the system itself,

Thus, for example, a cellular automaton can readily be set up to
represent the effect of an inhibition on growth at points on the surface
of a snowflake where new material has recently been added. But in the
cellular automaton this etfect is just implemented by some rule for
certain configurations of cells—and there is no need for the rule o
correspond in any way to the detailed dynamics of water molecules,

S0 even though there need not be any correspondence between
elements in a system and in a model, one might imagine that there
must still be some kind of complete correspondence between effects.
But the whole point of a model is to have a simplified representation of
a svstem, from which those features in which one is interested can
readily be deduced or understood. And the only way to achieve this is to
pick out only certain effects that are important, and to ignore all others.

Indeed, in practice, the main challenge in constructing models is
precisely to identify which effects are important enough that they have
to be kept, and which are not. In some simple situations, it is
sometimes possible to set up experiments in which one can essentially
isolate each individual effect and explicitly measure its importance. But



in the majority of cases the best evidence that some particular set of
effects are in fact the important ones ultimately comes just from the
success of models that are based on these effects.

The systeins that I discuss in this chapter are mostly complicated
enough that there are at least tens of quite different effects that could
contribute to their overall behavior. But in trying to construct the
simplest possible models, I have always picked out just a few effects
that T believe will be the most important. Tnevitably there will be
phenomena that depend on other etfects, and which are therefore not
correctly reproduced by the models T consider, So if these phenomena
are crucial to some particular application, then there will be no choice
but to extend the model for that application.

But insofar as the goal is to understand the basic mechanisms
that are responsible for the most obvious features of overall behavior, it
is important to keep the underlying model as simple as possible. For
even with just a few extensions models wsuvally become so complicared
that it is almost impossible to tell where any particular feature of
hehavior really comes from.

Ower the years I have been able to watch the progress of perhaps a
dozen significant models that T have constructed—though in most cases
never published—for a variety of kinds of systems with complex
behavior, My original models have typically been extremely simple,
And the initial response to them has usually been great surprise that
such simple models could ever yield behavior that has even roughly the
right features, But experts in the particular types of systems involved
have usually been quick to point out that there are many details that
my models do not correctly reproduce,

Then after an initial period where the models are often said to be
too simplistic to be worth considering, there begin to be all sores of
extensions added that attempt to capture more effects and more details.
The result of this is that after a few years my original models have
evolved into models that are almost unrecognizably complex, But these
maodels have often then been used with great success for many practical
purposes. And at that point, with their success established, it
sometimes happens that the models are examined more carefully—and
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it is then discovered that many of the extensions that were added were
in fact quite unnecessary, so that in the end, after perhaps a decade has
passed, it becomes recognized that models equivalent to the simple
ones I originally proposed do indeed work quite well,

One might have thought that in the literature of traditional
science new models would be proposed all the time. But in fact the vast
majority of what is done in practically every field of science involves
not developing new models but rather accumulating experimental data
or working out consequences of existing models.

And among the models that have been used, almost all those that
have gone beyond the level of being purely descriptive have ended up
being formulated in very much the same kind of way: typically as
collections of mathematical equations. Yet as I emphasized at the very
beginning of this book, this is, I believe, the main reason that in the past
it has been so difficult to find workable models for systems whose
behavior is complex., And indeed it is one of the central ideas of this
book to go beyond mathematical equations, and to consider models that
are based on programs which can effectively involve rules of any kind.

It is in many respects easier to work with programs than with
equations, For once one has a program, one can always find out what its
behavior will be just by running it. Yet with an equation one may need
to do elaborate mathematical analysis in order to find oot what
behavior it can lead to. It does not help that models based on equations
are often stated in a purely implicit form, so that rather than giving an
actual procedure for determining how a system will behave—as a
program does—they just give constraints on what the behavior must be,
and provide no particular guidance about finding out what, if any,
behavior will in fact satisfy these constraints.

And even when models based on equations can be written in an
explicit form, they still typically involve continuous variables which
cannot for example be handled directly by a practical computer. When
their overall behavior is sufficiently simple, complete mathematical
tormulas to describe this behavior can sometimes be found, But as soon
as the behavior is more complex there is usually no choice but to use
some form of approximation. And despite many attempts over the past
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fifty or so years, it has almost never been possible to demonstrate that
results obtained from such approximations even correctly reproduce
what the original mathematical equations would imply.

Models based on simple programs, however, suffer from no such
problems, For essentally all of them involve only discrete elements which
can be handled quite directly on a practical computer. And this means that
it becomes straightforward in principle—and often highly efficient in
practice—to work out at least the basic consequences of such maodels.

Many of the models that T discuss in this chapter are actually
based on some of the very simplest kinds of programs that T consider
anywhere in this book. But as we shall see, even these models appear
quite sufficient to capture the behavior of a remarkably wide range of
gystems from nature and elsewhere—establishing beyond any doubt, 1

helieve, the practical value of thinking in terms of simple programs,

The Growth of Crystals

At a microscopic level crystals consist of regular arrayvs of atoms laid
out much like the cells in a cellular avtomaton. A crystal forms when a
liquid or gas is cooled below its freezing point. Crystals always start
from a seed—often a foreign object such as a grain of dust—and then
grow by progressively adding more atoms to their surface.

As an idealization of this process, one can consider a cellular
automaton in which black cells represent regions of solid and white
cells represent regions of liquid or gas. If one assumes that any cell
which is adjacent to a black cell will itself become black on the next

step, then one gets the patterns of growth shown below.
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The shapes produced in each case are very simple, and ultimately
consist just of flat facets arranged in a way that reflects directly the
structure of the underlying lattice of cells. And many crystals in
nature—including for example most gemstones—have similarly simple
faceted forms, But some do not. And as one well-known example,

snowflakes can have highly intricate forms, as illustrated below.

Exarnphes of Pypcal torms of snowellakng, Note that the saalies Tor delherent piotuwes are ditfecsn

To a good approximation, all the molecules in a snowtlake
ultimately lie on a simple hexagonal grid. But in the actual process of
snowflake growth, not every possible part of this grid ends up being
filled with ice. The main effect responsible for this is that whenever a
piece of ice is added to the snowflake, there is some heat released,
which then tends to inhibit the addition of further pieces of ice nearby.

One can capture this basic effect by having a cellular automaton
with rules in which cells become black if they have exactly one black
neighbor, but stay white whenever they have more than one black
neighbor, The pictures on the facing page show a sequence of steps in
the evolution of such a cellular automaton. And despite the simplicity
of its underlying rules, what one sees is that the patterns it produces are
strikingly similar to those seen in real snowflakes.

From looking at the behavior of the cellular automaton, one can
immediately make various predictions about snowflakes, For example,
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one expects that during the growth of a particular snowflake there
should be alternation between tree-like and faceted shapes, as new
branches grow but then collide with each other.

And if one looks at real snowtlakes, there is every indication that
this is exactly what happens, And in fact, in general the simple cellular
automaton shown above seems remarkably successful at reproducing
all sorts of obvious features of snowflake growth. But inevitably there
are many details that it does not capture. And indeed some of the
photographs on the facing page do not in the end look much like
patterns produced at any step in the evolution shown above.
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But it turns out that as soon as one tries to make a more complete
maodel, there are immediately an immense number of issues that arise,
and it is difficult to know which are really important and which are not.
At a basic level, one knows that snowflakes are formed when water
vapor in a cloud freezes into ice, and that the strocture of a given
snowflake is determined by the temperature and humidity of the
environment in which it grows, and the length of time it spends there.

The growth inhibition mentioned above is a result of the fact that
when water or water vapor freezes into ice, it releases a certain amount
of latent heat—as the reverse of the phenomenon that when ice is
warmed to 0°C it still needs heat applied before it will actually melt.

But there are also many effects. The freezing temperature, for
example, effectively varies with the curvature of the surface. The rate of
heat conduction differs in different directions on the hexagonal grid.
Convection currents develop in the water vapor around the snowflake.
Mechanical stresses are produced in the crystal as it grows.

Various models of snowflake growth exist in the standard
scientific literature, typically focusing on one or two of these effects.
But in most cases the models have at some basic level been rather
unsuccessful. For being based on traditional mathematical equations
they have tended to be able to deal only with what amount to fairly
simple smooth shapes—and so have never really been able to address
the kind of intricate structure that is so striking in real snowflakes.

But with models based on simple programs such as cellular
automata, there is no problem in dealing with more complicated shapes,
and indeed, as we have seen, it is actually quite easy to reproduce the
basic features of the overall behavior that occurs in real snowflakes.

S0 what about other tvpes of crystals?

In nature a variety of forms are seen. And as the pictures on the
facing page demonstrate, the same is true even in cellular automata
with very simple rules. Indeed, much as in nature, the diversity of
behavior is striking, Sometimes simple faceted forms are produced. But
in other cases there are needle-like forms, tree-like or dendritic forms, as
well as rounded forms, and forms that seem in many respects random.
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The occurrence of these last forms is at first especially surprising,
For one might have assumed that any apparent randomness in the final
shape of something like a erystal must alwavs be a consequence of
randomness in its original seed, or in the environment in which it grew.

But in fact, as the pictures above show—and as we have seen
many times in this book—it is also possible for randomness to arise
intrinsically just through the application of simple underlying rules.
And contrary to what has always been assumed, T suspect that this is
actually how the apparent randomness that one sometimes sees in
shapes formed by crystalline materials often comes about.
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The Breaking of Materials

In everyday life one of the most familiar ways to generate randomness is
to break a solid object. For although the details vary from one material to
another it is almost universally the case that the line or surface along
which fracture actually occurs seems rough and in many respects random,

S0 what is the origin of this randomness? At first one might think
that it must be a reflection of random small-scale irregularities within
the material. And indeed it is true that in materials that consist of
many separate crystals or grains, fractures often tend to follow the
boundaries between such elements.

But what happens it one takes for example a perfect single
crystal—say a standard highly pure induostrial silicon crystal—and
breaks it? The answer is that except in a few special cases the pattern of
fracture one gets seems to look just as random as in other materials.

And what this suggests is that whatever basic mechanism is
responsible for such randomness, it cannot depend on the details of
particular materials. Indeed, the fact that almost indistinguishable
patterns of fracture are seen both at microscopic scales and in geological
systems on scales of order kilometers is another clue that there must be
a more general mechanism at work.

S0 what might this mechanism be?

When a solid material breaks what typically happens is that a
crack torms—usually at the edge of the material—and then spreads.
Experience with syvstems from hand-held objects to engineering
structures and earthquakes suggests that it can take a while for a crack
to get started, bue that once it does, the crack tends to move guickly
and violently, usually producing a lot of noise in the process.

One can think of the components of a solid—whether at the level
of atoms, molecules, or pieces of rock—as being bound together by
forces that act a lictle like springs. And when a crack propagates
through the solid, this in effect sets up an elaborate pactern of
vibrations in these springs. The path of the crack is then in turn

determined by where the springs get stretched so far that they break.
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There are many factors which affect the details of displacements
and vibrations in a solid. But as a rough approximation one can perhaps
assume that each element of a solid is either displaced or not, and that
the displacements of neighboring elements interact by some definite
rule—say a simple cellular automaton rule,

The pictures below show the behavior that one gets with a simple
model of this kind. And even though there is no explicit randomness
inserted into the model in any way, the paths of the cracks that emerge
nevertheless appear to be quite random.,

A very simipde calldar automaton modsl for frecture. At sach stap, the coler of aach el which roughby
riprasends the displacarmant 1 an elarment < thi sabid, 15 updated acosding 16 & collds autormatan
mube The black dot, representing the locaton of a crack, moves from one cell 1o another basad on the
dizplacemants of neighbonng cells, at sach step setting the call it reaches to be white. Evan thowgh no
randormness is inserted from outside, the pathe of the cracks that ernesge from this modal nevertheless
appear o a large acent Andom Thare = somie evidence Trorm physical expanmants that dislocations
araund cracks can form pattems that ok similar to the gray ard white backgrounds aboes

There are certainly many aspects of real materials that this model
does not even come close to capturing. But I nevertheless suspect that
even when much more realistic models for specific materials are used,
the fundamental mechanisms responsible for randomness will still be
very much the same as in the extremely simple model shown here.
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Fluid Flow

A great many striking phenomena in nature involve the flow of fluids
like air and water—as illustrated on the facing page. Typical of what
happens is what one sees when water flows around a solid object. At
sufficiently slow speeds, the water in effect just slides smoothly around,
yvielding a very simple laminar pattern of flow. But at higher speeds,
there starts to be a region of slow-moving water behind the object, and a
pair of eddies are formed as the water swirls into this region.

As the speed increases, these eddies become progressively more
elongated. And then suddenly, when a critical speed is reached, the
eddies in effect start breaking off, and getting carried downstream. But
every time one eddy breaks off, another starts to form, so that in the end
a whole street of eddies are seen in the wake behind the object.

At first, these eddies are arranged in a very regular way. But as the
speed of the flow is increased, glitches begin to appear, at first far behind
the object, but eventually throughout the wake. Even at the highest
speeds, some overall regularity nevertheless remains, But superimposed
on this is all sorts of elaborate and seemingly quite random behavior,

But this is just one example of the very widespread phenomenon of
fluid turbulence. For as the pictures on the facing page indicate—and as
common experience suggests—almost any time a fluid is made to flow
rapidly, it tends to form complex patterns that seem in many ways random.

50 why fundamentally does this happen?

Traditional science, with its basis in mathematical equations, has
never really been able wo provide any convincing underlying explanation.
But from my discovery that complex and seemingly random behavior is in
a sense easy to get even with very simple programs, the phenomenon of
Huid turbulence immediately begins to seem much less surprising,

But can simple programs really reproduce the particular kinds of
behavior we see in fluids? At a microscopic level, physical fluids consist
of large numbers of molecules moving around and colliding with each
other. S0 as a simple idealization, one can consider having a large
number of particles move around on a fixed discrete grid, and undergo

collisions governed by simple cellular-automaton-like rules,



oW GO i B

CHAPTER &

2 R b

omp BT TR

R SMGES

arichig’ pdohes
= i T e
TS OSEeGuse
e ‘l__'- __|l_|.lﬂ_|u-.

WL
ol e ’

cemvedien tals hFirisse wrp

(0 PRI ST Lk b i ik

FugRETE Agie TR Anlnih

Examples of typical patiarns generated invarious kinds of fluid flow Mots tha frequent oocwmance of seaminghy randem turbulancs

irr



- o
e L N

- -
LLEL N F e o

areg TRR

(Gl 26 A DF peaviges

S IEMCE

o) meneg wok find

VAV A LY AVAVAVAY,
VA AT YA D
R YL YA

S W g
e PR A YA YAy sy
FARATAVAY

VAVAVAVAY YL VALY,
AT AT AT AVA™ LA
VA AN AV YAV A
g s o
AT AT

s 1007

o

The pictures below give an example of such a system. In the top
row of pictures—as well as picture (al—all one sees is a collection of

average motion of increasingly large blocks of particles—as in pictures
(b} and (c}—then what begins to emerge is behavior that seems smooth

discrete particles bouncing around. But if one zooms out, and looks at

and continuous—just like one expects to see in a fluid.
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This happens for exactly the same reason as in a real fluid, or, for
that matter, in various examples that we saw in Chapter 7: even though at
an underlying level the system consists of discrete particles, the effective
randomness of the detailed microscopic motions of these particles makes
their large-scale average behavior seem smooth and continuous,

We know from physical experiments that the characteristics of
fluid flow are almost exactly the same for air, water, and all other
ordinary fluids. Yet at an underlying level these different fluids consist
of very different kinds of molecules, with very ditferent properties. But
somehow the details of such microscopic structure gets washed out if
one looks at large-scale fluid-like behavior,

Many times in this book we have seen examples where different
systems can yield very much the same overall behavior, even though
the details of their underlying rules are quite different. But in the
particular case of systems like fluids, it turns out that one can show—as
I will discuss in the next chapter—that so long as certain physical
quantities such as particle number and momentum are conserved, then
whenever there is sufficient microscopic randomness, it is almost
inevitahle that the same overall fluid behavior will be obtained.

S0 what this means is that to reproduce the observed properties
of physical fluids one should not need to make a model that involves
realistic molecules: even the highly idealized particles on the facing
page should give rise to essentially the same overall fluid behavior,

And indeed in pictures (c) and [d} one can already see the
formation of a pair of eddies, just as in one of the pictures on page 377.

So what happens if one increases the speed of the flow? Does one
see the same kinds of phenomena as on page 3777 The pictures on the
next page suggest that indeed one does. Below a certain critical speed, a
completely regular array of eddies is formed. But at the speed used in the
pictures on the next page, the array of eddies has begun to show random
irregularities just like those associated with turbulence in real {luids.

S0 where does this randomness come from?

In the past couple of decades it has come to be widely believed
that randomness in turbulent fluids must somehow be associated with
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sensitive dependence on initial conditions, and with the chaos
phenomenon that we discussed in Chapter 4.

But while there are certainly mathematical equations that
exhibit this phenomenon, none of those typically investigated have any
close connection to realistic descriptions of fluid flow,

And in the model on the facing page it turns out that there is
essentially no sensitive dependence on initial conditions, at least at the
level of overall tluid behavior. If one looks at individual particles, then
changing the position of even one particle will typically have an effect
that spreads rapidly. But if one looks instead at the average behavior of
many particles, such effects get completely washed out, And indeed
when it comes to large-scale fluid behavior, it seems to be true that in
almost all cases there is no discernible difference between what
happens with different detailed initial conditions,

S0 is there ever sensitive dependence on initial conditions?

Presumably there do exist situations in which there is some kind
of delicate balance—say of whether the first eddy is shed at the top or
hottom of an object—and in which small changes in initial conditions
can have a substantial effect. But such situations appear to be very
much the exception rather than the rule. And in the vast majority of
cases, small changes instead seem to damp out rapidly—just as one
might expect from everyday experience with viscosity in fluids,

S0 what this means is that the randomness we observe in fluid
flow cannot simply be a reflection of randomness that is inserted
through the details of initial conditions. And as it turns out, in the
pictures on the facing page, the initial conditions were specifically set
up to be very simple. Yet despite this, there is still apparent randomness
in the overall behavior that is seen.

And so, once again, just as for many other systems that we have
studied in this book, there is little choice but to conclude that in a
turbulent fluid most of the randomness we see is not in any way
inserted from outside but is instead intrinsically generated inside the
system itself. In the pictures on page 378 considerable randomness was
already evident at the level of individual particles. But since changes in
the configurations of such particles do not seem to have any discernible
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effect on overall patterns of flow, one cannot realistically attribute the
large-scale randomness that one sees in a turbulent fluid to randomness
that exists at the level of individual particles,

Instead, what seems to be happening is that intrinsic randomness
generation occurs directly at the level of large-scale fluid motion. And
as an example of a simple approach to modelling this, one can consider
having a collection of discrete eddies that occur at discrete positions in
the tluid, and interact through simple cellular automaton rules,

The picture on the left shows an example of what can happen. And
although many details are different from what one sees in real fluids, the
overall mixture of regularity and randomness is strikingly similar,

One consequence of the idea that there is intrinsic randomness
peneration in fluids and that it occurs at the level of large-scale fluid
motion is that with sufficiently careful preparation it should be possible
to produce patterns of How that seem quite random but that are
nevertheless effectively repeatable—so that they look essentially the
same on every successive run of an experiment.

And even if one looks at existing experiments on fluid flow, there
turn out to be quite a few instances—particularly for example involving
interactions between small numbers of vortices—where there are
known patterns of fluid flow that look intricate, but are nevertheless
essentially repeatable. And while none of these yet look complicated
enough that they might reasonably be called random, I suspect that in
time similar but vastly more complex examples will be found.

Among the patterns of fluid flow on page 377 each has its own
particular details and characteristics, But while some of the simpler
ones have been captured quite completely by methods based on
traditional mathematical equations, the more complex ones have not.
And in fact from the perspective of this book this is not surprising,

But now from the experience and intuition developed from the
discoveries in this book, I expect that there will in fact be remarkahly
simple programs that can be found that will successfully manage to
reproduce the main features of even the most intricate and apparently

random forms of fluid flow.



Fundamental Issues in Biology

Binlogical systems are often cited as supreme examples of complexity in
nature, and it is not uncommeon for it to be assumed that their complexity
must be somehow of a fundamentally higher order than other systems.

And typically it is thought that this must be a consequence of the
rather unique processes of adaptation and natural selection that operate
in biological systems. But despite all sorts of discussion over the years,
no clear understanding has ever emerged of just why such processes
should in the end actually lead to much complexity at all.

And in fact what I have come to believe is that many of the most
obvious examples of complexity in biological systems actually have
very little to do with adaptation or natural selection. And instead what I
suspect is that they are mainly just another consequence of the very
hasic phenomenon that I have discovered in this book in the context of
simple programs: that in almost any kind of system many choices of
underlying rules inevitably lead to behavior of great complexity.

The general idea of thinking in terms of programs is, it anvthing,
even more obvious for biological svstems than for physical ones. For in
a physical system the rules of a program must normally be deduced
indirectly from the laws of physics. But in a biological organism there is
genetic material which can be thought of quite directly as providing a
program for the development of the organism.

Most of the programs that T have discussed in this book, howewver,
have been very simple. Yet the genetic program for every biological
organism known today is long and complicated: in humans, for example, it
presumably involves millions of separate rules—making it by most
measures as complex as large practical software systems like Mathematica.

S0 from this one might think that the complexity we see in
biological organisms must all just be a reflection of complexity in their
underlying rules—making discoveries about simple programs not really
relevant, And certainly the presence of many different tvpes of organs
and other elements in a typical complete organism seems likely to be

related to the presence of many separate sets of rules in the underlying
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program. But what if one looks not at a complete organism but instead
just at some part of an organism?

Particularly on a microscopic scale, the forms one sees are otten
highly regular and quite simple, as in the pictures on the facing page.
And when one looks at these, it seems perfectly reasonable o suppose
that they are in effect produced by fairly simple programs.

But what about the much more complicated forms that one sees
in hiological systems? On the basis of traditional intuition one might
assume that such forms could never be produced by simple programs,
But from the discoveries in this book we now know that in fact it is
possible to get remarkable complexity even from very simple programs.

S0 is this what actually happens in biological systems!?

There is certainly no dramatic difference between the underlying
types of cells or other elements that occur in complex biological forms
and in the forms on the facing page. And from this one might begin to
suspect that in the end the kinds of programs which generate all these
forms are quite similar—and all potentially rather simple.

For even though the complete genetic program for an organism is
long and complicated, the subprograms which govern individual aspects
of an organism can still be simple—and there are now plenty of specific
simple examples where this is known to be the case. But still one might
assume that to get significant complexity would require something more.
And indeed at first one might think that it would never really be possible
to say much at all about complexity just by looking at parts of organisms.

But in fact, as it turns out, a rather large fraction of the most
obvious examples of biological complexity seem to involve only
surprisingly limited parts of the organisms. Elaborate pigmentation
patterns, for instance, typically exist just on an outer skin, and are made
up of only a few tyvpes of cells. And the vast majority of complicated

Exarnphies of highly regular forms accumng in bedogical systems, Most of these lorms ang simple
mrough that it seems immoedately plaesible that thiy could o elect be gemeated by simple
programs. The megarity shew either simple geometrical shapes, o repetition of sentical
alarnants. & fewy hoveewvar, shoe vanous types of nesting. Mote that thare ssems to be no obwicus
corrslation betwsan the sophistication of & form and when in gaological tme it first appeared, B
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morphological structures get their forms from arrangements of very
limited numbers of types of cells or other elements.

But just how are the programs for these and other fteatures of
organisims actually determined? Ower the past century or so it has
become almost universally believed that at some level these programs
must end up being the ones that maximize the fitness of the organism,
and the number of viable offspring it produces.

The notion is that if a line of organisms with a particular program
typically produce more offspring, then atter a few generations there will
inevitably be vastly more organisms with this program than with other
programs. And if one assumes that the program for each new offspring
involves small random mutations then this means that over the course
of many generations biological evolution will in effect carry out a
random search for programs that maximize the fitness of an organism,

But how successful can one expect such a search to be?

The problem of maximizing fithess is essentially the same as the
problem of satisfying constraints that we discussed at the end of
Chapter 7. And what we found there is that for sufficiently simple
constraints—particularly continuous ones—iterative random searches
can converge fairly quickly to an optimal solution. But as soon as the
constraints are more complicated this is no longer the case, And indeed
even when the optimal solution is comparatively simple it can require an
astronomically large number of steps to get even anywhere close to it

Biological systems do appear to have some tricks for speeding up
the search process. Sexual reproduction, for example, allows large-scale
mixing of similar programs, rather than just small-scale mutation. And
differentiation into organs in effect allows different parts of a program to
be updated separately. But even with a whole array of such tricks, it is still
completely implausible that the trillion or so generations of organisms
since the beginning of life on Earth would be sufficient to allow optimal
solutions to be found to constraints of any significant complexity.

And indeed one suspects that in fact the vast majority of features
of biological organisms do not correspond to anything close to optimal
solutions: rather, they represent solutions that were fairly easy to find,
but are good enough not to cause fatal problems for the organism.



The basic notion that organisms tend to evolve to achieve a
maximum fitness has certainly in the past been very useful in providing
a general framework for understanding the historical progression of
species, and in yielding specific explanations for various fairly simple
properties of particular species,

But in present-day thinking about biology the notion has tended to
be taken to an extreme, so that especially among those not in daily
contact with detailed data on biological systems it has come to be
assumed that essentially every feature of every organism can be explained
on the basis of it somehow maximizing the fithess of the organism.

It is certainly recognized that some aspects of current organisms
are in effect holdovers from earlier stages in biological evolution. And
there is also increasing awareness that the actual process of growth and
development within an individual organism can make it easier or more
difficult for particular kinds of structures to occur,

But beyond this there is a surprisingly universal conviction that any
significant property that one sees in any organism must be there becanse it
in essence serves a purpose in maximizing the fitness of the organism.

Often it is at frst quite unclear what this purpose might be, but
at least in fairly simple cases, some kind of hypothesis can usually be
constructed, And having settled on a supposed purpose it often seems
quite marvellous how ingenious biology has been in finding a solution
that achieves that purpose.

Thus, for example, the golden ratio spiral of branches on a plant stem
can be viewed as a marvellous way to minimize the shading of leaves,
while the elaborate patterns on certain mollusc shells can be viewed as
marvellous ways to confuse the visual systems of supposed predators.

But it is my strong suspicion that such purposes in fact have very
little to do with the real reasons that these particular features exist. For
instead, as I will discuss in the next couple of sections, what I believe is that
these features actually arise in essence just because they are easy to produce
with fairly simple programs. And indeed as one looks at more and more
complex features of biological organisms—notably  texture and
pigmentation patterns—it becomes increasingly difficult to find any
credible purpose at all that would be served by the details of what one sees,
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In the past, the idea of optimization for some sophisticated
purpose seemed to be the only conceivable explanation for the level of
complexity that is seen in many hiological systems. But with the
discovery in this book that it takes only a simple program to produce
behavior of great complexity, a quite different—and ultimately much
more predictive—kind of explanation immediately becomes possible.

In the course of biological evolution random mutations will in effect
cause a whole sequence of programs to be tried. And the point is that from
what we have discovered in this book, we now know that it is almost
inevitable that a fair fraction of these programs will yield complex behavior,

Some programs will presumably lead to organisms that are more
successful than others, and natural selection will cause these programs
eventually to dominate. But in most cases I strongly suspect that it is
comparatively coarse features that tend to determine the success of an
organism—not all the details of any complex behavior that may occur,

Thus in a very simple case it is easy to imagine for example that
an organism might be more likely to po unnoticed by its predators, and
thus survive and be more successful, if its skin was a mixture of brown
and white, rather than, say, uniformly bright orange. But it could then
be that most programs which vield any mixture of colors also happen to
be such that they make the colors occur in a highly complex pattern.

And if this is so, then in the course of random mutation, the
chances are that the first program encountered that is successful enough
to survive will also, quite coincidentally, exhibit complex behavior.

(On the basis of traditional biological thinking one would tend to
assume that whatever complexity one saw must in the end be carefully
crafted to satisfy some elaborate set of constraints. But what I believe
instead is that the vast majority of the complexity we see in biological
systems actually has its origin in the purely abstract fact that among
randomly chosen programs many give rise to complex behavior.

In the past it tends to have been implicitly assumed that to get
substantial complexity in a biological system must somehow be
fundamentally very difficult. But from the discoveries in this book I
have come to the conclusion that instead it is actually rather easy.

So how can one tell if this is really the case?



IMPLICATIONS FOQR ENVERTDAT STIFITEMS

One circumstantial piece of evidence is that one already sees
considerable complexity even in very early fossil organisms. Over the
course of the past billion or so vears, more and more organs and other
devices have appeared. But the most obvious outward signs of
complexity, manifest for example in textures and other morphological
features, seem to have already been present even from very early times.

And indeed there is every indication that the level of complexity
of individual parts of organisms has not changed much in at least
several hundred million years. 50 this suggests that somehow the
complexity we see must arise from some straightforward and general
mechanism—and not, for example, from a mechanism that relies on
elaborate refinement through a long process of binlogical evolution.

Another circumstantial piece of evidence that complexity is in a
sense easy to get in biological systems comes from the observation that
among otherwise very similar present-day organisms features such as
pigmentation patterns often vary from quite simple to highly complex,

Whether one looks at fishes, butterflies, molluscs or praceically
any other kind of organism, it is common to find that across species or
even within species organisms that live in the same environment and
have essentially the same internal structure can nevertheless exhibit
radically different pigmentation patterns. In some cases the patterns
may be simple, but in other cases they are highly complex.

And the peint is that no elaborate structural changes and no
sophisticated processes of adaptation seem to be needed in order to get
these more complex patterns. And in the end it is, [ suspect, just that
some of the possible underlying genetic programs happen to produce
complex patterns, while others do not,

Two sections from now I will discuss a rather striking potential
example of this: if one looks at molluscs of various types, then it turns
out that the range of pigmentation patterns on their shells corresponds
remarkably closely with the range of patterns that are produced by
simple randomly chosen programs based on cellular automata,

And examples like this—together with many others in the next
couple of sections—provide evidence that the kind of complexity we see
in biological organisms can indeed successfully be reproduced by short
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and simple underlying programs. But there still remains the question of
whether actual biological organisms really use such programs, or
whether somehow they instead use much more complicated programs,

Modern molecular biology should soon be able to isolate the
specific programs responsible, say, for the patterns on mollusc shells,
and see explicitly how long they are. But there are already indications
that these programs are quite short.

For one of the consequences of a program being short is that it has
little room for inessential elements. And this means that almost any
mutation or change in the program—however small—will tend to have
a significant effect on at least the details of patterns it produces.

Sometimes it is hard to tell whether changes in patterns between
organisms within a species are truly of genetic origin. But in cases
where they appear to be it is commaon to find that different organisms
show a considerable variety of different patterns—supporting the idea
that the programs responsible for these patterns are indeed short.

So what about the actual process of biological evolution? How does
it pick out which programs to use! As a very simple idealization of
biological evolution, one can consider a sequence of cellular automaton
programs in which each successive program is obtained from the previous
one by a random mutation that adds or modifies a single element,

The pictures on the facing page then show a typical example of
what happens with such a setup. If one starts from extremely short
programs, the behavior one gets is at first quite simple. But as soon as
the underlying programs become even slightly longer, one immediately
sees highly complex behavior.

Traditional intuition would suggest that if the programs were to
become still longer, the behavior would get ever richer and more
complex. But from the discoveries in this book we know that this will
not in general be the case: above a fairly low threshold, adding
complexity to an underlying program does not fundamentally change
the kind of behavior that it can produce,

And from this one concludes that biological systems should in a
sense be capable of generating essentially arbitrary complexity by using
short programs formed by just a few mutations,
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But if complexity is this easy to get, why is it not even more
widespread in biology? For while there are certainly many examples
of elaborate forms and patterns in biological systems, the overall
shapes and many of the most obvious features of typical organisms
are usually quite simple.

S0 why should this be? My pguess is that in essence it reflects

limitations associated with the process of natural selection, For while
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natural selection is often touted as a force of almost arbitrary power, I
have increasingly come to believe that in fact its power is remarkably
limited. And indeed, what I suspect is that in the end natural selection
can only operate in a meaningful way on systems or parts of systems
whose behavior 15 in some sense quite simple,

If a particular part of an organism always grows, say, in a simple
straight line, then it is fairly easy to imagine that natural selection could
succeed in picking out the optimal length for any given environment.
But what if an organism can grow in a more complex way, say like in the
plctures on the previows page! My strong suspicion is that in such a case
natural selection will normally be able to achieve very lictle.

There are several reasons for this, all somewhat related.

First, with more complex behavior, there are typically a huge
number of possible variations, and in a realistic population of
organisms it becomes infeasible for any significant fraction of these
variations to be explored.

Second, complex behavior inevitably involves many elaborate
details, and since different ones of these details may happen to be the
deciding factors in the fates of individual organisms, it becomes very
ditficult for natural selection to act in a consistent and definitive way,

Third, whenever the overall behavior of a system is more
complex than its vunderlying program, almost any mutation in the
program will lead to a whole collection of detailed changes in the
behavior, so that natural selection has no opportunity to pick out
changes which are beneficial from those which are not.

Fourth, if random mutations can only, say, increase or decrease a
length, then even if one mutation goes in the wrong direction, it is easy for
another mutation to recover by going in the opposite direction. But if there
are in effect many possible directions, it becomes much more difficult to
recover from missteps, and to exhibit any form of systematic convergence.

And finally, as the results in Chapter 7 suggest, for anything
beyond the very simplest forms of behavior, iterative random searches
rapidly tend to get stuck, and make at best excruciatingly slow progress
towards any kind of global optimum.



In a sense it is not surprising that natural selection can achieve
little when confronted with complex behavior, For in effect it is being
asked to predict what changes would need to be made in an underlying
program in order to produce or enhance a certain form of owverall
behavior, Yet one of the main conclusions of this book is that even
given a particular program, it can be very difficult to see what the
behavior of the program will be. And to go backwards from behavior to
programs is a still much more difficult task.

In writing this book it would certainly have been convenient to
have had a systematic way to be able to find examples of programs that
exhibit specified forms of complex behavior, And indeed T have tried
hard to develop iterative search procedures that would do this. But even
using a whole range of tricks suggested by hiology—as well as quite a
number that are not—I have never been successtul, And in fact in every
single case I have in the end reverted either to exhaustive or to purely
random scarches, with no attempt at iterative improvement,

S0 what does this mean for biological organisms? It suggests that
it a particular feature of an organism is successfully going to be
optimized for different environments by natural selection, then this
teature must somehow be quite simple,

And no doubt that is a large part of the reason that biological
organisims always tend to consist of separate organs or other parts, each
of which has at least some attributes that are fairly simple. For in this
way there end up being components that are simple enough to be
adjusted in a meaningful fashion by natural selection.

It has often been claimed that natural selection is what makes
systems in biology able to exhibit so much more complexity than
systems that we explicitly construct in engineering. But my strong
suspicion is that in fact the main effect of natural selection is almaost
exactly the opposite: it tends to make biological systems avoid
complexity, and be more like systems in engineering.

When one does engineering, one normally operates under the
constraint that the systems one builds must behave in a way that is readily
predictable and understandable. And in order to achieve this one typically
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limits oneself to constructing systems out of fairly small numbers of
companents whose behavior and interactions are somehow simple.

But systems in nature need not in general operate under the
constraint that their behavior should be predictable or understandable,
And what this means is that in a sense they can use any number of
components of any kind—with the result, as we have seen in this book,
that the hehavior they produce can often be highly complex.

However, it natural selection is to be successtul at systematically
molding the properties of a system then once again there are limitations
on the kinds of components that the system can have, And indeed, it
seems that what is needed are components that behave in simple and
somewhat independent ways—much as in traditional engineering,

At some level it is not surprising that there should be an analogy
between engineering and natural selection. For both cases can be viewed
as trying to create systems that will achieve or optimize some goal.

Indeed, the main difference is just that in engineering explicit
human effort is expended to find an appropriate form for the system,
whereas in natural selection an iterative random search process is used
instead. But the point is that the conditions under which these two
approaches work turn out to be not so different.

In fact, there are even, I suspect, similarities in quite detailed
issues such as the kinds of adjustments that can be made to individual
components. In engineering it is common to work with components
whose properties can somehow be varied smoothly, and which can
therefore be analyzed using the methods of calculus and traditional
continuous mathematics.

And as it turns out, much as we saw in Chapter 7, this same kind
of smooth variation is also what tends to make iterative search methods
such as natural selection be successful.

In binlogical systems based on discrete genetic programs, it is far
from clear how smooth variation can emerge. Presumably in some cases
it can be approximated by the presence of varving numbers of repeats in
the underlving program. And more often it is probably the result of
combinations of large numbers of elements that each produce fairly
random behavior.



But the possibility of smooth variation seems to be important
enough to the effectiveness of natural selection that it is extremely
common in actual biological systems. And indeed, while there are some
traits—such as eve color and blood type in humans—that are more or
less discrete, the vast majority of traits seen, say, in the breeding of
plants and animals, show quite smooth variation.

S0 to what extent does the actual history of biological evolution
reflect the kinds of simple characteristics that T have argued one should
expect from natural selection?

If one looks at species that exist today, and at the fossil record of
past species, then one of the most striking features is just how much is
in common across vast ranges of different organisms. The hasic body
plans for animals, for example, have been almost the same for hundreds
of millions of years, and many organs and developmental pathways are
probably even still older,

In fact, the vast majority of structurally important features seem
to have changed only quite slowly and gradually in the course of
evolution—just as one would expect from a process of natural selection
that is based on smooth variations in fairly simple properties.

But despite this it is still clear that there is considerable diversity,
at least at the level of visual appearance, in the actual forms of
biological organisms that occur, S0 how then does such diversity arise?

One effect, to be discussed at greater length in the next section, is
essentially just a matter of geometry. If the relative rates of growth of
different parts of an organism change even slightly, then it turns out
that this can sometimes have dramatic consequences for the overall
shape of the organism, as well as for its mechanical operation,

And what this means is that just by making gradual changes in
quantities such as relative rates of growth, natural selection can succeed
in producing organisms that at least in some respects look very different.

But what about other differences between organisms? To what
extent are all of them systematically determined by natural selection?

Following the discussion earlier in this section, it is my strong
suspicion that at least many of the visvally most striking differences—
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associated for example with texture and pigmentation patterns—in the
end have almost nothing to do with natural selection.

And instead what T believe is that such ditferences are in essence
just reflections of completely random changes in underlying genetic
programs, with no systematic effects from natural selection.

Particularly among closely related species of organisms there is
certainly quite a contrast between the dramatic differences often seen
in features such as pigmentation patterns and the amazing constancy of
other features. And most likely those features in which a great depree of
constancy is seen are precisely the ones that have successfully been
maolded by natural selection,

But as 1 mentioned earlier, it is almost always those features
which change most rapidly between species that show the most obvious
signs of complexity, And this observation fits precisely with the idea
that complexity is easy to get by randomly sampling simple programs,
but is hard for natural selection to handle in any kind of systematic way.

Soin the end, therefore, what I conclude is that many of the most
obvious features of complexity in hiological organisms arise in a sense
not because of natural selection, but rather in spite of it.

Mo doubt it will for many people be difficult to abandon the idea that
natural selection is somehow crucial to the presence of complexity in
biological organisms, For traditional intuition makes one think that o get
the level of complexity that one sees in biological systems must require
great effort—and the long and ponderous course of evolution revealed in the
fossil record seems like just the kind of process that should be involved.

But the point is that what T have discovered in this book shows
that in fact if one just chooses programs at random, then it is easy to get
behavior of great complexity. And it is this that I believe lies at the
heart of most of the complexity that we see in nature, both in biological
and non-biological systems.

Whenever natural selection is an important determining factor, I
suspect that one will inevitably see many of the same simplifying
features as in systems created through engineering. And only when
natural selection is not crucial, therefore, will biological systems be



ahle to exhibit the same level of complexity that one observes for
example in many systems in physics.

In biology the presence of long programs with many separate
parts can lead to a certain rather straightforward complexity analogous
to having many physical objects of different kinds collected together,
But the most dramatic examples of complexity in biology tend to occur
in individual parts of systems—and often involve patterns or structures
that look remarkably like those in physics.

Yet if biology samples underlying genetic programs essentially at
random, why should these programs behave anvthing like programs
that are derived from specific laws of physics?

The answer, as we have seen many times in this book, is that
across a very wide range of programs there is great universality in the
behavior that occurs, The details depend on the exact rules for each
program, but the overall characteristics remain very much the same.

And one of the important consequences of this is that it suggests
that it might be possible to develop a racher general predictive theory of
hiology that would tell one, for example, what basic forms are and are
not likely to occur in biological systems.

One might have thought that the traditional idea that organisms
are selected to be optimal for their environment would already long ago
have led to some kind of predictive theory, And indeed it has for example
allowed some simple nemerical ratios associated with populations of
prganisms to be successfully derived. But about a question such as what
forms of organisms are likely to occur it has much less to say.

There are a number of situations where fairly complicated structures
appear to have arisen independently in several very different tvpes of
organisms. And it is sometimes claimed that this kind of convergent
evolution occurs because these structures are in some ultimate sense
optimal, making it inevitable that they will eventually be produced.

But 1 would be very surprised if this explanation were correct.
And instead what T strongly suspect is that the reason certain structures
appear repeatedly is just that they are somehow common among
programs of certain kinds—just as, for example, we have seen that the
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intricate nested pattern shown on the left arises from many different
simple programs.

Ever since the original development of the theory of evolution,
An mxample of a basic there has been a widespread belief that the general trend seen in the fossil

pattern that & produced record towards the formation of progressively more complicated types of
in savaral varianis by a .

wida rangs of simple organisms must somehow be related to an overall increase in optimality.
programes.

Needless to say, we do not know what a truly optimal organism
would be like. But it optimality is associated with having as many
oftspring as possible, then very simple organisms such as viruses and
protozoa already seem to do very well,

So why then do higher organisms exist ar all! My guess is that it
has almost nothing to do with optimality, and that instead it is essentially
just a consequence of strings of random mutations that happened to add
more and more features without introducing fatal flaws,

It is certainly not the case—as is often assumed—that natural
selection somehow inevitably leads to organisms with progressively
more elaborate structures and progressively larger numbers of parts.

For a start, some kinds of organisms have been subject to natural
selection for more than a billion years, but have never ended up
becoming much more complicated, And although there are situations
where organisms do end up becoming more complicated, they also
often become simpler.

A typical pattern—remarkably similar, as it happens, to what
occurs in the history of technology—is that at some point in the fossil
record some major new capability or feature is suddenly seen. At first
there is then rapid expansion, with many new species trying out all
sorts of possibilities that have been opened up. And usually some of
these possibilities get quite ornate and elaborate, But after a while it
becomes clear what makes sense and what does not. And typically
things then get simpler again.

S0 what is the role of natural selection in all of this? My guess is
that as in other situations, its main systematic contribution is to make
things simpler, and that insofar as things do end up getting more
complicated, this is almost alwavs the result of essentially random



sampling of underlying programs—without any systematic effect of
natural selection.

For the more superficial aspects of organisms—such as
plgmentation patterns—it seems likely that among programs sampled at
random a fair fraction will produce results that are not disastrous for the
organism. But when one is dealing with the basic structure of organisms,
the vast majority of programs sampled at random will no doubt have
immediate disastrous consequences. And in a sense it is natural selection
that is responsible for the tact that such programs do not survive,

But the point is that in such a case its effect is not systematic or
cumulative, And indeed it is my strong suspicion that for essentially all
purposes the only reasonable model for important new features of
prganisms is that they come from programs selected purely at random.

S0 does this then mean that there can never be any kind of
general theory for all the features of higher organisms? Presumably the
pattern of exactly which new features were added when in the history
of biological evolution is no more amenable to general theory than the
specific course of events in human history. But I strongly suspect that
the vast majority of significant new features that appear in organisms
are at least at first associated with fairly short underlying programs,
And insofar as this is the case the results of this book should allow one
to develop some fairly general characterizations of what can happen.

S0 what all this means is that much of what we see in biology
should correspond quite closely to the typical behavior of simple
programs as we have studied them in this book—with the main caveat
heing just that certain aspects will be smoothed and simplified by the
effects of natural selection. Seeing in earlier chapters of this book all the
diverse things that simple programs can do, it is easy to be struck by
analogies to books of biological flora and fauna. Yet what we now see is
that in fact such analogies may be quite direct—and that many of the
most obvious features of actual biological organisms may in effect he

direct reflections of typical behavior that one sees in simple programs,

CHAPTER &

19y



STEPHEMNM WOLFRE AM |

400

Growth of Plants and Animals

Looking at all the elaborate forms of plants and animals one might at
first assume that the underlying rules for their growth must be highly
complex. But in this book we have discovered that even by following
very simple rules it is possible to obtain forms of great complexity. And
what I have come to believe is that in fact most aspects of the growth of
plants and animals are in the end governed by remarkably simple rules.
As a first example of biological growth, consider the stem of a
plant. It is usually only at the tip of a stem that growth can occur, and
much of the time all that ever happens is that the stem just gets
progressively longer. But the crucial phenomenon that ultimately leads
to much of the structure we see in many kinds of plants is that at the
tip of a stem it is possible for new stems to form and branch off, And in
the simplest cases these new stems are in essence just smaller copies of
the original stem, with the same basic rules for growth and branching.
With this setup the succession of branchings can then be
represented by steps in the evolution of a neighbor-independent
substitution system in which the tip of ecach stem is at each step
replaced by a collection of smaller stems in some fixed configuration.
Two examples of such substitution systems are shown in the
pictures below. In both cases the rules are set up so that every stem in

effect just branches into exactly three new stems at each step. And this
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means that the network of connections between stems necessarily has a
very simple nested form. But if one looks at the actual geometrical
arrangement of stems there is no longer such simplicity; indeed, despite
the grear simplicity of the underlyving rules, considerable complexity is
immediately evident even in the pictures at the bottom of the facing page.

The pictures on the next page show patterns obtained with
various sequences of choices for the lengths and angles of new stems. In
a few cases the patterns are quite simple; but in most cases they turn
out to be highly complex—and remarkably diverse,

The pictures immediately remind one of the overall branching
patterns of all sorts of plants—from algae to ferns to trees to many
kinds of flowering plants. And no doubt it is from such simple rules of
growth that most such overall branching patterns come.

But what about more detailed features of plants? Can they also be
thought of as consequences of simple underlying rules of growth?

For many vears I wondered in particular about the shapes of
leaves, For among different plants there is tremendous diversity in such
shapes—as illustrated in the pictures on page 403. Some plants have
leaves with simple smooth boundaries that one might imagine could be
described by traditional mathematical functions. Others have leaves
with various configurations of sharp points, And still others have leaves
with complex and seemingly somewhat random boundaries.

So given this diversity one might at first suppose that no single
kind of underlying rule could be responsible for what is seen. But
looking at arrays of pictures like the ones on the next page one makes a
remarkable discovery: among the patterns that can be generated by
simple substitution systems are ones whose outlines look extremely
similar to those of a wide variety of types of leaves,

There are patterns with smooth edges that look like lily pads.
There are patterns with sharp points that look like prickly leaves of
various kinds. And there are patterns with intricate and seemingly
somewhat random shapes that look like sycamore or grape leaves.

It has never in the past been at all clear how leaves get the shapes
they do. Presumably most of the processes that are important take place
while leaves are still folded up inside buds, and are not ver very solid.
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For although leaves typically expand significantly after they come out,
the basic features of their shapes almost never seem to change.

There is some evidence that at least some aspects of the pattern of
veing in a leaf are laid down before the main surface of the leaf is filled
in, and perhaps the stems in the branching process T describe here
correspond to precursors of structures related to veins. Indeed, the
criss-crossing of veins in the leaves of higher plants may be not
unrelated to the fact that stems in the pictures two pages ago often cross
over—although certainly many of the veins in actual full-grown leaves
are probably added long after the shapes of the leaves are determined,

Omne might at the outset have thought that leaves would get their
shapes through some mechanism quite unrelated to other aspects of
plant growth. But I strongly suspect that in fact the very same simple
process of branching is ultimately responsible both for the overall forms
of plants, and for the shapes of their leaves,

Quite possibly there will sometimes be at least some correspondence
between the lengths and angles that appear in the rules for overall growth
and for the growth of leaves. But in general the details of all these rules will
no doubt depend on very specific characteristics of individual plants.

The distance before a new stem appears is, for example, probably
determined by the rates of production and diffusion of plant hormones
and related substances, and these rates will inevitably depend both on
the thickness and mechanical structure of the stem, as well as on all
kinds of biochemical properties of the plant. And when it comes to the
angles between old and new stems I would not be surprised if these
were governed by such microscopic details as individual shapes of cells
and individual sequences of cell divisions,

The traditional intuition of biology would suggest that whenever one
sees complexity—say in the shape of a leaf—it must have been generated
for some particular purpose by some sophisticated process of natural
selection. But what the pictures on the previous pages demonstrate is that
in fact a high degree of complexity can arise in a sense quite effortlessly juse
as a consequence of following certain simple rules of growth.

Mo doubt some of the underlying properties of plants are indeed
guided by natural selection. But what T strongly suspect is that in the



vast majority of cases the occurrence of complexity—say in the shapes
of leaves—is in essence just a side effect of the particular rules of growth
that happen to result from the underlying properties of the plant.

The pictures on the next page show the array of possible forms
that can be produced by rules in which each stem splits into exactly
two new stems at each step. The vertical black line on the left-hand
side of the page represents in effect the original stem at each step, and
the pictures are arranged so that the one which appears at a given
position on the page shows the pattern that is generated when the tip of
the right-hand new stem goes to that position relative to the original
stem shown on the left.

In some cases the patterns obtained are fairly simple. But even in
these cases the pictures show that comparatively small changes in
underlying rules can lead to much more complex patterns, And so if in
the course of biological evolution gradual changes occur in the rules, it
is almost inevitable that complex patterns will sometimes be seen.

But just how suddenly can the patterns change? To get some idea
of this one can construct a kind of limit of the array on the next page in
which the total number of pictures is in effect infinite, but only a
specific infinitesimal region of each picture is shown. Page 407 gives
results for four choices of the position of this region relative to the
original stem. And instead of just displaying black or white depending
on whether any part of the patvern lies in the region, the picture uses
gray levels to indicate how close it comes.

The areas of solid black thus correspond to ranges of parameters
in the underlying rule for which the patterns obtained always reach a
particular position. But what we see is that at the edges of these areas
there are often intricate structures with an essentially nested form. And
the presence of such structures implies that at least with some ranges of
parameters, even very small changes in underlying rules can lead to
large changes in certain aspects of the patterns that are produced.

S0 what this suggests is that it is almost inevitable that features
such as the shapes of leaves can sometimes change greatly even when
the underlying properties of plants change only slightly. And I suspect
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that this is precisely why such diverse shapes of leaves are occasionally
seen even in plants that otherwise appear very similar,

But while features such as the shapes of leaves typically differ
greatly between different plants, there are also some seemingly quite
sophisticated aspects of plants that typically remain almost exactly the
same across a huge range of species.

One example is the arrangement of sequences of plant organs or
other elements around a stem. In some cases successive leaves, say, will
always come out on opposite sides of a stem—I180° apart, But
considerably more common is for leaves to come out less than 1807
apart, and in most plants the angle turns out to be essentially the same,
and equal to almost exactly 137.5%,

It is already remarkable that such a definite angle arises in the
arrangement of leaves—aor so-called phyllotaxis—of so many plants. Bug it
turns out that this very same angle also shows up in all sorts of other
features of plants, as shown in the pictures at the top of the facing page. And
although the geometry is different in different cases, the presence of a fixed
angle close to 137 .57 always leads to remarkably regular spiral patterns.

Owver the years, much has been written about such patterns, and
about their mathematical properties. For it turns out that an angle
between successive elements of about 137.57 is equivalent to a rotation
by a number of twurns equal to the so-called golden ratio
(1+y5)/2=~1.618 which arises in a wide variety of mathematical
contexts—notahly as the limiting ratio of Fibonacci numbers,

And no doubt in large part because of this elegant
mathematical connection, it has usually come to be assumed that the
137.5% angle and the spiral patterns to which it leads must
correspond to some kind of sophisticated optimization found by an
elaborate process of natural selection.

But I do not believe that this is in fact the case. And instead what
I strongly suspect is that the patterns are just inevitable consequences
of a rather simple process of growth not unlike one that was already
discussed, at least in general terms, nearly a century ago.
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The positions of new plant organs or other elements around a
stem are presumably determined by what happens in a small ring of
material near the tip of the growing stem. And what I suspect is that a
new element will typically form at a particular position around the ring
if at that position the concentration of some chemical has reached a
certain critical level,

But as soon as an element is formed, one can expect that it will
deplete the concentration of the chemical in its local neighborhood, and
thus inhibit further elements from forming nearby. Nevertheless,
general processes in the growing stem will presumably make the
concentration steadily rise throughout the ring of active material, and
eventually this concentration will again get high enough at some
position that it will cause another element to be formed.
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The pictures above show an example of this type of process. For
purposes of display the ring of active material is unrolled into a line, and
successive states of this line are shown one on top of each other going up
the page. At each step a new element, indicated by a black dot, is taken to
be generated at whatever position the concentration is maximal., And
around this position the new element is then taken to produce a dip in
concentration that is gradually washed out over the course of several steps.

The way the pictures are drawn, the angles between successive
elements correspond to the horizontal distances between them. And
although these distances vary somewhat for the first few steps, what we
see in general is remarkably rapid convergence to a fixed distance—
which turns out to correspond to an angle of almost exactly 137.57,

S0 what happens if one changes the details of the model! In the
extreme case where all memory of previous behavior is immediately
damped out the first picture at the top of the facing page shows that
successive elements form at 1807 angles. And in the case where there is
very little damping the last two pictures show that at least for a while
elements can form at fairly random angles. But in the majority of cases
one sees rather rapid convergence to almost precisely 137.5%.
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So just how does this angle show up in actual plant svstems? As
the top pictures below demonstrate, the details depend on the geometry
and relative growth races of new elements and of the original stem. But

in all cases very characteristic patterns are produced.
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And as the bowom pictures on the previous page demonstrate,
the forms of these patterns are very sensitive to the precise angle of
successive elements: indeed, even a small deviation leads to patterns
that are visually gquite different. At first one might have assumed that to
get a precise angle like 137,57 would require some kind of elaborate and
highly detailed process. But just as in so many other situations that we
have seen in this book, what we have seen is that in fact a very simple
rule is all that is in the end needed.

One of the general features of plants is that most of their cells
tend to develop fairly rigid cellulose walls which make it essentially
impossible for new material to be added inside the volume of the plant,
and so typically force new growth to occur only on the outside of the
plant—maost importantly at the tips of stems.

But when plants form sheets of material as in leaves or petals there
is usually some flexibility for growth to occur within the sheet. And the
pictures below show examples of what can happen if one starts with a flat
disk and then adds different amounts of materdal in different places,

If more material is added near the center than near the edge, as in

case |b], then the disk is forced to take on a cup shape similar to many

Diigka with varying armounts of materal at different distences from their centers. In the top rowe the disks are alwaye flat,
forcing the cells of materal to vary in size and shape. In the bottom row, the disks form shapes in three dmeansions in
which all cslls ane the sams size and shape. Aslative to case (al, the amownt of materiad going out from the csntsr
decraases naarly in case bl increases ngarky in case (g}, and inoreases exponenimalby in case 1)
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flowers. But if more material is added near the edge than near the
center, as in case (c), then the sheet will become wavy at the edge, much
like some leaves. And if the amount of material increases sufficiently
rapidly from the center to the edge, as in case (d], then the disk will be
forced to become highly corrugated, somewhat like a lettuce leaf.

S0 what about animals? To what extent are their mechanisms of
growth the same as plants? If one looks at air passages or small blood
vessels in higher animals then the patterns of branching one sees look
similar to those in plants. But in most of their obvious structural
features animals do not typically look much like plants ac all. And in
fact their mechanisms of growth mostly turn out to be rather different.

As a first example, consider a horn. One might have thought that,
like a stem in a plant, a horn would grow by adding material at its tip.
But in fact, like nails and hair, a horn instead grows by adding material
at its base. And an immediate consequence of this is that the kind of
branching that one sees in plants does not normally occur in horns,

But on the other hand coiling is common. For in order to get a
structure that is perfectly straight, the rate at which material is added
must be exactly the same on each side of the base. And if there is any
difference, one edge of the structure that is produced will always end
up being longer than the other, so that coiling will inevitably result,
as in the pictures below,

TN,

daalizad homs ganarated by prograssively adding naw matanal, with tha amount of matenal on tha
uppar edge of tha base always baing the spacified percantags largar than the amount on the lovesr
adga Thesa picturas can b5 viewad as one-Fmeansional analegs of thase on tha facing paga

And as has been thought for several centuries, it turns out that a
three-dimensional version of this phenomenon is essentially what leads
to the elaborate coiled structures that one sees in mollusc shells, For in

a typical case, the animal which lives at the open end of the shell
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secretes new shell material faster on one side than the other, causing
the shell to grow in a spiral. The rates at which shell material is
secreted at different points around the opening are presumahbly
determined by details of the anatomy of the animal, And it turns out
that—much as we saw in the case of branching structures earlier in this
section—even fairly small changes in such rates can have quite
dramatic effects on the overall shape of the shell.

The pictures below show three examples of what can happen,
while the facing page shows the effects of systematically varying
certain growth rates, And what one sees is that even though the same
very simple underlying model is used, there are all sorts of visually very

different geometrical forms that can nevertheless be produced.
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& sirnple modal for the growth of melusc shells. Inosach cass new shall matanal B progresssely sdded et the open and of
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nar Prom the centor indcatss the progressve Bleral displacement of the openang, Case @) 1S typical o a rmavilus shell, (b of

a corme shall and [e] of omehall of a clam shell, Al shells produced By adding matenal according 1o Tixed mles of the Eind
showvn feere hase the property that throughout their gresvih they maintain the same overall ahape.
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S0 out of all the possible forms, which ones actually occur in real
maolluscs? The remarkable fact illustrated on the next page is that
essentially all of them are found in some kind of molluse or another.

If one just saw a single molluse shell, one might well think that
its elaborate form must have been carefully crafred by some long
process of natural selection. But what we now see is that in fact all the

different forms that are observed are in effect just consequences of the
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application of three-dimensional geometry to very simple underlying
rules of growth. And so once again therefore natural selection cannot
reasonably be considered the source of the elaborate forms we see,

Away from mollusc shells, coiled structures—like branched
ones—are not especially common in animals, Indeed, the vast majority
of animals do not tend to have overall forms that are dominated by any
single kind of structure. Rather, they are usually made up of a collection
of separate identifiable parts, like heads, tails, legs, eves and so on, all
with their own specific structure,

Sometimes some of these parts are repeated, perhaps in a
sequence of segments, or perhaps in some kind of two-dimensional
array. And very often the whole animal is covered by a fairly uniform
puter skin. But the presence of many different kinds of parts is in the
end one of the most obvious features of many animals,

So how do all these parts get produced? The basic mechanism
seems to be that at different places and different times inside a
developing animal different sections of its genetic program end up
getting used—causing different kinds of growth to occur, and different
structures to be produced. And part of what makes this possible is that
particularly at the stage of the embryo most cells in an animal are not
extremely rigid—so that even when different pieces of the animal grow
quite differently they can still deform so as to fit together,

Usually there are some elements—such  as  bones—that
eventually do become rigid. But the crucial point is that at the stage
when the basic form of an animal is determined most of these elements
are not vet rigid. And this allows various processes to occur that would
otherwise be impossible.

Probably the most important of these is folding. For folding is not
only involved in producing shapes such as teeth surfaces and human ear
lobes, but is also critical in allowing flat sheets of tissue to form the
kinds of pockets and tubes that are so common inside animals.

Folding seems to occur for a variety of reasons. Sometimes it is
most likely the direct result of tugging by microscopic fibers. And in
other cases it is probably a consequence of growth occurring at different
rates in different places, as in the pictures on page 412,
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But what kinds of shapes can folding produce?! The pictures above
show what happens when the local curvature—which is essentially the
local rate of folding—is taken to vary according to several simple rules
as one goes along a curve. In a few cases the shapes produced are rather
simple. But in most cases they are fairly complicated. And it takes only
very simple rules to generate shapes that look like the villi and other
corrugated structures one often sees in animals.

In addition to folding, there are other kinds of processes that are
made possible by the lack of rigidity in a developing animal. One is
furrowing or tearing of tissue through a loss of adhesion between cells.
And another is explicit migration of individual cells based on chemical
or immunological affinities.

But how do all these various processes get organized to produce an
actual animal? If one looks at the sequence of events that take place in a



typical animal embryo they at first seem remarkably haphazard. But
presumably the main thing that is going on—as mentioned above—is that
at different places and different times different sections of the underlying
genetic program are being used, and these different sections can lead wo
very different kinds of behavior, Some may produce just uniform growth.
Others may lead to various kinds of local folding. And still others may
cause regions of tissue to die—thereby for example allowing separate
tingers and toes to emerge from a single sheet of tissue,

But just how is it determined what section of the underlying
genetic program should be used at what point in the development of the
animal? At first, one might think that each individoal cell that comes
into existence might use a different section of the underlying genetic
program. And in very simple animals with just a few hundred cells this
is most likely what in effect happens.

But in general it seems to be not so much individual cells as regions
of the developing animal that end up using different sections of the
underlying program. Indeed, the tvpical pattern seems to be that
whenever a part of an animal has grown to be a few tenths of a millimeter
across, that part can break up into a handful of smaller regions which each
use a different section of the underlying genetic program.

S0 how does this work? What appears to be the case is that there
are cells which produce chemicals whose concentrations decrease over
distances of a few tenths of a millimeter. And what has been discovered
in the past decade or 50 is that in all animals—as well as plants—there
are a handful of so-called homeobox genes which seem to become
active or inactive at particular concentration levels and which control
what section of the underlying genetic program will be used,

The existence of a fixed length scale at which such processes
oceur then almost inevitably implies that an embryo must develop ina
somewhat hierarchical fashion. For at a sufficiently early stage, the
whole embryo will be so small that it can contain only a handful of
regions that use different sections of the genetic program. And at this
stage there may, for example, be a leg region, but there will not yet be a
distinct foot region.
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As the embryo grows, however, the leg region will eventually
become large enough that it can differentiate into several separate
regions. And at this point, a distinet foot region can appear. Then, when
the foot region becomes large enough, it too can break into separate
regions that will, say, turn into bone or soft tissue, And when a region
that will turn into bone becomes large enough, it can break into further
regions that will, say, yield separate individual bones.

If at every stage the tissue in each region produced grows at the
same rate, and all that differs is what final type of cells will exist in each
region, then inevitably a simple and highly regular overall seructure will
emerge, as in the idealized picture below, With different substitution rules
for each type of cell, the structure will in general be nested. And in fact
there are, for example, some parts of the skeletons of animals that do
seem to exhibit, at least roughly, a few levels of nesting of this kind.

A achesmate: Busiration of the sucoesshe
subdeasions which presurmably oosur in

tha groeth of  animals, Hara  the
subdsisions ara faksn to ocour I two
denchons, always grang thrse samphe E E
rectanghes which all groe at the sars g |
atep ?

rate. In prectice, the gaomstry waill
usually be much more comphex

But in most cases there is no such obvious nesting of this kind, One
reason for this is that a region may break not into a simple line of smaller
regions, but into concentric circles or into some collection of regions in a
much more complicated arrangement—say of the kind that T discuss in
the next section. And perhaps even more important, a region may break
into smaller regions that grow at different rates, and that potentially fold
over or deform in other ways, And when this happens, the geometry that
develops will in turn affect the way that subsequent regions break up.

The idea that the basic mechanism for producing different parts
of animals is that regions a few tenths of a millimeter across break into
separate smaller regions turns out in the end to be strangely similar to
the idea that stems of plants whose tips are perhaps a millimeter across
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grow by splitting off smaller stems. And indeed it is even known that
some of the genetic phenomena involved are extremely similar.

But the point is that because of the comparative rigidity of plants
during their most important period of growth, only structures that
involve fairly explicit branching can be produced. In animals, however,
the lack of rigidity allows a vastly wider range of structures to appear,
since now tissue in different regions need not just grow uniformly, but
can change shape in a whole variety of ways.

By the time an animal hatches or is born, its basic form is usually
determined, and there are bones or other rigid elements in place w
maintain this form. But in most animals there is still a significant
further increase in size. S0 how does this work!?

Some bones in effect just expand by adding material to their outer
surface, But in many cases, bones are in effect divided into sections, and
growth occurs between these sections. Thus, for example, the long
bones in the arms and legs have regions of growth at each end of their
main shafts, And the skull is divided into a collection of pieces that
each grow around their edges.

Typically there are somewhat different rates of growth for
different parts of an animal—leading, for example, to the decrease in
relative head size usually seen from birth to adulthood. And this
inevitably means that there will be at least some changes in the shapes
of animals as they mature.

But what if one compares different breeds or species of animals?
At first, their shapes may seem quite different. But it turns out that
among animals of a particular family or even order, it is very commaon
to find that their overall shapes are in fact related by fairly simple and
smooth geometrical transformations.

And indeed it seems likely that—much like the leaves and shells
that we discussed earlier in this section—differences between the
shapes and forms of animals may often be due in large part merely to
different patterns in the rates of growth for their different parts.

MNeedless to say, just like with leaves and shells, such differences
can have effects that are quite dramatic both visually and mechanically—
turning, say, an animal that walks on four legs into one that walks on
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two. And, again just like with leaves and shells, it seems likely that
among the animals we see are ones that correspond to a fair fraction of the
possible choices for relative rates of growth,

We began this section by asking what underlving rules of growth
would be necded to produce the kind of diversity and complexity that
we see in the forms of plants and animals. And in each case that we
have examined what we have found is that remarkably simple rules
seem to suffice, Indeed, in most cases the basic rules actually seem to
be somewhat simpler than those that operate in many non-biological
systems. But what allows the striking diversity that we see in biological
systems is that different organisms and different species of organisms
are always based on at least slightly different rules.

In the previous section I argued that for the most part such rules
will not be caretully chosen by natural selection, but instead will just be
picked almost at random from among the possibilities. From experience
with traditional mathematical models, however, one might then
assuime that this would inevitably imply that all plants and animals
would have forms that look quite similar.

But what we have discovered in this book is that when one uses
rules that correspond to simple programs, rather than, say, traditional
mathematical equations, it is very common to find that different rules lead
to quite different—and often highly complex—patterns of behavior, And it
is this basic phenomenon that I suspect is responsible for most of the

diversity and complexity that we see in the forms of plants and animals.

Biological Pigmentation Patterns

At a visual level, pigmentation patterns represent some of the most obvious
examples of complexity in biological organisms. And in the past it has
usually been assumed that o get the kind of complexity that one sees in
such patterns there must be some highly complex underlying mechanism,
presumably related wo optimization through natwral selection.

Following the discoveries in this book, however, what I strongly

suspect is that in fact the vast majority of pigmentation patterns in



hiological organisms are instead generated by processes whose basic
rules are extremely simple—and are often chosen essentially at random.

The pictures below show some typical examples of patterns
found on molluse shells, Many of these patterns are quite simple, But
some are highly complex. Yet looking ar these patterns one notices a
remarkahle similarity to patterns that we have seen many times before

in this book—generated by simple one-dimensional cellular automata.
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This similarity is, I believe, no coincidence. A mollusc shell, like
a one-dimensional cellular automaton, in effect grows one line at a time,
with new shell material being produced by a lip of soft tissue at the edge
of the animal inside the shell, Quite how the pigment on the shell is laid
down is not completely clear, There are undoubtedly elements in the
soft tissue that at any point either will or will not secrete pigment. And
presumably these elements have certain interactions with each other.
And given this, the simplest hypothesis in a sense is that the new state
of the element is determined from the previous state of its neighbors—

just as in a one-dimensional cellular automaton,
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But which specific cellular automaton rule will any given
maollusc use? The pictures at the bottom of the facing page show all the
possible symmetrical rules that involve two colors and nearest
neighbors, And comparing the patterns in these pictures with patterns
on actual molluse shells, one notices the remarkable fact that the range
of patterns that occur in the two cases is extremely similar.

Traditional ideas might have suggested that each kind of mollusc
would carefully optimize the pattern on its shell so as to avoid predators
0f t0o attract mates or prey. But what I think is much more likely is that
these patterns are instead generated by rules that are in effect chosen at
random from among a collection of the simplest possibilities. And what
this means is that insofar as complexity occurs in such patterns it is in a
sense a coincidence. It is not that some elaborate mechanism has
specially developed to produce it. Rather, it just arises as an inevitable
consequence of the basic phenomenon discovered in this book that
simple rules will often vield complex behavior,

And indeed it turns out that in many species of molluscs the
patterns on their shells—both simple and complex—are completely
hidden by an opaque skin throughout the life of the animal, and so
presumably cannot possibly have been determined by anv careful
process of optimization or natural selection,

S0 what about pigmentation patterns on other kinds of animals?
Mollusc shells are almost unique in having patterns that are built up
one line at a time; much more common is for patterns to develop all at
once all over a surface.

Maost often what seems to happen is that at some point in the growth
of an embryo, precursors of pigment-producing cells appear on its surface,
and groups of these cells associated with pigments of different colors then
become arranged in a definite pattern. Typically each individual group of
cells is initially some fraction of a tenth of a millimeter across. But since
different parts of an animal usually grow at different rates, the final pattern
that one sees on an adult animal ends up being scaled differently in
different places—so that, for example, the pattern is smaller in scale on the
head of an animal, since the head grows more slowly.
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The pictures on the facing page show typical examples of
pigmentation patterns in animals, and demonstrate that even across a
vast range of different types of animals just a few kinds of patterns
occur over and over again., S0 how are these patterns produced? Even
though some of them seem quite complex, it turns out that once again
there is a rather simple kind of rule that can account for them.

The idea is that when a pattern forms, the color of each element will
tend to be the same as the average color of nearby elements, and opposite to
the average color of elements further away, Such an ettect could have its
origin in the production and diffusion of activator and inhibitor chemicals,
or, for example, in actual motion of different types of cells. But regardless of
its origin, the effect itsell can readily be captured just by setting up a
two-dimensional cellular automaton with appropriate rules.

The pictures below show what happens with two slightly different
choices for the relative importance of elements that are further away. In
both cases, starting from a random distribution of black and white elements
there quickly emerge definite patterns—in the first case a collection of

spots, and in the second case a maze-like or labyrinthine structure.
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The next page shows the final patterns obtained with a whole
array of different choices of weightings for elements at different
distances. A certain range of patterns emerges—almost all of which
turn out to be quite similar to patterns that one sees on actual animals.
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But all of these patterns in a sense have the same basic form in
every direction. Yet there are many animals whose pigmentation
patterns exhibit stripes with a definite orientation. Sometimes these
stripes are highly regular, and can potendally arise from any of the
possible mechanisms that vield repetitive behavior, But in cases where
the stripes are less regular they typically look very much like the
patterns generated in the pictures at the top of the facing page using a

version of the simple mechanism described above,
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Financial Systems

During the development of the ideas in this book I have been asked
many times whether they might apply to financial systems. There is no
doubt that they do, and as one example T will briefly discuss here what
is probably the most obvious feature of essentially all financial markerts:
the apparent randomness with which prices tend to fluctuate.

Whether one looks at stocks, bonds, commodities, currencies,
derivatives or essentially any other kind of financial instrument, the
sequences of prices that one sees at successive times show some overall
trends, but also exhibit varying amounts of apparent randomness.

S0 what 1s the origin of this randomness!?

In the most naive ecomomic theory, price is a reflection of value,
and the value of an asset is equal to the total of all future earnings—
such as dividends—which will be obtained from it, discounted for the
interest that will be lost from having to wait to get these earnings.

With this view, however, it seems hard to understand why there
should be any significant fluctuations in prices at all. What is usually
said is that prices are in fact determined not by true value, but rather by
the best estimates of that value that can be obtained at any given time,
And it is then assumed that these estimates are ultimately affected by

all sorts of events that go on in the world, making random movements
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in prices in a sense just reflections of random changes going on in the
outside environment.

But while this may be a dominant effect on timescales of order
weeks or months—and in some cases perhaps even hours or days—it is
difficult to believe that it can account for the apparent randomness that
15 []ELETI seen on timescales as short as minutes or even SE‘E[]ﬂdS.

In addition, occasionally one can identify situations of seemingly
pure speculation in which trading occurs without the possibility of any
significant external input—and in such situations prices tend to show
more, rather than less, seemingly random fluctuations,

And knowing this, one might then think that perhaps random
fluctuations are just an inevitable feature of the way that prices adjust
to their correct values. But in negotiations between two parties, it is
commaon to see fairly smooth convergence to a final price. And certainly
one can construct algorithms that operate between larger numbers of
parties that would also lead to fairly smooth behavior,

S0 in actual markets there is presumably something else going
on. And no doubt part of it is just that the sequence of trades whose
prices are recorded are typically executed by a sequence of different
entitiecs—whether they be humans, organizations or programs—each of
which has its own detailed ways of deciding on an appropriate price,

But just a5 in so many other syscems that we have studied in this
book, once there are sufficiently many separate elements in a system, it
is reasonable o expect that the overall collective behavior that one sees
will go beyond the details of individual elements.

It is sometimes claimed that it is somehow inevitable that
markets must be random, since otherwise money could be made by
predicting them. Yet many people believe that they make money in just
this way every day. And beyvond certain simple situations, it is difficult
to see how feedback mechanisms could exist that would systematically
remove predictable elements whenever they were used.

Mo doubt randomness helps in maintaining some degree of
stability in markets—just as it helps in maintaining stability in many
other kinds of systems that we have discussed in this book. Indeed,
most markets are set up so that extreme instabilities associated with



certain kinds of loss of randomness are prevented—sometimes by
explicit suspension of trading.

But why is there randomness in markets in the first place?

Practical experience suggests  that  particularly on  short
timescales much of the randomness that one sees is purely a
consequence of internal dynamics in the market, and has little if
anything to do with the nature or value of what is being traded.

S0 how can one understand what is going on? One needs a basic
maodel for the operation and interaction of a large number of entities in
a market. But traditional mathematics, with its emphasis on reducing
everything to a small number of continuous numerical functions, has
rather little to offer along these lines.

The idea of thinking in terms of programs seems, however, much
maore promising. Indeed, as a first approximation one can imagine that
much as in a cellular automaton entities in a market could follow
simple rules based on the behavior of other entities.

To be at all realistic one would have to set up an elaborate
network to represent the flow of information between different entities.
And one would have to assign fairly complicated rules to each entity—
certainly as complicated as the rules in a typical programmed trading
system, But from what we have learned in this book it seems likely that
this kind of complexity in the underlying strocture of the system will
not have a crucial effect on its overall behavior.

And so as a minimal idealization one can for example try viewing
a market as being like a simple one-dimensional cellular automaton.
Each cell then corresponds to a single trading entity, and the color of the
cell at a particular step specifies whether that entity chooses to buy or
sell at that step. One can imagine all sorts of schemes by which such
colors could be updated. But as a very simple idealization of the way
that information flows in a market, one can, for example, take each
color to be given by a fixed rule that is based on each entity looking at
the actions of its neighbors on the previous step.

With traditional intuition one would assume that such a simple
model must have extremely simple behavior, and certainly nothing like
what is seen in a real market. But as we have discovered in this book,

CHAPTER &



STEPHEMNM WOLFRE AM |

432

simple models do not necessarily have simple behavior. And indeed the

picture below shows an example of the behavior that can occur,

An exampls of 8 very simple idealzed modsl
of a market, Each coll corresponds 1o an entity
that eiber Buys or sells on aéch Step The behawor o & greaen cell 15
determinad by locking at the behavior of its twio neighbors o the
step before according 1o the rule shown, Tha plot bsdow gives az a
raugh analog of a markat price the running differance of tha fotal
nurmbars of bBlack ard white calls :
gt successive  ateps. And [ e
slthough there are patchas of ' L
predictability that can ba seen in
the comphete behavior of  1hae .,

syl tha plot on the nghl
looks in many respacis randam.

In real markets, it is vsually impossible to see in detail what each
entity is doing. Indeed, often all that one knows is the sequence of
prices at which trades are executed. And in a simple cellular automaton
the rough analog of this is the running difference of the total numbers of
black and white cells obtained on successive steps.

And as soon as the underlying rule for the cellular automaton is
such that information will eventually propagate from one entity to all
others—in effect a minimal version of an efficient market hypothesis—
it is essentally inevitable that running totals of numbers of cells will
exhibit significant randomness.

(One can always make the underlying system more complicated—
say by having a network of cells, or by allowing different cells to have
different and perhaps changing rules. But although this will make it
more difficult to recognize definite rules even if one looks at the
complete behavior of every element in the system, it does not affect the
basic point that there is randomness that can intrinsically be generaced

by the evolution of the system.



Fundamental Physics

The Problems of Physics

In the previous chapter, we saw that many important aspects of a wide
variety of everyvday systems can be understood by thinking in terms of
simple programs. But what about fundamental physics? Can ideas
derived from studying simple programs also be applied there?

Fundamental physics is the area in which traditional mathematical
approaches to science have had their greatest success, But despite this
success, there are still many central issues that remain quite unresolved.
And in this chapter my purpose is to consider some of these issues in the
light of what we have learned from studying simple programs.

It might at first not seem sensible to try to use simple programs
as a basis for understanding fundamental physics. For some of the best
established features of physical systems—such as conservation of
energy or equivalence of directions in space—seem to have no obvious
analogs in most of the programs we have discussed so far in this book.

As we will see, it is in fact possible for simple programs to show
these kinds of features. But it turns out that some of the most
important unresolved issues in physics concern phenomena that are in
a sense more peneral—and do not depend muoch on such features,

And indeed what we will see in this chapter is that remarkahly
simple programs are often ahle to capture the essence of what is going

on—even though traditional efforts have been quite unsuccesstul,
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Thus, for example, in the early part of this chapter I will discuss
the so-called Second Law of Thermodynamics or Principle of Entropy
Increase: the observation that many physical systems tend to become
irreversibly more random as time progresses, And I will show that the
essence of such behavior can readily be seen in simple programs.

More than a century has gone by since the Second Law was first
formulated. Yet despite many detailed results in traditional physics, its
origing have remained quite mysterious. But what we will see in this
chapter is that by studying the Second Law in the context of simple
programs, we will finally be able to get a clear understanding of why it
s0 often holds—as well as of when it may not,

My approach in investigating issues like the Second Law is in
effect to use simple programs as metaphors for physical systems. But
can such programs in fact be more than that? And for example is it
conceivable that at some level physical systems actually operate
directly according to the rules of a simple program?

Looking at the laws of physics as we know them today, this
might seem absurd. For at first the laws might seem much too
complicated to correspond to any simple program. But one of the
crucial discoveries of this book is that even programs with very simple
underlying rules can yield great complexity.

And so it could be with fundamental physics. Underneath the
laws of physics as we know them today it could be that there lies a very
simple program from which all the known laws—and ultimately all the
complexity we see in the universe—emerges.

To suppose that our universe is in essence just a simple program
is certainly a bold hypothesis. But in the second part of this chapter I
will describe some significant progress that I have made in investigating
this hypothesis, and in working out the details of what kinds of simple
programs might be involved.

There is still some distance to go. But from what I have found so
far T am extremely optimistic that by using the ideas of this book the
most fundamental problem of physics—and one of the ultimate
problems of all of science—may finally be within sight of being solved.



The Notion of Reversibility

At any particular step in the evolution of a system like a cellular
automaton the underlying rule for the system tells one how to proceed
to the next step. But what if one wants to go backwards? Can one
deduce from the arrangement of black and white cells at a particular
step what the arrangement of cells must have been on previous steps?

All current evidence suggests that the underlving laws of physics
have this kind of reversibility. So this means that given a sufficiently
precise knowledge of the state of a physical system at the present time,
it is therefore possible to deduce not only what the system will do in
the future, but also what it did in the past.

In the first cellular automaton shown below it is also straightforward
to do this, For any cell that has one color at a particular step must always

have had the opposite color on the step before.

fis's 254

txamples of cellular swtomats that are and are not revarsable. Rula 51 is revessible, so that it
presarvas anough information to alow ons to go backwards from any particular step as well as
forwards. Bule 254 15 not rewarsibla, sinca it always evoles to uniform black and prasaras no
infommation abowt the arrangament of calls on sarlier staps

But the second cellular automaton works differently, and does
not allow one to go backwards. For after just a few steps, it makes every
cell black, regardless of what it was before—with the result that there is
no way to tell what color might have occurred on previous steps.

There are many examples of systems in nature which seem to
organize themselves a little like the second case above. And indeed the
conflict between this and the known reversibility of underlying laws of

physics is related to the subject of the next section in this chapter.
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But my purpose here is to explore what kinds of systems can he
reversible, And of the 256 elementary cellular automata with two
colors and nearest-neighbor rules, only the six shown below turn out to
be reversible. And as the pictures demonstrate, all of these exhibit fairly
trivial behavior, in which only rather simple transformations are ever

ok S

Examples of the behevior of the s elementany cellular automata that are reversible. nall cases the ransformeations made 1o the
nital conditions are simglke anough that it is straghtforssrd to go backwards s well &5 forwarnds in the evalution.

made to the initial configuration of cells.
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S0 is it possible to get more complex behavior while maintaining
reversibility? There are a total of 7,625,597 484 987 cellular automata
with three eolors and nearest-neighbor rules, and searching through
these one finds just 1800 that are reversible. Of these 1800, many again
exhibit simple behavior, much like the pictures above. But some exhibit

maore complex behavior, as in the pictures below.
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Exarmplas ol some of tha TEOD reversable colulas autamata sath thras oslors and nesst-naghbor rules. Evan though thinss
eypsiams sxhibt cormplex behavior that scramibles the inrtal conditions, all of tharm are still reversitda, so that starting from the
configuration of calls st the bottom of sach picturs, 2 iz alweys possible to deduca the configurations on all previous staps.
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How can one now tell that such systems are reversible? It is no
longer true that their evolution leads only to simple transformations of
the initial conditions. But one can still check that starting with the
specific configuration of cells at the bottom of each picture, one can
evolve backwards to get to the top of the picture, And given a particelar
rule it turns out to be fairly straightforward to do a detailed analysis
that allows one to prove or disprove its reversibility.

But in trying to understand the range of behavior that can occur
in reversible systems it is often convenient to consider classes of
cellular automata with rules that are specifically constructed to be
reversible, One such class is illustrated below. The idea is to have rules
that explicitly remain the same even if they are turned upside-down,

thereby interchanging the roles of past and future.

CHAPTER ¥®
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An aample of a cellular automaton that is explictly st
up e Be resvarsible, The rule lor the systam remans

urcchanged o a8 1% ehements are umed ueside-down

effectnely interchanging the roles of past and fulure.
Fattarns produecad by tha rule mast axhibs the same tims
rewarsal symmaetry, as shown on tha laft. The specific
rty usied hore & based on 1aging demantary rule 214,
then adding the specdication that the new color of & cell
should ba imeartad whenawer the call was black two
steps back Mote that by aSowing a total of four rather
than fweo colars, a version al the rube that decends anly

on tha memadiately preceding step can be const nectoed

Such rules can be conscrected by taking ordinary cellular

automata and adding dependence on colors two steps back.

The resulting rules can be run both forwards and backwards. In

each case they require knowledge of the colors of cells on not one but two

successive steps. Given this knowledge, however, the rules can be used o

determine the configuration of cells on either future or past steps.
The next two pages show examples of the behavior of such

cellular automata with both random and simple initial conditions.
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hlock of pichumas, only the centss call s taken to Be black on these staps
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Ther evohstion of theae revarsble cellular automata for 300 staps. |n thi Tirst case, a reguar
niested pattarn is abtaned. Inthe other cases, the patterns showy many featumas of randomness.
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In some cases, the behavior is fairly simple, and the patterns
obtained have simple repetitive or nested structures. But in many cases,
even with simple initial conditions, the patterns produced are highly
complex, and seem in many respects random.

The reversibility of the wvnderlving rules has some obvious
consequences, such as the presence of triangles pointing sideways but
not down. But despite their reversibility, the rules still manage to
produce the kinds of complex behavior that we have seen in cellular
automata and many other systems throughout this book,

So what about localized structures?

The picture on the facing page demonstrates that these can also
pccur in reversible systems. There are some constraints on the details of
the kinds of collisions that are possible, but reversible rules typically
tend to work very much like ordinary ones.

S0 in the end it seems that even though only a very small fraction
of possible systems have the property of being reversible, such systems
can still exhibit behavior just as complex as one sees anywhere else,

Irreversibility and the Second Law of Thermodynamics

All the evidence we have from particle physics and elsewhere sugpests
that at a fundamental level the laws of physics are precisely reversible.
Yet our everyday experience is full of examples of seemingly irreversible
phenomena. Most often, what happens is that a system which startsin a
fairly regular or organized state becomes progressively more and more
random and disorganized. And it turns out that this phenomenon can
already be seen in many simple programs.

The picture at the top of the next page shows an example based on a
reversible cellular automaton of the type discussed in the previous section.
The black cells in this system act a lictle like parcicles which bounce
around inside a box and interact with each other when they collide.

At the beginning the particles are placed in a simple arrangement
at the center of the box. But over the course of time the picture shows

that the arrangement of particles becomes progressively more random.
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A revversible cellular autornaton that exhibeds saamingly imaewessinle boehavior. Starting from an initial
condition n which all back cals or parbicles lie at the canter of a ko, the destribution becomes
prograssively mora randem, Swch behavior appears to be the central phancmencn responsible for
ther Seccnd Laws of Thermadynarmics, [hae spacls celbkdar aucmaton wsaed e 15 nale 1228, The
Systiem s resincbied o a redgeon ol Siae 100 colls

Typical intwition from traditional science makes it difficult w
understand how such randomness could possibly arise. But the
discovery in this book that a wide range of systems can generate
randomness even with very simple initial conditions makes it seem
considerably less surprising.

But what about reversibility! The uwunderlying rules for the
cellular automaton used in the picture above are precisely reversible,
Yet the picture itself does not at first appear to be at all reversible. For
there appears to be an irreversible increase in randomness as one goes
down successive panels on the page.

The resolution of this apparent conflict is however fairly
straightforward. For as the picture on the facing page demonsterates, if the
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An extandad wersion of the picture en the facing page, in whech the reversibility of the undarbng csflular setomaton is mara cleardy
manibest, AnombEl condton i catebely construcied so that hallbway theough the evalution shown a simple arrangement o particles
will be produced. if one stars with this srangement, then the randorness of the eystem will effectivaly incresss whathear ons goos
forwards or hackwards in time from that point.

simple arrangement of particles occurs in the middle of the evolution,
then one can readily see that randomness increases in exactly the same
way—whether one poes forwards or backwards from that point.

Yet there is still something of a mystery. For our everyday
experience is full of examples in which randomness increases much as
in the second half of the picture above, But we essentially never see the
kind of systematic decrease in randomness that occurs in the first half.

By setting up the precise initial conditions that exist at the
beginning of the whole picture it would certainly in principle be
possible to get such behavior, But somehow it seems that initial
conditions like these essentially never actually occur in practice.
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There has in the past been considerable confusion about why this
might be the case. But the key to understanding what is going on is
simply to realize that one has to think not only about the systems one
is studying, but also about the types of experiments and observations
that one uses in the process of studying them.

The crucial point then turns out to be that practical experiments
almost inevitably end up involving only initial conditions that are fairly
simple for us to describe and construct. And with these types of initial
conditions, systems like the one on the previous page always tend to
exhibit increasing randomness.

But what exactly is it that determines the types of initial
conditions that one can use in an experiment? It seems reasonable to
suppose that in any meaningful experiment the process of setting up the
experiment should somehow be simpler than the process that the
experiment is intended to observe,

But how can one compare such processes!? The answer that T will
develop in considerable detail later in this book is to view all such processes
as computations. The conclusion is then that the computation involved in
setting up an experiment should be simpler than the computation involved
in the evolution of the system that is to be studied by the experiment.

It is clear that by starting with a simple state and then tracing
backwards through the acteal evolution of a reversible system one can
find initial conditions that will lead to decreasing randomness. But if
one looks for example at the pictures on the last couple of pages the
complexity of the behavior seems to preclude any less arduous way of
tinding such initial conditions. And indeed T will argue in Chapter 12
that the Principle of Computational Equivalence suggests that in
general no such reduced procedure should exist.

The consequence of this is that no reasonable experiment can
ever involve setting up the kind of initial conditions that will lead to
decreases in randomness, and that therefore all practical experiments
will tend to show only increases in randomness,

It is this basic argument that T believe explains the observed
validity of what in physics is known as the Second Law of
Thermodynamics. The law was first formulated more than a century



ago, but despite many related technical results, the basic reasons for its
validity have until now remained rather mysterious.

The field of thermodynamics is generally concerned with issues of
heat and energy in physical systeims, A fundamental fact known since the
mid-1800s is that heat is a form of energy associated with the random
microscopic motions of large numbers of atoms or other particles.

One formulation of the Second Law then states that any energy
associated with organized motions of such particles tends to degrade
irreversibly into heat. And the pictures at the beginning of this section
show essentially just such a phenomenon. Initially there are particles
which move in a fairly regular and organized way. But as time goes on,
the motion that occurs becomes progressively more random.

There are several details of the cellular automaton used above that
ditfer from actual physical systems of the kind usually studied in
thermodynamics, But at the cost of some additional technical
complication, it is fairly straightforward to set up a more realistic systen.

The pictures on the next two  pages show a  pardicular
two-dimensional cellular automaton in which hlack squares representing
particles move around and collide with each other, essentially like
particles in an ideal gas. This cellular automaton shares with the cellular
automaton at the beginning of the section the property of being reversible.
But it also has the additional feature that in every collision the total
number of particles in it remains unchanged. And since each particle can
he thought of as having a certain energy, it follows that the total energy of
the system is therefore conserved.

In the first case shown, the particles are taken to bounce around
in an empty square box. And it turns out that in this particular case
only very simple repetitive behavior is ever obtained. But almost any
change destroys this simplicity.

And in the second case, for example, the presence of a small fixed
ohstacle leads to rapid randomization in the arrangement of particles—
very much like the randomization we saw in the one-dimensional
cellular automaton that we discussed earlier in this section,

CHAPTER ¥#
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The kshevior of a simple twe-dimensional cellular sutomsaton that emmulates an wdesl gas of particles. In the top group of pictures, the
partickes Bouncs arcund inan emgty square box, In the bettorn group of pictures, the box contains a small fued shstack. In the top
group ol pictures, the srrangemuent of particles shoess smphe repetitng bebavicn, o the boftom group bossseer, (0 Badomees
progresseely rmone randorm wiih e Thius uncheding robes for the celular automaton used b are mvarstie, and consenae thae todal
nurmber of particlas. The spacific nles are bassd on 2 = 2 Blocks—a two-demensaonal genaraizaton of the Bock cellular sutamate to be
discussed in the nest section. For each 2 = 2 block the configuenatson of particlas B taken to remain the sames at & patcular stap unlass
thara ars exactly beao particles arrangsd dagonally withen the bledk, in which casa the partickss move to the opposite disgonal

So even though the total of the energy of all particles remains the
same, the distribution of this energy becomes progressively more
random, just as the usual Second Law implies.

An important practical consequence of this is that it becomes
increasingly difficult to extract energy from the system in the form of
systematic mechanical work, At an idealized level one might imagine
trying to do this by inserting into the system some kind of paddle
which would experience force as a result of impacts from particles,
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Tirne heatories of the cellulas sutemata from the facing page. v eech caze g alice is faken theeugh the midline of the
box Bladk gells that are furthsr from the mading ars shoem i prograssively lighter shades of gray Case {a)
comggponds o an amply square box, and shaws smple repatitive bebasor, Cem (1) carrmspands 19 A B
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The pictures below show how such force might vary with time in
cases (al and [b) above. In case (al, where no randomization oecurs, the
force can readily be predicted, and it is easy to imagine harmessing it to
produce systematic mechanical work. But in case [b), the force quickly
randomizes, and there is no obvious way to obtain systematic
mechanical work from it.
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Tha force on an wdealized paddle placsd on the medlne of the systems shown above. Tha forca
raflacts an imbalance m tha number of particles at each step amving at ths midling from above and
below. In case |al this imbalanes is readily predictable. In case {bl, hoevssvar, i rapidly becornes for
rnost practical purposss random. This randomness s essantially what rakes it impeasiba to build &
phiyzecal perpetual moticn machine which conbinually turrs heat inte rmechanical work
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One might nevertheless imagine that it would be possible to
devise a complicated machine, perhaps with an elaborate arrangement
of paddles, that would still be able to extract systematic mechanical
work even from an apparently random distribution of particles. But it
turns out that in order to do this the machine would effectively have to
be ahle to predict where every particle would be at every step in time.

And as we shall discuss in Chapter 12, this would mean that the
machine would have to perform computations that are as sophisticated as
those that correspond to the actual evolution of the system itself, The
result is that in practice it is never possible to build perpetual motion
machines that continually take energy in the form of heat—or randomized
particle motions—and convert it into useful mechanical worl,

The impossibility of such perpetual motion machines is one
commaon statement of the Second Law of Thermodynamics, Another is
that a quantity known as entropy tends to increase with time.

Entropy is defined as the amount of information about a system
that is still unknown after one has made a certain set of measurements
on the system. The specific value of the entropy will depend on what
measurements one makes, but the content of the Second Law is that if
one repeats the same measurements at different times, then the entropy
deduced from them will tend to increase with time.

If one managed to find the positions and properties of all the
particles in the system, then no information about the system would
remain unknown, and the entropy of the system would just be zero. But
in a practical experiment, one cannot expect to be able to make
anything like such complete measurements.

And more realistically, the measurements one makes might for
example give the total numbers of particles in certain regions inside the
box. There are then a large number of possible detailed arrangements of
particles that are all consistent with the results of such measurements. The
entropy is defined as the amount of additional information that would be
needed in order to pick out the specific arrangement that actually occurs.

We will discuss in more detail in Chapter 10 the notion of amount of
information. But here we can imagine numbering all the possible
arrangements of particles that are consistent with the results of our



measurements, so that the amount of information needed to pick out a
single arrangement is essentially the length in digits of one such number.
The pictures below show the behavior of the entropy calculated in
this way for systems like the one discussed above, And what we see is that
the entropy does indeed tend o increase, just as the Second Law implies.

q far 400 f2ra) 5 s

Ths antropy as a function of time for systems of the typa shown in casae (bl from page 447, The top
plot is exactly for casa {bl; the bottorn ona & for a systam thres tmes largs: in sizs. The entropy is
found in each cese by working out how mamy possible oonfiguatons of pamices are consistent with
rmeaswaments of the total numbers of particles n a 6 = & gnd of regicns within the systam. Just as the
Sacond Law of Thermadynarnics suggests, the entropy tends to increass with time. Mota that the
plots abowe woulkd be exactly symmeincal i they s conbnuaed o tha eft the antropy wauld

incrmase in the =ame way goirg both forwards and backws s from the sirnple intal conditions used

In effect what is going on is that the measurements we make
represent an attempt to determine the state of the system. But as the
arrangement of particles in the system becomes more random, this
attempt becomes less and less successful.

One might imagine that there could be a more elaborate set of
measurements that would somehow avoid these problems, and would
not lead to increasing entropy. But as we shall discuss in Chapter 12, it
again turns out that setting up such measurements would have to
involve the same level of computational effort as the actual evolution of
the system itself. And as a result, one concludes that the entropy
associated with measurements done in practical experiments will

always tend to increase, as the Second Law suggests.
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In Chapter 12 we will discuss in more detail some of the key
ideas involved in coming to this conclusion, But the basic point is that
the phenomenon of entropy increase implied by the Second Law is a
more or less direct consequence of the phenomenon discovered in this
book that even with simple initial conditions many systems can
produce complex and seemingly random behavior.

One aspect of the generation of randomness that we have noted
several times in earlier chapters is that once significant randomness has
been produced in a system, the overall properties of that system tend to
become largely independent of the details of its initial conditions,

In any systemn that is reversible it muost always be the case that
different initial conditions lead to at least slightly different states—
otherwise there would be no unique way of going backwards. But the
point is that even though the outcomes from different initial conditions
differ in detail, their overall properties can still be very much the same,

The pictures on the facing page show an example of what can
happen. Every individual picture has different initial conditions. But
whenever randomness is produced the overall patterns that are obtained
look in the end almost indistinguishable.

The reversibility of the underlving rules implies that at some
level it must be possible to recognize outcomes from different kinds of
initial conditions. But the point is that o do so would require a
computation far more sophisticated than any that could meaningfully
be done as part of a practical measurement process.

S0 this means that if a system generates sufficient randomness, one
can think of it as evolving towards a unique equilibrium whose properties
are for practical purposes independent of its initial conditions.

This fact turns out in a sense to be implicit in many everyday
applications of physics, For it is what allows us to characterize all sorts
of physical systems hy just specifying a few parameters such as
temperature and chemical composition—and avoids us always having
to know the details of the initial conditions and history of each system.

The existence of a unique equilibrium to which any particular
system tends to evolve is also a common statement of the Second Law of
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Thermadynamics. And once again, therefore, we find that the Second Law
is associated with basic phenomena that we already saw early in this book.

But just how general is the Second Law? And does it really apply
to all of the various kinds of systems that we see in nature!?

Starting nearly a century ago it came to be widely believed that
the Second Law 15 an almost universal principle. But in reality there is
surprisingly little evidence for this,

Indeed, almost all of the detailed applications ever made of the
tull Second Law have been concerned with just one specitic area: the
behavior of gases. By now there is therefore good evidence that gases
obey the Second Law—ijust as the idealized model earlier in this section
suggests. But what about other kinds of systems!?
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The pictures on the facing page show examples of various
reversible cellular automata, And what we see immediately from these
pictures is that while some systems exhibit exactly the kind of
randomization implied by the Second Law, others do not,

The most obvious exceptions are cases like rule OR and role 90R,
where the behavior that is produced has only a very simple fixed or
repetitive form. And existing mathematical studies have indeed identified
these simple exceptions to the Second Law. But they have somehow
implicitly assumed that no other kinds of exceptions can exist,

The picture on the next page, however, shows the behavior of
rule 37R over the course of many steps. And in looking at this picture,
we see a remarkable phenomenon: there is neither a systematic trend
towards increasing randomness, nor any form of simple predictable
hehavior, Indeed, it seems that the system just never settles down, but
rather continues to fluctuate forever, sometimes becoming less orderly,
and sometimes more so,

S0 how can such behavior be understood in the context of the
Second Law! There is, I believe, no choice but to conclude that for
practical purposes rule 37R simply does not obey the Second Law.

And as it turns out, what happens in rule 37R is not so different
trom what seems to happen in many systems in nature, If the Second
Law was always obeyed, then one might expect that by now every part
of our universe would have evolved to completely random equilibrinm.

Yet it is quite obvious that this has not happened. And indeed
there are many kinds of systems, notably biological ones, that seem to
show, at least temporarily, a trend towards increasing order rather than
increasing randomness,

How do such systems work? A common feature appears to be the
presence of some kind of partitioning: the systems effectively break up into
parts that evolve at least somewhat independently for long periods of time.

The picture on page 456 shows what happens if one starts rule
A7R with a single small region of randomness. And for a while what one
sees is that the randomness that has been inserted persists. But
eventually the system instead seems to organize itself to vield just a
small number of simple repetitive structures.
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This kind of self-organization is quite opposite to what one
would expect from the Second Law. And at first it also seems
inconsistent with the reversibility of the system. For if all that is left at
the end are a few simple structures, how can there be enough
information to go backwards and reconstruce the initial conditions?

The answer is that one has to consider not only the stationary
structures that stay in the middle of the system, but also all various
small structures that were emitted in the course of the evolution. To go
backwards one would need to set things up so that one absorbs exactly
the sequence of structures thar were emitted poing forwards,

If, however, one just lets the emitted structures escape, and never
ahsorbs any other structures, then one is effectively losing information,
The result is that the evolution one sees can be intrinsically not
reversible, so that all of the various forms of self-organization that we
saw earlier in this book in cellular automata that do not have reversible
rules can potentially occur,

If we look at the universe on a large scale, then it turns out that
in a certain sense there is more radiation emitted than absorbed. Indeed,
thiz is related to the fact that the night sky appears dark, rather than
having bright starlight coming from every direction, But ultimately the
asymmetry between emission and absorption is a consequence of the
fact that the universe is expanding, rather than contracting, with time.,

The result is that it is possible for regions of the universe to
hecome progressively more organized, despite the Second Law, and
despite the reversibility of their underlying rules. And this is a large part
of the reason that organized galaxies, stars and planets can form,

Allowing information to escape is a rather straightforward way to
evade the Second Law., But what the pictures on the facing page
demonstrate is that even in a completely closed system, where no
information at all is allowed to escape, a system like rule 37R still does
not follow the uniform trend towards increasing randomness that is
suggested by the Second Law.,

What instead happens is that kinds of membranes form between
different regions of the system, and within each region orderly behavior
can then occur, at least while the membrane survives,
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This bhasic mechanism may well be the main one at work in
many biological systems: each cell or each organism becomes separated
trom others, and while it survives, it can exhibit organized behavior,

But looking at the pictures of rule 37R on page 454 one may ask
whether perhaps the effects we see are just transients, and that if we
waited long enough something different would happen.

It is an inevitable feature of having a closed system of limited size
that in the end the behavior one gets must repeat itself. And in rules like
OR and S0R shown on page 452 the period of repetition is always very
short. But for rule 37R it usually turns out to be rather long, Indeed, for
the specific example shown on page 454, the period is 293,216,266,

In general, however, the maximum possible period for a system
containing a certain number of cells can be achieved only if the
evolution of the system from any initial condition eventually visits all
the possible states of the system, as discussed on page 258, And if this
in fact happens, then at least eventually the system will inevitably
spend most of its time in states that seem quite random,

But in rule 37R there is no such ergodicity. And instead, starting
from any particular initial condition, the system will only ever visit a
tiny fraction of all possible states. Yet since the total number of states is
astronomically large—about 10°° for size 100—the number of states
visited by rule 37R, and therefore the repetition period, can still be
extremely long,

There are various subtleties involved in making a formal study of
the limiting behavior of rule 37R after a very long time. But irrespective
of these subtleties, the basic fact remains that so far as T can tell, rule
ATR simply does not follow the predictions of the Second Law.

And indeed T strongly suspect that there are many systems in
nature which behave in more or less the same way. The Second Law is
an important and quite general principle—but it is not universally
valid. And by thinking in terms of simple programs we have thus been
able in this section not only to understand why the Second Law is often
true, but also to see some of its limitations,
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Conserved Quantities and Continuum Phenomena

Reversibility is one general feature that appears to exist in the basic laws
of physics. Another is conservation of various quantities—so that for
example in the evolution of any closed physical system, total values of
quantities like energy and electric charge appear always to stay the same.

With most rules, systems like cellular automata do not usually
exhibit such conservation laws. But just as with reversibility, it turns
out to be possible to find rules that for example conserve the total
number of black cells appearing on each step.

Among elementary cellular automata with just two colors and
nearest-neighbor rules, the only types of examples are the fairly trivial
ones shown in the pictures below.
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But with next-nearest-neighbor rules, more complicated examples

become possible, as the pictures below demonstrate.
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One straightforward way to generate collections of systems that
will inevitably exhibit conserved quantities is to work not with ordinary
cellular automata but instead with block cellular automata, The basic
idea of a block cellular automaton is illustrated at the top of the next page.
At each step what happens is that blocks of adjacent cells are replaced by
ather blocks of the same size aceording to some definite rule. And then on

successive steps the alignment of these blocks shifts by one cell.
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And with this setup, if the underlying rules replace each block by
one that contains the same number of black cells, it is inevitable that
the system as a whole will conserve the total number of black cells,

With twuo possible colors and blocks of size two the only kinds of
block cellular automata that conserve the total number of black cells are

the ones shown below—and all of these exhibit rather trivial behavior,
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But if one allows three possible colors, and requires, say, that the
total number of black and gray cells together be conserved, then more
complicated behavior can occur, as in the pictures below.
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Indeed, as the pictures on the next page demonstrate, such

systems can produce considerable randomness even when starting from
very simple initial conditions.
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But there is still an important constraint on the behavior: even
though black and gray cells may in effect move around randomly, their
total number must always be conserved, And this means that if one looks
at the total average density of colored cells throughout the system, it must
always remain the same, But local densities in different parts of the system
need not—and in general they will change as colored cells flow in and out.

The pictures below show what happens with four different rules,
starting with higher density in the middle and lower density on the
sides. With rules (a) and (b], each different region effectively remains
separated forever, But with rules |¢) and (d) the regions gradually mix.

As in many kinds of systems, the details of the initial
arrangement of cells will normally have an effect on the details of the
hehavior that occurs. But what the pictures below suggest is that if one
looks only at the overall distribution of density, then these details will
become largely irrelevant—so that a given initial distribution of density
will always tend to evolve in the same overall way, regardless of what
particular arrangement of cells happened to make up that distribution.
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The pictures above then show how the average density evolves in
systems [c) and (d). And what is striking is that even though at the lowest
level both of these systems consist of discrete cells, the overall distribution
of density that emerges in both cases shows smooth continuous behavior,

And much as in physical systems like fluids, what uldmately leads
to this is the presence of small-scale apparent randomness that washes
out details of individual cells or molecules—as well as of conserved
guantities that force certain overall features not to change too quickly.
And in fact, given just these properties it turns out that essentially the
same overall continuum behavior always tends to be obtained.

One might have thought that continuum behavior would
somehow rely on special features of actual systems in physics. But in
fact what we have seen here is that once again the fundamental
mechanisms responsible already occur in a much more minimal way in
programs that have some remarkably simple underlying rules.



Ultimate Models for the Universe

The history of physics has seen the development of a sequence of
progressively more accurate models for the universe—from classical
mechanics, through quantum mechanics, to quantum field theory, and
heyond, And one may wonder whether this process will go on forever,
or whether at some point it will come to an end, and one will reach a
final ultimate model for the universe.

Experience with actual results in physics would probably not
make one think so. For it has seemed that whenever one tries to get to
another level of accuracy, one encounters more complex phenomena,
And at least with traditional scientific intuition, this fact suggests that
maodels of progressively greater complexity will be needed.

But one of the crucial points discovered in this book is that more
complex phenomena do not always require more complex models. And
indeed I have shown that even models based on remarkably simple
programs can produce behavior that is in a sense arbitrarily complex,

So could this be what happens in the universe? And could it even
be that underncath all the complex phenomena we see in physics there
lies some simple program which, if run for long enough, would
reproduce our universe in every detail?

The discovery of such a program would certainly be an exciting
event—as well as a dramatic endorsement for the new kind of science
that I have developed in this boolk,

For among other things, with such a program one would finally have
a model of nature that was not in any sense an approximation or
idealization. Instead, it would be a complete and precise representation of
the actual operation of the universe—but all reduced to readily stated rules.

In a sense, the existence of such a program would be the ultimate
validation of the idea that human thought can comprehend the
construction of the universe, But just knowing the underlying program
does not mean that one can immediately deduce every aspect of how
the universe will behave. For as we have seen many times in this book,

there is often a great distance between underlying rules and overall
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behavior. And in fact, this is precisely why it is conceivable that a
simple program could reproduce all the complexity we see in physics.

(ziven a particular underlying program, it is always in principle
possible to work out what it will do just by running it. But for the whole
universe, doing this kind of explicit simulation is almost by definition
out of the question. S0 how then can one even expect to tell whether a
particular program is a correct model for the universe! Small-scale
simulation will certainly be possible., And T expect that by combining
this with a certain amount of perhaps fairly sophisticated mathematical
and logical deduction, it will be possible to get at least as far as
reproducing the known laws of physics—and thus of determining
whether a particular model has the potential to be correct.

So if there is indeed a definite ultimate model for the universe,
how might one set about finding it? For those familiar with existing
science, there is at first a tremendous tendency to try to work
backwards from the known laws of physics, and in essence to try to
“engineer” a universe that will have particular features that we observe.

But if there is in fact an ultimate model that is quite simple, then
from what we have seen in this book, I strongly believe that such an
approach will never realistically be successful, For human thinking—
even supplemented by the most sophisticated ideas of current
mathematics and logic—is far from being able to do what is needed.

Imagine for example trving to work backwards from a knowledge
of the overall features of the picture on the facing page to construct a
rule that would reproduce it. With great effort one might perhaps come
up with some immensely complex rule that would work in most cases.
But there is no serious possibility that starting from overall features one
would ever arrive at the extremely simple rule that was actually used.

It is already difficult enough to work out from an underlying rule
what behavior it will produce. But to invert this in any systematic way is
probably even in principle beyond what any realistic computation can do.

S0 how then could one ever expect to find the underlying rule in
such a case? Almost always, it seems that the best strategy is a simple
one: to come up with an appropriate general class of rules, and then just
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to search through these rules, trying each one in turn, and looking to
see if it produces the behavior one wants,

But what about the rules for the universe? Surely we cannot
simply search through possible reles of certain kinds, looking for one
whose behavior happens to fit what we see in physics?

With the intuition of traditional science, such an approach seems
absurd. But the point is that if the rule for the universe is sufficiently
simple—and the results of this book suggest that it might be—then it
hecomes not so unreasonable to imagine systematically searching for it.

To start performing such a search, however, one first needs to
work out what kinds of rules to consider. And my suspicion is that
none of the specific types of rules that we have discussed so far in this
book will turn out to be adequate. For I believe that all these types of
riles in some sense probably already have too much structure built in.

Thus, for example, cellular automata probably already have too
rigid a built-in notion of space. For a defining feature of cellular
automata is that their cells are alwavs arranged in a rigid array in space.
Yet I strongly suspect that in the underlying rule for our universe there
will be no such built-in structure. Rather, as [ discuss in the sections

i
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that follow, my guess is that at the lowest level there will just be certain
patterns of connectivity that tend to exist, and that space as we know it
will then emerge from these patterns as a kind of large-scale limit.

And indeed in general what T expect is that remarkably few
familiar features of our universe will actually be reflected in any direct
way in its ultimate underlying rule. For if all these features were
somehow explicitly and separately included, the rule would necessarily
have to be very complicated to fit them all in.

So it the rule is indeed simple, it almost inevitably follows that we
will not be able to recognize directly in it most features of the universe as
we normally perceive them, And this means that the rule—or at least its
hehavior—will necessarily seem to us unfamiliar and abstract.

Most likely for example there will he no easy way to visualize
what the rule does by looking at a collection of elements laid out in
space, Nor will there probably be any immediate trace of even such
basic phenomena as motion,

But despite the lack of these familiar features, T still expect that
the actual rule itself will not be too difficult for us to represent. For lam
fairly certain that the kinds of logical and computational constructs
that we have discussed in this book will be general enough to cover
what is needed, And indeed my guess is that in terms of the kinds of
pictures—or Mathematica programs—that we have used in this book, the
ultimate rule for the universe will turn out to look quite simple.

Mo doubt there will be many different possible formulations—
some quite unrecognizably different from others. And no doubt a
tormulation will eventually be found in which the rule somehow
comes to seem quite obvious and inevitable,

But I believe that it will be essentially impossible to find such a
tormulation without already knowing the rule. And as a result, my
guess is that the only realistic way to find the rule in the first place will
be to start from some very straightforward representation, and then just
to search through large numbers of possible rules in this representation.

Fresumably the wvast majority of rules will lead to utterly
unworkable universes, in which there is for example no reasonable
notion of space or no reasonable notion of time.



But my guess is that among appropriate classes of rules there will
actually be quite a large number that lead to universes which share at
least some features with our own. Much as the same laws of continuum
fluid mechanics can emerge in systems with different underlying rules
for molecular interactions, so also I suspect that properties such as the
existence of seemingly continuous space, as well as certain features of
gravitation and gquantum mechanics, will emerge with many different
possible underlying rules for the universe.

But my guess is that when it comes to something like the
spectrum of masses of elementary particles—or perhaps even the
overall dimensionality of space—suoch properties will be quite specific
to particular underlying rules.

In traditional approaches to modelling, one usually tries first to
reproduce some features of a system, then goes on to reproduce others,
But if the ultimate rule for the universe is at all simple, then it follows
that every part of this rule must in a sense be responsible for a great
many different features of the universe, And as a result, it is not likely
to be possible to adjust individual parts of the rule without having an
effect on a whole collection of disparate features of the universe.

So this means that one cannot reasonably expect to use some kind
of incremental procedure to find the ultimate rule for the universe. But it
also means that if one once discovers a rule that reproduces sufficiently
many features of the universe, then it becomes extremely likely that this
rule is indeed the final and correct one for the whole universe.

And I strongly suspect that even in many of the most basic everyday
physical processes, every element of the underlying rule for the universe
will be very extensively exercised. And as a result, if these basic processes
are reproduced correctly, then I believe that one can have considerable
confidence that one in fact has the complete rule for the universe,

Looking at the history of physics, one might think that it would
he completely inadequate just to reproduce everyday physical processes.
For one might expect that there would always be some other esoteric
phenomenon, say in particle physics, that would be discovered and
would show that whatever rule one has found is somehow incomplete.
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But I do not think so. For if the rule for our universe is at all
simple, then T expect that to introduce a new phenomenon, however
esoteric, will involve modifying some basic part of the rule, which will
also affect even common evervday phenomena,

But why should we believe that the rule for our universe is in fact
simple? Certainly among all possible rules of a particular kind only a
limited number can ever be considered simple, and these rules are by
detinition somehow special. Yet looking at the history of science, one
might expect that in the end there would turn out to be nothing special
about the rule for our universe—just as there has turned out o be
nothing special about our position in the solar system or the galaxy.

Indeed, one might assume that there are in fact an infinite
number of universes, each with a different rule, and that we simply live
in a particular—and essentially arbitrary—one of them.

It is unlikely to be possible to show for certain that such a theory is
not correct. But one of its consequences is that it gives us no reason to
think that the rule for our particular universe should be in any way
simple. For among all possible rules, the overwhelming majority will not
be simple; in fact, they will instead tend to be almost infinitely complex.

Yet we know, T think, that the rule for our universe is not too
complex, For if the number of different parts of the rule were, for
example, comparable wo the number of different situations that have
ever arisen in the history of the universe, then we would not expect
ever to be able to describe the behavior of the universe using only a
limited number of physical laws.

And in fact if one looks at present-day physics, there are not only
a limited number of physical laws, but also the individual laws often
seem to have the simplest forms out of various alternatives. And
knowing this, one might be led to believe that for some reason the
universe is set up to have the simplest rules throughout.

But, unfortunately perhaps, I do not think that this conclusion
necessarily follows, For as T have discussed above, T strongly suspect
that the vast majority of physical laws discovered so far are not truly
fundamental, but are instead merely emergent features of the
large-scale behavior of some ultimate underlying rule. And what this



means is that any simplicity observed in known physical laws may
have little connection with simplicity in the underlying rule.

Indeed, it turns out that simple overall laws can emerge almost
regardless of underlving rules. And thus, for example, essentially as a
consequence of randomness generation, a wide range of cellular
automata show the simple density diffusion law on page 464—whether
or not their underlying rules happen to be simple.

S0 it could be that the laws that we have formulated in existing
physics are simple not because of simplicity in an ultimate underlying
rule, but rather because of some general property of emergent behavior
for the kinds of overall features of the universe that we readily perceive.

Indeed, with this kind of argument, one could be led to think that
there might be no single ultimate rule for the universe at all, but that
instead there might somehow be an infinite sequence of levels of rules,
with each level having a certain simplicity that becomes increasingly
independent of the details of the levels below it

But one should not imagine that such a setup would make it
unnecessary to ask why our universe is the way it is: for even though
certain features might be inevitable from the general properties of
emergent behavior, there will, T believe, still be many seemingly
arbitrary choices that have to be made in arriving at the universe in
which we live. And once again, therefore, one will have to ask why it
was these choices, and not others, that were made,

So perhaps in the end there is the least to explain if I am correct
that the universe just follows a single, simple, underlying rule.

There will certainly be questions about why it is this particular
rule, and not another one., And T am doubtful that such questions will
ever have meaningful answers.

But to find the ultimate rule will be 2 major triumph for science,
and a clear demonstration that at least in some direction, human
thought has reached the edge of what is possible.
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The Nature of Space

In the effort to develop an ultimate model for the universe, a crucial
first step is to think about the nature of space—for inevitably it is in
space that the processes in our universe occur,

Present-cday physics almost always assumes that space is a perfect
continuum, in which objects can be placed at absolutely any position.
But one can certainly imagine that space could work very differently.
And for example in a cellular automaton, space is not a continuum but
instead consists just of discrete cells.

In our everyday experience space nevertheless appears to be
continuous, But then so, for example, do fluids like air and water, And yet
in the case of these fluids we know that at an underlying level they are
composed of discrete molecules, And in fact over the course of the past
century a great many aspects of the physical world that at first seemed
continuous have in the end been discovered to be built up from discrete
elements. And I very strongly suspect that this will also be true of space,

Particle physics experiments have shown that space acts as a
continuum down to distances of around 107" meters—or a hundred
thouvsandth the radius of a proton. But there is absolutely no reason to
think that discrete elements will not be found at still smaller distances.

And indeed, in the past one of the main reasons that space has
been assumed to be a perfect continuum is that this makes it easier
to handle in the context of traditional mathematics, But when one
thinks in terms of programs and the kinds of systems I have
discussed in this book, it no longer scems nearly as attractive to
assume that space is a perfect continuum.

S0 if space is not in fact a continuum, what might it be? Could it,
tor example, be a regular array of cells like in a cellular automaton?

At first, one might think that this would be completely
inconsistent with  everyday  observations., For even though the
individual cells in the array might be extremely small, one might still
imagine that one would for example see all sorts of signs of the overall

orientation of the array.
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The pictures below show three different cellular automata, all set
up on the same two-dimensional grid. And to see the effect of the grid, I
show what happens when each of these cellular automata is started
from blocks of black cells arranged at three different angles,
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Exarmples of arientation dependence in the behavier of tao-thrmensional celluler autemata on e fked gnd. Thres diferent
initial conditicns, consssting of blocks at three diffarant angles, are shoven. For rules (&) and () the patterns producsd always
exhibit features that ramain eignad with diractons in the underying grid. But wath rela 2] esesntially the same rounded
pattenn 5 cbtained regardinss ol orentaton, The rubies showen bierg are auter ftalshic (&) d-rumighbrce code 468, (b 4-nmghi=sr
code G825 and o) B-reghdar code 726, In cases {2) and () 20 steps o evoluben sre used, mocase ) 100 sleps ae used,

In all cases the patterns produced follow at least to some extent
the orientation of the initial block. But in cases [a) and (b} the effects of
the underlying grid remain quite obvious—for the patterns produced
always have facets aligned with the directions in this grid. But in case
(c} the situation is different, and now the patterns produced turn out
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always to have the same overall rounded form, essentially independent
of their orientation with respect to the underlying grid.

And indeed what happens is similar to what we have seen many
times in this book: the evolution of the cellular avtomaton generates
enough randomness that the effects of the underlying grid tend to be
washed out, with the result that the overall behavior produced ends up
showing essentially no distinction between different directions in space.

S0 should one conclude from this that the universe is in fact a
giant cellular automaton with rules like those of case (c)?

It is perhaps not impossible, but T very much doubt it

For there are immediately simple issues like what one imagines
happens at the edges of the cellular automaton array. But much more
important is the fact that [ do not believe in the distinction between space
and its contents implied by the basic construction of a cellular automaton,

For when one builds a cellular automaton one is in a sense always
first secting up an array of cells to represent space itself, and then only
subsequently considering the contents of space, as represented by the
arrangement of colors assigned to the cells in this array.

But if the ultimate model for the universe is to be as simple as
possible, then it seems much maore plausible that both space and its
contents should somehow be made of the same stutf—so that in a sense
space becomes the only thing in the universe,

Several times in the past ideas like this have been explored. And
indeed the standard theory for gravity introduced in 1915 is precisely
based on the notion that gravity can be viewed merely as a feature of
space. But despite various attempts in the 1930s and more recently it
has never seemed possible to extend this to cover the whole elaborate
collection of forces and particles that we actvally see in our universe,

Yet my suspicion is that a large part of the reason for this is just
the assumption that space is a perfect continuum—described by
traditional mathematics. For as we have seen many times in this book,
if one looks at systems like programs with discrete elements then it
immediately becomes much easier for highly complex behavior to
emerge. And this is fundamentally what I believe is happening at the
lowest level in space throughout our universe,



Space as a Network

In the last section I argued that if the ultimate model of physics is to be
as simple as possible, then one should expect that all the features of our
universe must at some level emerge purely from properties of space. But
what should space be like if this is going to be the caser?

The discussion in the section before last suggests that for the
richest properties to emerge there should in a sense be as little rigid
underlying structure built in as possible. And with this in mind I
helieve that what is by far the most likely is that at the lowest level
space is in effect a giant network of nodes.

In an array of cells like in a cellular automaton each cell is always
assigned some definite position. But in a network of nodes, the nodes
are not intrinsically assigned any position. And indeed, the only thing
that is defined about each node is what other nodes it is connected to.

Yet despite this rather abstract setup, we will see that with a
sufficiently large number of nodes it is possible for the familiar properties
of space to emerge—together with other phenomena seen in physics.

I already introdoced in Chaprer 5 a particular tvpe of network in
which each node has exactly two outgoing connections to other nodes,
together with any number of incoming connections. The reason I chose
this kind of network in Chapter 5 is that there happens to be a fairly
easy way to set up evolution rules for such networks. But in trying to
tind an ultimate model of space, it seems best to start by considering
networks that are somehow as simple as possible in basic structure—
and it turns out that the networks of Chapter 5 are somewhat more
complicated than is necessary.

For one thing, there is no need to distinguish between incoming
and outgoing connections, or indeed to associate any direction with
each connection. And in addition, nothing fundamental is lost by
requiring that all the nodes in a network have exactly the same total
number of connections to other nodes,

With two connections, only very trivial networks can ever be
made. But if one uses three connections, a vast range of networks

immediately become possible, One might think that one could get a
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fundamentally larger range if one allowed, say, four or five connections
rather than just three. But in fact one cannot, since any node with more
than three connections can in efect alwavs be broken into a collection
of nodes with exactly three connections, as in the pictures on the left,

S0 what this means is that it is in a sense always sufficient tw
consider networks with exactly three connections at each node. And it
is therefore these networks that 1 will use here in discussing
tundamental models of space,

The pictures below show a few small examples of such networks.
And already considerable diversity is evident. But none of the networks
shown seem to have many properties familiar from ordinary space,
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So how then can one get networks that correspond to ordinary
space! The first step is to consider networks that have much larger
numbers of nodes. And as examples of these, the pictures at the top of
the facing page show networks that are specifically constructed to
correspond to ordinary one-, two- and three-dimensional space.,
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thres-dirmensonal. Thase rnetworks can be contmased foromeer, and all haee the propeny of beng
homogeneous, in the sense that evary node has an amircnment identical to ewvary other node,

Each of these networks is at the lowest level just a collection of
nodes with certain connections. But the point is that the overall pattern
of these connections is such that on a large scale there emerges a clear
correspondence to ordinary space of a particular dimension.

The pictures above are drawn so as to make this correspondence
obvious, But what if one was just presented with the raw pattern of
connections for some network!? How could one see whether the
network could correspond to ordinary space of a particular dimension?

The pictures below illustrate the main difficulty: given only its
pattern of connections, a particular network can be laid out in many
completely different ways, most of which tell one very little about its

potential correspondence with ordinary space,

S different ways of lyving out the same netwark. (al nodes aranged arcund a circle; (B nodes
arranged slong & line; {o) nodes armanged acress tha page according to distance fram e particular node;
dl 20 Bryout waih rslweor and spatial dstances a5 close a8 possibhe; {ek planar layout; (8 30 lagaur

S0 how then can one proceed? The fundamental idea is to look at
properties of networks that can both readily be deduced from their

pattern of connections and can also be identified, at least in some
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large-scale limit, with properties of ordinary space. And the notion of
distance is perhaps the most fundamental of such properties,

A simple way to define the distance between two points is to say
that it is the length of the shortest path between them. And in ordinary
space, this is normally calculated by subtracting the numerical
coordinates of the positions of the points. But on a network things
hecome more direct, and the distance between two nodes can be taken
to be simply the minimum number of connections that one has to
tolloww in order to get from one node to the other,

But can one tell just by looking at such distances whether a
particular network corresponds to ordinary space of a certain dimension?

To a large extent one can. And a test is to see whether there is a
way to lay out the nodes in the network in ordinary space so that the
distances between nodes computed from their positions in space
agree—at least in some approximation—with the distances computed
directly by following connections in the network,

The three networks at the top of the previous page were laid out
precisely so as to make this the case respectively for one, two and
three-dimensional space. But why for example can the second network not
be laid out equally well in one-dimensional rather than two-dimensional
space! One way to see this is to count the number of nodes that appear at a
given distance from a particular node in the network.

And for this specific network, the answer for this is very simple:
at distance r there are exactly 3 r nodes—so that the total number of
nodes out to distance r grows like r2. But now if one tried to lay out all
these nodes in one dimension it is inevitable that the network would
have to bulge out in order to fit in all the nodes. And it turns out that it
is uniquely in two dimensions that this particular network can be laid
out in a regular way so that distances based on following connections in
it agree with ordinary distances in space.

For the other two networks at the top of the previous page similar
arguments can be given. And in fact in general the condition for a
network to correspond to ordinary d-dimensional space is precisely that
the total number of nodes that appear in it out to distance r grows in

some limiting sense like »*—a result analogous to the standard
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while the volume of a three-dimensional sphere is 4/3n +* the volume

mathematical fact that the area of a two-dimensional circle is ©r

of a four-dimensional hypersphere is 1/2 7% r*, and 50 on,

Below I show pictures of various networks, In each case the first
picture is drawn to emphasize obvious regularities in the network, But
the second picture is drawn in a more systematic way—by picking a

specific starting node, and then laying out other nodes so that those at
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successively greater network distances appear in successive columns
across the page, And this setup has the feature that the height of
column r gives the number of nodes that are at network distance r,

So by looking at how these heights grow across the page, one can
see whether there is a correspondence with the #*' form that one
expects for ordinary 4-dimensional space. And indeed in case (g), for
example, one sees exactly r' linear growth, reflecting dimension 2.

Similarly, in case (d) one sees " growth, reflecting dimension 1,
while in case (h) one sees r* growth, reflecting dimension 3.

Case (f] illustrates slightly more complicated behavior, The basic
network in this case locally has an essentially two-dimensional form—
but at large scales it is curved by being wrapped around a sphere. And
what therefore happens is that for fairly small r one sees r' growth—
reflecting the local two-dimensional form—but then for larger v there is
slower growth, reflecting the presence of curvature,

Later in this chapter we will see how such curvatore is related o
the phenomenon of gravity. But for now the point is just that network [f)
again behaves very much like ordinary space with a definite dimension.

So do all sufficiently large networks somehow correspond to
ordinary space in a certain number of dimensions! The answer is
definitely no, And as an example, network (i) from the previous page
has a tree-like structure with 3" nodes at distance r. But this number
grows faster than »* for any d—implying that the network has no
correspondence to ordinary space in any finite number of dimensions.

If the connections in a network are chosen at random—as in case
li—then again there will almost never be the kind of locality that is needed
to get something that corresponds to ordinary finite-dimensional space.

So what might an actual network for space in our universe be like?

It will certainly not be as simple and regular as most of the
networks on the previous page. For within its pattern of connections
must he encoded everything we see in our universe,

And so at the level of individual connections, the network will
most likely at first look quite random. But on a larger scale, it must be
arranged so as to correspond to ordinary three-dimensional space. And
somehow whatever rules update the network must preserve this feature.



The Relationship of Space and Time

To make an ultimate theory of physics one needs to understand the true
nature not only of space but also of time. And I believe that here again the
idea of thinking in terms of programs provides some crucial insights.

In our everyday experience space and time seem very different. For
example, we can move from one point in space to another in more or less
any way we choose, But we seem to be forced to progress through time in
a very specific way. Yet despite such obvious apparent differences, almost
all models in present-day fundamental physics have been built on the idea
that space and time somehow work fundamentally the same.

But for most of the systems based on programs that T have discussed
in this book this is certainly not true, And thus for example in a cellular
automaton moving from one point in space to another just corresponds to
shifting from one cell to another, But moving from one point in time to
another involves actually applying the cellular automaton rule.

When we make a picture of the behavior of a cellular automaton,
however, we do nevertheless tend to represent space and time in the
same visual kind of wav—with space going across the page and time
going down, And in fact the basic notion of extending the idea of
position in space to an idea of position in time has been common in
scientific thought for more than five centuries.

But in the past century what has happened is that space and time
have come to be thought of as being much more fundamentally similar,
As we will discuss later in this chapter, the main origin of this is that in
relativity theory certain aspects of space and time seem to become
interchangeable. And from this there emerged the idea of thinking in
terms of a spacetime continuum in which time appears merely as a
tourth dimension just like the three ordinary dimensions of space,

S0 while in a system like a cellular automaton one typically
imagines that a new and separate state of the system is somehow
produced at each step in time, present-day physics more tends to think
of the complete history of the universe throughout time as being just a
single structure laid out in the four dimensions of spacetime.

S0 what then might determine the form of this structure?
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The laws of physics in effect provide a collection of constraints
on the structure. And while these laws are traditionally stated in terms
of sophisticated mathematical equations, their basic character is similar
to the simple constraints on arrays of black and white cells that 1
discussed at the end of Chapter 5 But now instead of defining
constraints just in space, the laws of physics can be thought of as
defining constraints on what can happen in both space and time.

Tust as for space, it is my strong belief that time is fundamentally
discrete, And from the discussion of networks for space in the previous
section, one might imagine that perhaps the whole history of the universe
in spacetime could be represented by a giant four-dimensional network.

By analogy with the systems at the end of Chapter 5 a simple
model would then be that this network is determined by the constraint
that around every one of its nodes the overall arrangement of other
nodes must match some particular template or set of templates,

Yet much as in Chapter 5 it turns out often not to be especially easy
to find out which networks, if any, satisfy specific constraints of this kind.
The pictures on the facing page nevertheless show results for quite a few
choices of templates—where in each case the dangling connections in a
template are taken to go to nodes that are not part of the template itself,

Pictures (a] and (b] show what happens with the two wvery
simplest possible templates—involving just a single node, In case (a), all
networks are allowed except for ones in which a node is connected
directly to itself. In case (b], only the single network shown is allowed.

With templates that involve nodes out to distance one there are a
total of 11 distinct non-trivial cases. And of these, 8 allow no complete
networks to be formed, as in picture [¢]. But there turn out to be three
cases—shown as pictures (c), {d) and (fl—in which complete networks
can be formed, and in each of these one discovers that a fairly simple
infinite set of networks are actually allowed.

In order to have a meaningful model for the universe, however,
what must presumably happen is that essentially just one network can
satisfy whatever constraints there are, and this one network must then
represent all of the complex spacetime history of our universe,
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S0 what does one find if one allows templates that include nodes
out to distance two? There are a total of 680 distinct non-trivial such
templates—and of these, 681 allow no complete networks to be formed,
as in case (gl. Six of the remaining templates then again allow an infinite
sequence of networks. Bue there are three templates—shown as cases
(th], (i) and {jl—that turn out to allow just single networks. These
networks are however rather simple, and indeed the most complicated
of them—case [il—has just 20 nodes, and corresponds to a dodecahedron.

S0 are there in fact reasonably simple sets of constraints that in
the end allow just one highly complex network, or perhaps a family of
similar networks? T tend to doubt it. For owr experience in Chapter 5
was that even in the much more rigid case of arrays of black and white
squares, it was rather difficult to find constraints that would succeed in
torcing anything but very simple patterns to occur,

S0 what does this mean for getting the kind of complexity that we
see in our universe? We have not had difficuley in getting remarkable
complexity from systems like cellular automata that we have discussed
in this book. But such systems work not by being required to satisfy
constraints, but instead by just repeatedly applying explicit rules.

S0 is it in the end sensible to think of the universe as a single
structure in spacetime whose form is determined by a set of
constraints? Should we really imagine that the complete spacetime
history of the universe somehow always exists, and that as time
progresses, we are merely exploring different pares of it? Or should we
instead think that the universe—more like systems such as cellular
automata—explicitly evolves in time, so that at each moment a new
state of the universe is in effect created, and the old one is lost?

Models based on traditional mathematical equations—in which
space and time appear just as abstract symbolic variables—have never
had to make much distinction between these two views, But in trying
to understand the ultimate underlying mechanisms of the universe, 1
believe that one must inevitably distinguish between these views.

And Istrongly believe that the second view is the one most likely
to provide a meaningful underlving model for our universe. But while
this view is closer to our evervday perceprion of time, it seems to



contradict the correspondence between space and time that is built into
most of present-day physics. 50 one might wonder how then it could be
consistent with experiments that have been done in physics?

One possibility, illustrated in the pictures below, is to have a
system that evolves in time according to explicit rules, but for these

rules to have built into them a symmetry between space and time.
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But I very much doubt that any such obvious symmetry between
space and time exists in the fundamental rules for our universe. And
instead what T expect is much like we have seen many times before in
this book: that even though at the lowest level there is no direct
correspondence  between space and time, such a correspondence
nevertheless emerges when one looks in the appropriate way at larger
scales of the kind probed by practical experiments.

As T will discuss in the next several sections, I suspect that for
many purposes the history of the universe can in fact be represented by
a certain kind of spacetime network, But the way this network is
formed in effect treats space and time racher differently, And in
particular—just as in a system like a cellular automaton—the network
can be built up incrementally by starting with certain initial conditions
and then applying appropriate underlying rules over and over again.

Any such rules can in principle be thought of as providing a set of
constraints for the spacetime network. But the important point is that
there is no need to do a separate search to find networks that satisfy
such constraints—Ifor the rules themselves instead immediately define

a procedure for building up the necessary network.

Time and Causal Networks

I argued in the last section that the progress of time should be viewed at
a fundamental level much like the evolution of a system like a cellular
automaton. But one of the features of a cellular automaton is that it is
set up to update all of its cells together, as if at each tick of some global
clock. Yet just as it seems unreasonable to imagine that the universe
consists of a rigid grid of cells in space, so also it seems unreasonable to
imagine that there is a global clock which defines the updating of every
element in the universe synchronized in time,

But what is the alternative? At first it may seem bizarre, but one
possibility that T believe is ultimately not too far from correct is that
the universe might work not like a cellular automaton in which all
cells get updated at once, but instead like a mobile automaton or Turing

machine, in which just a single cell gets updated at each step.



As discussed in Chapter 3—and illustrated in the picture on the
right—a mobile automaton has just a single active cell which moves
around from one step to the next. And because this active cell is the
only one that ever gets updated, there is never any issue about
synchronizing behavior of different elements at a given step,

Yet at first it might seem absurd to think that our universe could
work like a mobile automaton, For certainly we do not notice any kind
of active cell visiting different places in the universe in sequence. And
indeed, to the contrary, our perception is that different parts of the
universe seeim to evolve in parallel and progress through time together.

But it turns out that what one perceives as happening in a system
like a mohile automaton can depend greatly on whether one is looking
at the system from outside, or whether one is oneself somehow part of
the system, For from the outside, one can readily see each individual
step in the evolution of a mobile automaton, and one can tell that there
is just a single active cell that visits different parts of the system in
sequence. But to an observer who is actually part of the mobile
automaton, the perception can be quite different.

For in order to recognize that time has passed, or indeed that
anything has happened, the state of the observer must somehow change,
But if the observer itself just consists of a collection of cells inside a
maobile automaton, then no such change can occur except on steps when
the active cell in the mobile automaton visits this collection of cells.

And what this means is that between any two successive moments
of time as perceived by an observer inside the mobile automaton, there
can be a great many steps of underlying mobile automaton evolution.

If an observer could tell what was happening on every step, then
it would be easy to recognize the sequential way in which cells are
updated. But because an observer who is part of a mohile automaton can
in effect only occasionally tell what has happened, then as far as such
an observer is concerned, many cells can appear to have been updated in
parallel between successive moments of time,

To see in more detail how this works it could be that it would be
necessary to make a specific model for the observer. But in fact, it turns
out that it is sufficient just to look at the evolution of the mobile
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automaton not in terms of individual steps, but rather in terms of
updating events and the causal relationships between them.

The pictures on the facing page show an example of how this
works, Picture |a) is a version of the standard representation that I have
used for mobile automaton evolution elsewhere in the book—in which
successive lines give the colors of cells on successive steps, and the
position of the active cell is indicated at each step by a gray dot. The
subsequent pictures on the facing page all ultimately give essentially
the same information, but gradually present it to emphasize more a
representation in terms of updating events and causal relationships,

Picture (b) is very similar to [a], but shows successive steps of
mobile automaton evolution separated, with gray blobs in between
indicating “updating events” corresponding to each application of the
underlying mobile automaton rule, Picture (b still has a definite row of
cells tor each individual step of mobile automaton evolution, But in
picture (¢} cells not updated on a given step are merged together, vielding
vertical seripes of color that extend from one updating event to another,

So what is the significance of these stripes? In essence they serve
ti carry the information needed to determine what the next updating
event will be, And as picture (d} begins to emphasize, one can think of
these stripes as indicating what causal relationships or connections
exist between updating events.

And this notion then suggests a quite different representation for
the whole evolution of the mobile automaton. For rather than having a
picture based on successive individual steps of evolution, one can
instead form a network of the various causal relationships between
updating events, with each updating event being a node in this networl,
and each stripe being a connection from one node to another,
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stripas as connections babwaean updating events, Paicuras (el through {gl showe how a retework can
ba formed with nodas corresponding to updating events, Piztures th) and i) demonstrate that with
Ther particular urebeiying ke used boere & ighly regular nebwark 15 producaed, i
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Picture (e} shows the updating events and stripes from the top of
picture [d}, with the updating events now explicitly numbered.
Pictures (f) and (g] then show how one can take the pattern of
connectivity froim picture (e] and lay out the updating events as nodes
s0 as to produce an orderly network, And for the particular mobile
automaton rule used here, the network one gets ends up being highly
regular, as illustrated in pictures (h) and ().

S0 what is the significance of this network? It turns out that it can
be thought of as detining a structure for spacetime as perceived by an
observer inside the mobile automaton—in much the same way as the
networks we discussed two sections ago could be thouwght of as defining a
structure for space. Each updating event, corresponding to each node in
the network, can be imagined to take place at some point in spacetime.
And the connections between nodes in the network can then be thought
of as defining the pattern of neighbors for points in spacetime.

But unlike in the space networks that we discussed two sections
ago, the connections in the cavsal networks we consider here always go
only one way: each connection corresponds to a causal relationship in
which one event leads to another, but not the other way around.

This kind of directionality, however, is exactly what is needed if a
meaningful notion of time is to emerge, For the progress of time can be
defined by saving that only those events that occur later in time than a
particular event can be affected by that event,

And indeed the networks in pictures |g) through (i} on the
previous page were specifically laid out so that successive rows of nodes
going down the page would correspond, at least roughly, to events
occurring at successively later times,

As the numbering in pictures [e] through (g) illustrates, there is
no direct correspondence between this notion of time and the sequence
of updating events that occur in the underlying evolution of the mobile
automaton. For the point is that an observer who is part of the mobile
automaton will never see all the individual steps in this evolution. The
most they will be able to tell is that a certain network of causal
relationships exists—and their perception of time must therefore derive
purely from the properties of this network.



S0 does the notion of time that emerges actually have the
tamiliar features of time as we know it? One might think for example
that in a network there could be loops that would lead to a deviation
from the linear progression of time that we appear to experience. But in
fact, with a causal network constructed from an underlying evolution
process in the way we have done it here no such loops can ever occur.

S0 what about traces of the sequential character of evolution in the
original mobile automaton? One might imagine that with only a single
active cell being updated at each step ditferent parts of the system would
inevitably be perceived to progress through time one after another, But
what the pictures on page 489 demonstrate is that this need not be the
case. Indeed, in the networks shown there all the nodes on each row are in
effect connected in parallel to the nodes on the row below. So even though
the underlving rules for the mobile automaton involve no global
synchronization, it is nevertheless possible for an observer inside the
maobile automaton to perceive time as progressing in a synchronized way.

Later in this chapter I will discuss how space works in the context
of causal networks—and how ideas of relativity theory emerge. But for
now one can just think of networks like those on page 489 as being laid
out 50 that time goes down the page and space goes across. And one can
then see that if one follows connections in the network, one is always
forced to go progressively down the page, even though one is able to
maove both backwards and forwards across the page—thus agreeing with
pur everyday experience of being able to move in more or less any
direction in space, but always being forced to move onward in time.

So what happens with other mobile automata?

The pictures on the next two pages show a few examples.

Rules |a} and (b) vield very simple repetitive networks in which there
is in effect a notion of time but not of space. The underlying way any
mohile automaton works forces time to continue forever. But with rules (a)
and b} only a limited number of points in space can ever be reached.

The other rules shown do not, however, suffer from this problem:
in all of them progressively more points are reached in space as time
goes on. Rules (¢} and |d) vield networks that can be laid out in a quite
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regular manner. But with rules (e}, {f} and (g] the networks are more
complicated, and begin to seem somewhat random.

The procedure that is used to lay out the networks on the
previous two pages is a direct analog of the procedure used for space
networks on page 479 the row in which a particular node will be placed
is determined by the minimum number of connections that have to he
followed in order to reach that node starting from the node at the top.

In cases [a) and [c] the networks obtained in this way have the
property that all connections between nodes go either across or down
the page, But in every other case shown, at least some connections also
go up the page. So what does this mean for our notion of time? As
mentioned earlier, there can never be a loop in any causal network that
comes from an evolution process. But if one identifies time with
position down the page, the presence of connections that go up as well
as down the page implies that in some sense time does not always
progress in the same direction. Yer at least in the cases shown here
there is still a strong average flow down the page—agreeing with our
everyday perception that time progresses only in one direction.

Like in 0 many other systems that we have studied in this hook,
the randomness that we find in causal networks will inevitably tend to
wash out details of how the networks are constructed. And thus, for
example, even though the vnderlyving rules for a mobile automaton
always treat space and time very differently, the causal networks that
emerge nevertheless often exhibit a kind of uniform randomness in
which space and time somehow work in many respects the same.

But despite this uniformity at the level of causal networks, the
transformation from mobile automaton evolution to causal network is
often far from uniform. And for example the pictures at the top of the
tacing page show the cavsal networks for rules |e) and (f) from the
previnus page—hut now with each node numbered to specify the step of
maohile automaton evolution from which it was derived.

And what we see is that even nodes that are close to the top of the
causal network can correspond to events which occur after a large number
of steps of mobile automaton evolution. Indeed, to fill in just twenty rows



Causal nabworks comasponding 1o rulas fel and {) from page 293, with each node sxpbcithy absisd to
spactly frorm which Step of mobile autormaton evoluben it 1 dersed, Even to Gl in the st o rodes
of such cawsal networks, IMary stepa o uidlarlying mobike sutomaten esolution must be raced.

of the causal networks for rules (e} and [f) requires following the underlying
mobile automaton evolution for 2447 and 731 steps respectively.

One feature of cavsal networks is that they tell one not only what
the consequences of a particular event will be, but also in a sense what
its causes were. Thus, for example, if one starts, say, with event 17 in
the first causal network above, then to find out that its causes were
events 11 and 16 one simply has to trace backwards along the
connections which lead to it.

With the specific type of underlying mobile automaton used here,
every node has exactly three incoming and three outgoing connections.
And at least when there is overall apparent randomness, the networks
that one gets by going forwards and backwards from a particular node
will look very similar. In most cases there will still be small differences;
but the causal network on the right above is specifically constructed to
be exactly reversible—much like the cellular automata we discussed
near the beginning of this chapeer.

Looking at the causal networks we have seen so far, one may
wonder to what extent their form depends on the particular properties
of the underlying mobile automata that were used to produce them.

For example, one might think that the fact that all the networks
we have seen so far grow at most linearly with time muost be an
inevitable consequence of the one-dimensional character of the mobile

CHAPTER

]

495



STEFPHEMN WOLFREAM A MEW KIMD QF SCIEMCE

494

automaton rules we have used. But the picture below demonstrates that
even with such one-dimensional rules, it is actually possible to get
causal networks that grow more rapidly. And in fact in the case shown
below there are roughly a factor 1.22 more nodes on each successive
row—corresponding to overall approximate exponential growth,
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The causal network for a system is always in some sense dual to the
underlying evolution of the system. And in the case shown here the slow
growth of the region visited by the active cell in the underlyving evolution is
reflected in rapid growth of the corresponding causal network,

As we will see later in this chapter there are in the end some
limitations on the kinds of causal networks that one-dimensional
mobile automata and systems like them can produce. But with different
mobile automaton rules one can still already get tremendous diversity.

And even though when viewed from outside, systems like mobile
automata might seem to have almost none of the familiar features of
our universe, what we see is that if we as observers are in a sense part of
such systems then immediately some major features quite similar to
those of our universe can emerge,
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The Sequencing of Events in the Universe

In the last section I discussed one type of model in which familiar notions
of time can emerge without any kind of built-in global clock. The particular
models T used were based on mobile automata—in which the presence of a
single active cell forces only one event ever to occur in the universe at once.
But as we will see in this section, there is actually no need for the setup to
be so rigid, or indeed for there to be any kind of construct like an active cell,

One can think of mobile automata as being special cases of
substitution systems of the type I introduced in Chapter 3. Such systems
in general take a string of elements and at each step replace blocks of
these elements with other elements according to some definite rule.

The picture below shows an example of one such system, and
illustrates how—ijust like in a mobile automaton—relations between

updating events can be represented by a causal network.

Steps in the congtruction
of a causal network from
a  general substiiuhon

b ¥

systom, Tha substiufion systerm works by replacing
bloecks of eleaants 81 aach step according 1o the ule
shown. Each such updating event becornes a noda
in tha causal natwork. In tha case shown hsra, all
thea replacemants found to fit in a Bftto-night scan
are camed out at each slep.

i
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Substitution systems that correspond to mobile automata can be
thought of as having rules and initial conditions that are specially set up
s0 that only one updating event can ever occur on any particular step. But
with most rules—including the one shown on the previous page—there
are usually several possible replacements that can be made at each step.

One scheme for deciding which replacement to make is just to
scan the string from left to right and then pick the first replacement
that applies. This scheme corresponds exactly to the sequential
substitution systems we discussed in Chapter 3,

The pictures on the facing page show a few examples of what can
happen, The behavior one gets is often fairly simple, but in some cases
it can end up being highly complex. And just as in mobile anutomata, the
causal networks that emerge typically in effect grow linearly with time.
But, again as in mobile automata, there are rules such as (a) in which
there is no growth—and effectively no notion of space. And there are
also rules such as (fl—which turn out to be much more common in
general substitution systems than in mobile automata—in which the
causal network in effect grows exponentially with time.

But why do only one replacement at each step? The pictures on the
next page show what happens if one again scans from left to right, but
now one performs all replacements that fit, rather than just the first one.

In the case of rules (a] and (b) the result is to update every single
element at every step. But since the replacements in these particular
rules involve only one element at a time, one in effect has a
neighbor-independent substitution system of the kind we discussed on
page 82, And as we discovered there, such systems can only ever produce
rather simple behavior: each element repeatedly branches into several
others, yielding a causal network that has the form of a regular tree,

S0 what happens with replacements that involve more than just
one element? In many cases, the behavior is still gquite simple. But as
several of the pictures on the next page demonstrate, fairly simple rules
are sufficient—as in so many other systems that we have discussed in
this book—to obtain highly complex behavior.
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One may wonder, however, to what extent the behavior one sees
depends on the exact scheme that one uses to pick which replacements
to apply at each step. The answer is that for the vast majority of rules—
including rules |¢) through (g) in the picture on the facing page—using
different schemes vields quite different behavior—and a quite different
causal network.

But remarkably enough there do exist rules for which exactly the
same causal network is obtained regardless of what scheme is used. And
as it turns out, rules (a] and (b) from the picture on the facing page provide
simple examples of this phenomenon, as illustrated in the pictures below,

o

Thez behavior of rukes (&l and () fream the facing page when replacements ane parformed at randomm.
Even thowgh the detailad patems chtamad are differsnt, the causal natveorks in thess particular rules
that reprasent ralationships beteaan repfacamant svents ara ahvays exacthy the sama

For each rule, the three different pictures shown above
correspond to three different ways that replacements can be made. And
while the positions of particular updating events are different in every
picture, the point is that the network of causal connections between
these events is always exactly the same.

This is certainly not true for every substitution system. Indeed,
the pictures on the right show how it can fail, for example, for rule g|
from the facing page. What one sees in these pictures is that after
event 4, different choices of replacements are made in the two cases, and
the causal relationships implied by these replacements are different.

So what could ensure that no such situation would ever arise in a
particular substitution system? Essentially what needs to be true is that
the sequence of elements alone must always uniquely determine what

replacements can be made in every part of the system. One still has a
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choice of whether actually to perform a given replacement at a particular
step, or whether to delay that replacement until a subsequent step. But
what must be true is that there can never be any ambiguity about what
replacement will eventually be made in any given part of the system.

In rules like the ones at the wop of page 500 where each replacement
involves just a single element this is inevitably how things must work.
But what about rules that have replacements involving blocks of more
than one element? Can such rules still have the necessary properties?

The pictures below show two examples of rules that do. In the first
picture for each rule, replacements are made at randomly chosen steps,
while in the second picture, they are in a sense always made at the earliest
possible step. But the point is that in no case is there any ambiguity about
what replacement will eventually be made at any particular place in
the system. And as a result, the causal network that represents the
relationships between different updating events is always exactly the same,

Er:an'q:h: of substituhion Systems in which the Same causal nebworks ane
fa} ﬂ thf % cbtsined regardless of the wey in which replscemeants sme performad. In the

first pictura for each nle, the replacemants sma parforrmad essentially st
ranclom, In the sacond picture thay are parformed on the sarksst possible step. Mota that rule (af
-fl-:lnllll,' sorls the elkments m s anileal conditions, aheays placing black Bl v v ki,

S0 what underlying property must the rules for a substitution
system have in order to make the system as a whole operate in this
way?! The basic answer is that somehow different replacements must
never be able to interfere with each other. And one way to guarantee
this is if the blocks involved in replacements can never overlap.
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In both the rules shown on the facing page, the only replacement
specitied is for the block . And it is inevitably the case that in any
sequence of o's and w's different blocks of the form o do not overlap. Tf
one had replacements for blocks such as mm, o or mm then these could
overlap. But there is an infinite sequence of blocks such as m, o or s
for which no overlap is possible, and thus for which different
replacements can never interfere.

If a rule involves replacements for several distinct blocks, then to
avoid the possibility of interference one must require that these blocks
can never overlap either themselves or each other, The simplest
non-trivial pair of blocks that has this property is s, s, while the
simplest triple is mmwo, wwn, wwwo. And any substitution system
whose rules specify replacements only for blocks such as these is
guaranteed to vield the same causal network regardless of the order in
which replacements are performed.

In general the condition is in fact somewhat weaker. For it is not
necessary that no overlaps exist at all in the replacements—only that no
overlaps occur in whatever sequences of elements can actually he
generated by the evolution of the substitution systems.

And in the end there are then all sorts of substitution systems
which have the property that the causal networks they generate are
alwavs independent of the order in which their rules are applied.

S0 what does this mean for models of the universe?

In a system like a cellular automaton, the same underlying rule is
in a sense always applied in exact synchrony to every cell at every step.
But what we have seen in this section is that there also exist systems in
which rules can in effect be applied whenever and wherever one
wants—but the same definite causal network alwavs emerges.

So what this means is that there is no need for any built-in global
clock, or even for any mechanism like an active cell. Simply by choosing
the appropriate underlying rules it is possible to ensure that any sequence
of events consistent with these rules will vield the same causal network
and thus in effect the same perceived history for the universe,
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Uniqueness and Branching in Time

If our universe has no built-in global clock and no construct like an
active cell, then it is almost inevitable that at the lowest level there will
be at least some arbitrariness in how its rules can be applied.

Yet in the previous section we discovered the rather remarkable
fact that there exist rules with the property that essentially regardless of
how they are applied, the same cavsal network—and thus the same
perceived history for the universe—will always emerge.

But must it in the end actually be true that the underlying rules
for our universe force there to be a unique perceived history? Near the
end of Chapter 5 Tintroduced multiway systems as examples of systems
that allow multiple histories. And it turns out that multiway systems
are actually extremely similar in basic structure to the substitution
systems that I discussed in the previous section.

Both types of systems perform the same type of replacements on
strings of elements. But while in a substitution system one always
carries out just a single set of replacements at each step, getting a single
new string, in a multiway system one instead carries out every possible
replacement, thereby typically generating many new strings.

The picture below shows a simple example of how this works.
On the first step in this particular picture, there happens to be only one
replacement that can be performed consistent with the rules, so only a
single string is produced. But on subsequent steps several different
replacements are possible, so several strings are produced. And in
general every path through a picture like this corresponds to a possible

history that exists in the evolution of the multiway system.
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S0 is it conceivable that the ultimate model for our universe
could be based on a multiway system? At first one might not think so,
For our everyday impression is that our universe has just one definite
history, not some kind of whole collection of different histories,
And assuming that one is able to look at a muldway system from
the outside, one will immediately see that different paths exist
corresponding to different histories.

But the crucial point is that if the complete state of our universe
is in effect like a single string in a multiway system, then there is no
way for us ever to look at the multiway system from the outside. And as
entities inside the multdway svstem, our perception will inevitably be
that just a single path was followed, corresponding to a single history.

Ii one were able to look at the multiway system from the outside,
this path would seem quite arbitrary, But for us inside the multiway system
it is the unique path that represents the thread of experience we have had.

Up until a few centuries ago, it was widely believed that the
Earth had some kind of fundamentally unique position in space. But
gradually it became clear that this was not so, and that in a sense it was
merely our own presence that made our particular location in space
seem in any way unique. Yet for time the belief still exists that we—and
our universe—somehow have a unique history, But if in fact our
universe is part of a multiway system, then this will not be true. And
indeed the only thing that will be unique about the particular history
that our universe has had will be that it is the one we have experienced.

At a purely human level I find it rather disappointing to think
that essentially none of the details of our existence are in any way
unique, and that there might be other paths in the multiway system on
which everything would be different. And scientifically it is also
unsatisfying to have to say that there are features of our universe which
are not determined by any finite set of underlying rules, but are instead
in a sense just pure accidents of history associated with the particular
path that we have happened to follow in a multiway system.

In the early parts of Chapter 7 we discussed various possible
origins for the apparent randomness that we see in many natural
systems. And if the universe is described by a multiway system, then
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there will be an additional source of randomness: the arbitrariness of
the path corresponding to the history that we have experienced.

In many respects this randomness is similar to the randomness
from the environment that we discussed at the beginning of Chapter 7.
But an important difference is that it would occur even if one could in
effect perfectly isolate a system from the rest of the universe. If in the
past one had seen apparent randomness in such a system there might
have seemed to be no choice but to assume something like an
underlying multiway system. But one of the discoveries of this book is
that it is actually quite possible to generate what appears to be almost
perfect randomness just by following definite underlying rules.

And indeed I would not expect that observations of randomness
could ever reasonably be used to show that our universe is part of a
multiway system. And in fact my guess is that the only way to show
this with any certainty would be actually to find a specitic set of
multiway system rules with the property that regardless of the path
that gets followed these rules would always vield behavior that agrees
with the various ohserved features of our universe.

At some level it might seem surprising that a multiway system
could ever consistently exhibit any particular form of behavior. For one
might imagine that with so many different paths to choose from it
would often be the case that almost any behavior would be able to ocour
on some path or another. And indeed, as the picture on the left shows, it
is not difficult to construct multiway systems in which all possible
strings of a particular kind are produced.

But if one looks not just at individual strings but rather at the
sequences of strings that exist along paths in the multiway system,
then one finds that these can no longer be so arbitrary. And indeed, in
any multiway system with a limited set of rules, such sequences must
necessarily be subject to all sorts of constraints.

In general, each path in a multiway system can be thought of as
being defined by a possible sequence of ways in which the replacements
specified by a multiway system rule can be applied. And each such path
in turn then defines a cavsal network of the kind we discussed in the
previous section. But as we saw there, certain underlying rules have the



FIDHGAMEMTAL PHY

property that the form of this causal network ends up being the same
regardless of the order in which replacements are applied—and thus
regardless of the path that is followed in the multiway system.

The pictures below show some simple examples of rules with this
property, And as it turns out, it is fairly easy to recognize the presence of the
property from the overall pattern of multiway system paths that occur.
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If one starts from a given initial string, then typically one will
generate different strings by applying different replacements. But if one
is poing to get the same causal network, then it must alwavs be the case
that there are replacements one can apply to the strings one has
generated that yield the same final string. So what this means is that
any pair of paths in the multiway system that diverge must be able to
converge again within just one step—so that all the arrows in pictures
like the ones above must lie on the edges of quadrilaterals.

Most multiway systems, however, do not have exactly this
property, and as a result the causal networks that are obtained by
following different paths in them will not be absolutely identical. But it
still turns out that whenever paths can always eventually converge—even
if not in a fixed number of steps—there will necessarily be similarities on
a sufficiently large scale in the cavsal networks that are obtained.

At the level of individual events, the structure of the causal
networks will typically vary greatly. But if one looks at large enough
collections of events, these details will tend to be washed out, and

A

Exarnples of mulseay systems n which the
causel network sssociated with every path iz
sxacthy the same. All such multkvay syEtams
b thie progarty thatl every par ol paths wihech
caaroe at a paticular slhep can convargs agan
ot the follonwing step. The firat pobs sheasn hag
tha affect of sorbng the slameants in the string.
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regardless of the path one chooses, the overall form of causal network will
be essentially the same. And what this means is that on a sufficiently
large scale, the universe will appear to have a unique history, even though
at the level of individual events there will be considerable arbitrariness,

If there is not enough convergence in the multiway system it will
still be possible to get stuck with different types of strings that never
lead to each other. And if this happens, then it means that the history of
the universe can in effect follow many truly separate branches. But
whenever there is significant randomness produced by the evolution of
the multiway system, this does not typically appear to ocour.

So this suggests that in fact it is at some level not woo difficult for
multiway systems to reproduce our everyday perception that more or
less definite things happen in the universe. But while this means that it
might be possible for there to be arbitrariness in the causal network for
the universe, it still tends to be my suspicion that there is not—and that
i1 fact the particular rules followed by the universe do in the end have
the property that they always vield the same causal network,

Evolution of Networks

Earlier in this chapter, T sugpgested that at the lowest level space might
consist of a giant network of nodes. But how might such a network evolve!?

The most straightforward possibility is that it could work much
like the substitution svstems that we have discussed in the past few
sections—and that at each step some piece or pieces of the network
could be replaced by others according to some fixed rule.

The pictures at the top of the facing page show two very simple
examples. Starting with a network whose connections are like the
edges of a tetrahedron, hoth the rules shown work by replacing each
node at each step by a certain fixed cluster of nodes.

This setup is very much similar to the neighbor-independent
substitution systems that we discussed on pages 83 and 187, And just as in
these systems, it is possible for intricate structures o be produced, but the

structures always turn out to have a highly regular nested form.
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So what about more general substitution systems? Are there
analogs of these for networks? The answer is that there are, and they are
based on making replacements not just for individual nodes, but rather
for clusters of nodes, as shown in the pictures below.,
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In the substitution systems for strings discussed in previous sections,
the rules that are given can involve replacing any block of elements by any
other. But in networks there are inevitably some restrictions. For example,
if a cluster of nodes has a certain number of connections to the rest of the
network, then it cannot be replaced by a cluster which has a different
number of connections. And in addition, one cannot have replacements
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like the one on the left that go from a symmetrical cluster to one for which
a particular orientation has to be chosen.

But despite these restrictions a fairly large number of
replacements are still possible; for example, there are a total of 419
distinct ones that exist involving clusters with no more than five nodes.

So given a replacement for a cluster of a particular form, how
should such a replacement actually be applied to a network? At first
one might think that one could set up some kind of analog of a cellular
automaton and just replace all relevant clusters of nodes at once.

But in general this will not work. For as the picture below
illustrates, a particular form of cluster can in general appear in many
overlapping ways within a given network.

] it D e D D P (e £ P 0

The 12 weys mnowhich the cluster of nodas on tha laft accurs ina particelar natwerk. In the
partcular casa shown, aach waay tems cut to ovarlap with nodes in exactly four othars,

The issue is essentially no different from the one that we
encountered in previous sections for blocks of elements in substitution
systems on strings, But an additional complication is that in networks,
unlike strings, there is no immediately obvious ordering of elements.

Nevertheless, it is still possible to devise schemes for deciding
where in a network replacements should be carried out. One fairly
simple scheme, illustrated on the facing page, allows only a single
replacement to be performed at each step, and picks the location of this
replacement so as to affect the least recently updared nodes,

In each pair of pictures in the upper part of the page, the top one
shows the form of the network before the replacement, and the bottom
one shows the resule after doing the replacement—with the cluster of
nodes involved in the replacement being highlighted in both cases. In
the 3D pictures in the lower part of the page, networks that arise on
successive steps are shown stacked one on top of the other, with the
nodes involved in each replacement joined by gray lines.
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Inevitably there is a certain arbitrariness in the way these
pictures are drawn. For the underlying rules specify only what the
pattern of connections in a network should be—not how its nodes
should be laid out on the page. And in the effort o make clear the
relationship between networks obtained on different  steps, even
identical networks can potentially be drawn somewhat differently.

With rule (a), however, it is fairly easy to see that a simple nested
structure is produced, directly analogous to the one shown on page 509,
And with rule (b}, obvious repetitive behavior is obtained.

S0 what about more complicated behavior? It turns out that even
with rule (¢), which is essentially just a combination of rules (a} and (b),
significantly more complicated behavior can already occur.

The picture below shows a few more steps in the evolution of
this rule. And the behavior obtained never seems to repeat, nor do the
networks produced exhibit any kind of obvious nested form.
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What about other schemes for applying replacements! The
pictures on the facing page show what happens if at each step one allows
not just a single replacement, but all replacements that do not overlap.

It takes fewer steps for networks to be built up, but the results are
qualitatively similar to those on the previous page: rule [a) yields a nested
structure, rule |b] gives repetitive behavior, while rule [c] produces
behavior that seems complicated and in some respects random.
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Just as for substitution systems on strings, one can find causal
networks that represent the causal connections between different
updating events on networks. And as an example the pictures below show
such causal networks for the evolution processes on the previous page.

Cauzal networks that represent the relatonzhp between updating eventa for the
mxtwnrk evalution processss shown on the previcus page.

In the rather simple case of rule [a) the results turn out to be
independent of the updating scheme that was used. But for rules (b} and
|c), different schemes in general yield different causal networks.

S0 what kinds of underlying replacement rules lead to causal
networks that are independent of how the rules are applied? The
situation is much the same as for strings—with the basic criterion just
being that all replacements that appear in the rules should be for
clusters of nodes that can never overlap themselves or each other.

The pictures below show all possible distinet clusters with up to
five nodes—and all but three of these already can overlap themselves.
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But among slightly larger clusters there turn out to be many that do
not overlap themselves—and indeed this becomes common as soon as
there are at least two connections between each dangling one,

The first few examples are shown below, And in almost all of these,
there is no overlap not only within a single cluster, but also between
different clusters. And this means that rules based on replacements for
collections of these clusters will have the property that the causal
networks they produce are independent of the updating scheme used,

@ | M| X|e|X|w

canesal imanrance,

One feature of the various rules [ showed earlier is that they all
maintain planarity of networks—so that if one starts with a network
that can be laid out in the plane without any lines crossing, then every
subsequent network one gets will also have this property.

Yet in our everyday experience space certainly does not seem to
have this property. But beyond the practical problem of displaying what
happens, there is actually no fundamental difficulty in setting up rules
that can generate non-planarity—and indeed many rules based on the
clusters above will for example do this,

So in the end, if one manages o find the ultimate rules for the
universe, my expectation is that they will give rise to networks that on
a small scale look largely random. But this very randomness will most
likely be what for example allows a definite and robust value of 3 to
emerge for the dimensionality of space—even though all of the many
complicated phenomena in our universe must also somehow be
represented within the structure of the same network,

[
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Space, Time and Relativity

Several sections ago 1 argued that as observers within the universe
everything we can observe must at some level be associated purely with
the network of causal connections between events in the universe. And
in the past few sections T have outlined a series of types of models for
how such a causal network might actueally get built up.

But how do the properties of cavsal networks relate to our normal
notions of space and time? There turn out to be some slight subtleties—
but these seem to be exactly what end up vielding the theory of relativity.

As we saw in earlier sections, if one has an explicit evolution history
tor a system it is straightforward to deduce a causal network from it, But
given only a causal network, what can one say about the evolution history?

The picture below shows an example of how successive steps in a
particular evolution history can be recovered from a particular set of
slices through the causal network derived from it. But what if one were
to choose a different set of slices? In general, the sequence of strings
that one would get would not correspond to anything that could arise
from the same underlying substitution system,.

ol

An sxample of how the succession of states in an ewolution history can be recovarad by takng
appraprate $hees through a causal notwark, Aoy consistent choiee of such Shoes Wil cormsspond 1o
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detarmining the ordar in which (o apply replacemeants.
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But if one has a system that vields the same causal network
independent of the scheme used to apply its underlying rules, then the
situation is different. And in this case any slice that consistently divides
the causal network into a past and a future must correspond to a possible
state of the underlving system—and any non-overlapping sequence of
such slices must represent a possible evolution history for the system.

If we could explicitly see the particular underlying evolution
history for the system that corresponds to our universe then this would
in a sense immediately provide absolute information about space and
time in the universe, But if we can observe only the causal network for
the universe then our information about space and time must inevitably
be deduced indirectly from looking at slices of causal networks.

And indeed only some causal networks even yield a reasonahle
notion of space at all. For one can think of successive slices through a
causal network as corresponding to states at successive moments in time.
But for there to be something one can reasonably think of as space one has
to be able to identify some background features that stay more or less the
same—which means that the causal network must yield consistent
similarities between states it generates at successive moments in time.

One might have thought that if one just had an underlyving
system which did not change on successive steps then this would
immediately vield a fixed structure for space. But in fact, without
updating events, no causal network at all gets built up. And so a system
like the one at the top of the next page is about the simplest that can
vield something even vaguely reminiscent of ordinary space.

In practice T certainly do not expect that even parts of our
universe where nothing much seems to be going on will actually have
causal networks as simple as at the top of the next page. And in fact, as
I mentioned at the end of the previous section, what I expect instead is
that there will always tend to be all sorts of complicated and seemingly
random behavior at small scales—though at larger scales this will
typically get washed out to vyield the kind of consistent average
properties that we ordinarily associate with space.
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One of the defining features of space as we normally experience it
is a certain locality that leads most things that happen at some particular
position to be able at firse to affect only things very near them.

Such locality is built into the basic structure of systems like
cellular automata. For in such systems the underlying rules allow the
color of a particular cell to affect only its immediate neighbors at each
step. And this has the consequence that effects in such systems can
spread only at a limited rate, as manifest for example in a maximum

slope for the edges of patterns like those in the pictures below.

Examples of pattarns producad by callular avtomata, ilustrating the fact dscessad in Chapter G that
ther megm of each patbiern has & maxemurn shops equal 1o one ol per $lep, cormesponding to an
abszolute uppsr limit on the rate of informaton ransmesson—similar to the speed of kght in physics.

In physics there also seems w be a maximum speed at which the

effects of any event can spread: the speed of light, equal to about 300
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million meters per second. And it is common in spacetime physics to draw
"light cones™ of the kind shown at the right to indicate the region that will
be reached by a light signal emitted from a particular position in space at a
particular time, S0 what is the analog of this in a causal network?

The answer is straightforward, for the very definition of a causal
network shows that to see how the effects of a particular event spread one
just has to follow the successive connections from it in the causal network.

But in the abstract there is no reason that these connections
should lead to points that can in any way be viewed as nearby in space,
Among the various kinds of underlving systems that T have studied in
this book many have no particelar locality in their basic rules. But the
particular kinds of systems I have discussed for both strings and
networks in the past few sections do have a certain locality, in that each
individual replacement they make involves only a few nearby elements.

One might choose to consider systems like these just because it
seeins easier to specify their rules, But their locality also seems important
in giving rise to anything that one can reasonably recognize as space.

For without it there will tend to be no particular way to match up
corresponding parts in successive slices through the causal networks
that are produced. And as a result there will not be the consistency
hetween successive slices necessary to have a stable notion of space,

In the case of substitution systems for strings, locality of
underlying replacement rules immediately implies overall locality of
effects in the system. For the different elements in the system are always
just laid out in a one-dimensional string, with the result that local
replacement rules can only ever propagate efects to nearby elements in
the string—much like in a one-dimensional cellular automaton.

If one is dealing with an underlying system based on networks,
however, then the situation can be somewhat more complicated. For as
we discussed several sections ago—and will discuss again in the final
sections of this chapter—there will typically be only an approximate
correspondence between the structure of the network and the structure
of ordinary space. And so for example—as we will discuss later in
connection with quantum phenomena—there may sometimes be a
kind of thread that connects parts of the network that would not
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normally be considered nearby in three-dimensional space. And so
when clusters of nodes that are nearby with respect to connections on
the network get updated, they can potentially propagate effects to what
might be considered distant points in space.

Mevertheless, if a network is going to correspond to space as it
seems to exist in our universe, such phenomena must not be too
important—and in the end there must to a good approximation be the
kind of straighttorward locality that exists for example in the simple
causal network of page 518,

In the next section I will discuss how actual physical entities like
particles propagate in systems represented by causal networks. But
ultimately the whole point of causal networks is that their connections
represent all possible ways that effects propagate. Yet these connections
are also what end up defining our notions of space and time in a system.
And particularly in a causal network as regular as the one on page 518
one can then immediately view each connection in the causal network
as corresponding to an effect propagating a certain distance in space
during a certain interval in time.

S0 what about a more complicated causal network? One might
imagine that its connections could perhaps represent varying distances
in space and varving intervals in time, But there is no independent way
to work out distance in space or interval in time beyond looking at the
connections in the causal network, So the only thing that ultimately
makes sense is to measure space and time taking each connection in
the causal network to correspond to an identical elementary distance in
space and elementary interval in time.

One may guess that this elementary distance is around
10~ meters, and that the elementary time interval is around 107%
seconds, But whatever these values are, a crucial point is that their ratio
must be a fixed speed, and we can identify this with the speed of light. So
this means that in a sense every connection in a causal network can he
viewed as representing the propagation of an effect at the speed of light.

And with this realization we are now close to being able to see
how the kinds of systems I have discussed must almost inevitably
succeed in reproducing the fundamental features of relativity theory.,



But first we must consider the concept of motion.

To say that one is not moving means that one imagines one isina
sense sampling the same region of space throughout time. But if one is
moving—say at a fixed speed—then this means that one imagines that
the region of space one is sampling systematically shifts with time, as
illustrated schematically in the simple pictures on the right.

But as we have seen in discussing causal networks, it is in general
quite arbitrary how one chooses to match up space at different times,
And in fact one can just view ditferent states of motion as corresponding
to different such choices: in each case one matches up space so as to
treat the point one is at as being the same throughout time,

Motion at a fixed speed is then the simplest case—and the one
emphasized in the so-called special theory of relativity. And at least in
the context of a highly regular causal network like the one in the picture
on page 518 there is a simple interpretation to this: it just corresponds to
looking at slices at different angles through the causal network.,

Successive parallel slices through the causal network in general
correspond to successive states of the underlying system at successive
moments in time. But there is nothing that determines in any absolute
way the overall angle of these slices in pictures like those on page 518,
And the point is that in fact one can interpret slices at different angles
as corresponding to motion at different fixed speeds,

If the angle is so great that there are connections going up as well
as down between slices, then there will be a problem. But otherwise it
will always be the case that regardless of angle, successive slices must
correspond to possible evolution histories for the underlying system.

One might have thought that states obtained from slices at
different angles would inevitably be consistent only with different sets
of underlying rules. But in fact this is not the case, and instead the exact
same rules can reproduce slices at all angles. And this is a consequence
of the fact that the substitution system on page 518 has the property of
causal invariance—so that it gives the same causal network
independent of the scheme used to apply its underlying rules,

It is slightly more complicated to represent uniform motion in
causal networks that are not as regular as the one on page 518. But
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whenever there is sufficient uniformity to give a stable structure to
space one can still think of something like parallel slices at different
angles as representing motion at different fixed speeds.

And the crucial point is that whenever the underlying svstem is
causal invariant the exact same underlying rules will account for what
one sees in slices at different angles. And what this means is that in
effect the same rules will apply regardless of how fast one is going.

And the remarkable point is then that this is also what seems to
happen in physics, For evervday experience—together with all sorts of
detailed experiments—strongly support the idea that so long as there
are no effects from acceleration or external forces, physical systems
work exactly the same regardless of how fast they are moving,

At the outset it might not have seemed conceivable that any
system which at some level just applies a fixed program to various
underlying elements could successtully capture the phenomenon of
motion. For certainly a svstem like a typical cellular automaton does
not—since for example its effective rules for evolution at different
angles will usually be quite different. But there are two crucial ideas that
make motion work in the kinds of systems 1 am discussing here. First,
that causal networks can represent everything that can be observed, And
second, that with causal invariance different slices through a causal
network can be produced by the same underlying rules.

Historically, the idea that physical processes should always be
independent of overall motion goes back at least three hundred years.
And from this idea one expects for example that light should always
travel at its usual speed with respect to whatever emitted it. But what if
one happens to be moving with respect to this emitter? Will the light
then appear to be travelling at a different speed? In the case of sound it
would. But what was discovered around the end of the 1800s is that in
the case of light it does not. And it was essentially to explain this
surprising fact that the special theory of relativity was developed.

In the past, however, there seemed to be no obvious underlying
mechanism that could account for the validity of this basic theory, But
now it turns out that the kinds of discrete cavsal network models that I
have described almost inevitably end up being able to do this.



And essentially the reason for this is that—as I discussed above—
each individual connection in any causal network must almost by
definition represent propagation of effects at the speed of light. The
overall structure of space that emerges may be complicated, and there
may be objects that end up moving at all sorts of speeds. Buot at least
locally the individual connections basically define the speed of light as a
fixed maximum rate of propagation of any effect. And the point is that
they do this regardless of how fast the source of an effect may be moving.

So from this one can use essentially standard arguments to derive
all the various phenomena familiar from ordinary relativity theory, A
typical example is time dilation, in which a fixed time interval for a
system moving at some speed seems to correspond to a longer time
interval for a system at rest. The picture on the next page shows
schematically how this at first unexpected result arises.

The basic idea is to consider what happens when a system that
can act as a simple clock moves at different speeds. At a traditional
physics level one can think of the clock as having a photon of light
houncing backwards and forwards between mirrors a fixed distance
apart. But more generally one can think of following criss-crossing
connections that exist in some fixed fragment of a causal network.

In the picture on the next page time goes down the page. The
internal mechanism of the clock is shown as a zig-zag black line—with
each sweep of this line corresponding to the passage of one unit of time.

The black line is always assumed to be moving at the speed of
light—so that it always lies on the surface of a light cone, as indicated
in the top row of pictures. But then in successive pictures the whole
clock is taken to move at increasing fractions of the speed of light.

The dark gray region in each picture represents a fixed amount of
time for the clock—eorresponding to a fixed number of sweeps of the
black line. But as the pictures indicate, it is then essentially just a
matter of geometry to see that this dark gray region will correspond to
progressively larger amounts of time for a system at rest—in just the
way predicted by the standard formula of relativistic time dilation.
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Elementary Particles

There are some aspects of the universe—notably the structure of space
and time—that present-day physics tends to assume are continuous.
But over the past century it has at least become universally accepted
that all matter is made up of identifiable discrete particles.

Experiments have found a fairly small number of fundamentally
different kinds of particles, with electrons, photons, muons and the six
hasic types of quarks being a few examples. And it is one of the striking
observed regularities of the universe that all particles of a given kind—
say electrons—seem to be absolutely identical in their properties.

But what actually are particles? As far as present-day experiments
can tell, electrons, for example, have zero size and no substructure. But
particularly if space is discrete, it secems almost inevitable that electrons
and other particles must be made up of more fundamental elements.

So how might this work? An immediate possibility that I suspect
is actually not too far from the mark is that such particles are analogs of
the localized structures that we saw earlier in this book in systems like
the class 4 cellular automata shown on the right. And if this is so, then
it means that at the lowest level, the rules for the universe need make
no reference to particular particles. Instead, all the particles we see
would just emerge as structures formed from more basic elements.

In networks it can be somewhat difficult to visualize localized
structures, But the picture below nevertheless shows a simple example
of how a localized structure can move across a regular planar network,

Both the examples on this page show structures that exist on very
regular backgrounds. But to get any kind of realistic model for actual
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particles in physics one must consider structures on much maore
complicated and random backgrounds. For any network that has a
serious chance of representing actual space—even a supposedly empty
part—will no doubt show all sorts of seemingly random activity, So any
localized structure that might represent a particle will somehow have
to persist even on this kind of random background.

Yet at first one might think that such randomness would inevitably
disrupt any kind of definite persistent structure, But the pictures below
show two simple examples where it does not. In the first case, there are
localized cracks that persist, And in the second case, there are two
different tvpes of regions, separated by boundaries that act like localized

structures with definite properties, and persist until they annihilate.

Exarnplns of one-dimersional cellular sutomata that soppaon vanous forms of perssiont strecheores
even on largaely randoem backgrounds, These are 3-color tetaliatic rules with codes 284 and 1883,

So what about networks? It turns out that here again it is possible
ter get definite structures that persist even in the presence of
randomness. And to see an example of this consider setting up rules
like those on page 509 that preserve the planarity of networks.

Starting off with a network that is planar—so that it can be drawn
flat on a page without any lines crossing—such rules can certainly give
all sorts of complex and apparently random behavior, But the way the
rules are set up, all the networks they produce must seill be planar.

And if one starts off with a network like the one on the left that
can only be drawn with lines crossing, then what will happen is that the
non-planarity of the network will be preserved. But to what extent does
this non-planarity correspond to a definite structure in the network?



There are typically many different ways to draw a non-planar
network, each with lines crossing in different places. But there is a
tundamental result in graph theory that shows that if a network is not
planar, then it must always be possible o identify in it a specific part
that can be reduced to one of the two forms shown on the right—or just
the second form for a network with three connections at each node.

S0 this implies that one can in fact meaningfully associate a
definite structure with non-planarity. And while at some level the
structure can be spread out in the network, the point is that it must
alwavs in effect have a localized core with the form shown on the right.

In general one can imagine having several pieces of non-planarity in
a network—perhaps each pictured like a carrying handle. But if the
underlying rules for the network preserve planarity then each of these
pieces of non-planarity must on their own be persistent—and can in a
sense only disappear through processes like annihilating with each other.

So might these be like actual particles in physics?

In the realistic case of network rules for the vniverse, planarity as
such is presumably not preserved. But observations in physics suggest
that there are several quantities like electric charge that are conserved.
And ultimately the values of these quantities must reflect properties of
underlying networks that are preserved by network evolution rules,

And if these rules satisfy the constraine of causal invariance that I
discussed in previous sections, then I suspect that this means that they
will inevitably exhibit various additional features—perhaps notably
including for example what is usually known as local gauge invariance,

But what is most relevant here is that it seems likely that—much
as for non-planarity—nonzero values of quantities conserved by
network evolution rules can be thought of as being associated with
some sort of local structures or tangles of connections in the network,
And I suspect that it is essentially such structures that define the cores
of the various types of elementary particles that are seen in physics.

Before the results of this book it might have seemed completely
implausible that anything like this could be correct. For independent of
any specific arguments about networks and their evolution, traditional
intuition would tend to make one think that the elaborate properties of
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particles must inevitably be the result of an elaborate underlving setup.
But what we have now seen over and over again in this book is that in
fact it is perfectly possible to get phenomena of great complexity even
with a remarkably simple underlying setup. And I suspect that particles
in physics—with all their various properties and interactions—are just
vet another example of this very general phenomenon.

One immediate thing that might seem to suggest that elementary
particles must somehow be based on simple discrete structures is the
tact that their values of quantities like electric charge alwavs seem to be
in simple rational ratios, In traditional particle physics this is explained
by saying that many if not all particles are somehow just manifestations
of the same underlying abstract object, related by a simple fixed group
of symmetry operations. But in terms of networks one can imagine a
much more explicit explanation: that there are just a simple discrete set
of possible structures for the cores of particles—each perhaps related in
some quite mechanical way by the group of symmetry operations.

But in addition to quantities like electric charge, another important
intrinsic property of all particles is mass. And unlike for example electric
charge the observed masses of elementary particles never seem to be in
simple ratios—so that for example the muon is about 206. 7683 times the
mass of the electron, while the tau lepton is about 16,819 times the mass
of the muon. But despite such results, it is still conceivable that there
could in the end be simple relations between truly fundamental particle
masses—since it turns out that the masses that have actually been
observed in effect also include varying amounts of interaction energy.

A defining feature of any particle is that it can somehow move in
space while maintaining its identity. In traditional physics, such
maotion has a straightforward mathematical representation, and it has
not usually seemed meaningful to ask what might underlie it. But in
the approach that I take here, motion is no longer such an intrinsic
concept, and the motion of a particle must be thoughe of as a process
that is made up of a whole sequence of explicit lower-level steps.

So at first, it might seem surprising that one can even set up a
particular type of particle to move at different speeds. But from the
discussion in the previous section it follows that this is actually an



almost inevitable consequence of having underlying rules that show
causal invariance. For assuming that around the particle there is some
kind of uniformity in the causal network—and thus in the apparent
structure of space—taking slices through the cawsal network at an
appropriate angle will always make any particle appear to be at rest,
And the point is that causal invariance then implies that the same
underlying rules can be used to update the network in all such cases.

But what happens it one has two particles that are moving with
different velocities? What will the events associated with the second
particle look like if one takes slices through the causal network so that
the first particle appears to be at rest? The answer is that the more the
second particle moves between successive slices, the more updating
events must be involved. For in effect any node that was associated
with the particle on either one slice or the next must be updated—and
the more the particle moves, the less these will overlap, And in
addition, there will inevitably appear to be an asymmetry in the pattern
of events relative to whatever direction the particle is moving.

There are many subtleties here, and indeed to explain the
details of what is going on will no doubt require quite a few new and
rather abstract concepts. But the general picture that T believe will
emerge is that when particles move faster they will appear to have
more nodes associated with them.

Muost likely the intrinsic properties of a particle—like its electric
charge—will be associated with some sort of core that corresponds to a
definite network structure involving a roughly fixed number of nodes.
But I suspect that the apparent motion of the particle will be associated
with a kind of coat that somehow interpolates from the core to the
uniform background of surrounding space. With different slices through
the causal network, the apparent size of this coat can change. But I
suspect that the size of the coat in a particular case will somehow he
related to the apparent energy and momentum of a particle in that case.

An important fact in traditional physics is that interactions
between particles seem to conserve total energy and momentum. And
conceivably the reason for this is that such interactions somehow tend
to preserve the total number of network nodes, Indeed, perhaps in most
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situations—save those associated with the overall expansion of the
universe—the basic rules for the network at least on average just
rearrange nodes and never change their number.

In traditional physics energy and momentum are always assumed
to have continuous values, But just as in the case of position there is no
contradiction with sufficiently small underlying discrete elements.

As I will discuss in the last section of this chapter, quantum
mechanics tends to make one think of particles with higher momenta
as being somehow progressively less spread out in space, S0 how can
this be consistent with the idea that higher momentum is associaced
with having more nodes? Part of the answer probably has to do with the
fact that outside the piece of the network that corresponds to the
particle, the network presumably matches up to yvield uniform space in
much the same way as without the particle. And within the piece of the
network corresponding to the particle, the effective structure of space
may be very different—with for example more long-range connections
added to reduce the effective overall distance.

The Phenomenon of Gravity

At an opposite extreme from elementary particles one can ask how the
universe behaves on the largest possible scales. And the most obvious
effect on such scales is the phenomenon of gravity. So how then might
this emerge from the kinds of models T have discussed here?

The standard theory of gravity for nearly a century has been
general relativity—which is based on the idea of associating gravicy
with curvature in space, then specifying how this curvature relates to
the energy and momentum of whatever matter is present.

Something like a magnetic field in general has different effects on
objects made of different materials. But a key observation verified
experimentally to considerable accuracy is that gravity has exactly the
same effect on the motion of different objects, regardless of what those
objects are made of. And it is this that allows one to think of gravity as
a general feature of space—rather than for example as some type of force

that acts specifically on different objects.
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In the absence of any gravity or forces, our normal definition of
space implies that when an object moves from one point to another, it
always goes along a straight line, which corresponds to the shortest
path, But when gravity is present, objects in general move on curved
paths, Yer these paths can still be the shortest—or so-called geodesics—
if one takes space to be curved. And indeed if space has appropriate
curvature one can get all sorts of paths, as in the pictures below.

i)

1)

Exarnples of the affect of curvature n space on paths taken by objecta. In each case all the paths shown start paralked,
bt do med remain soowien there is curvaturs. The paths are geodesics which go the menamum distance on the sudface
tx get to 8l the points theay resch. (In genersd, the minimurn mey cnly be local) Case bl shows the top of a sphers,
which is a suface of postive curvature, Casa o) shows tha negatively cunvad swrfacs 7 =x" -, (@ a paraboloid
F=x" 1 |.-":' and {@l] 5 = T4+ 8)=—a rough analog o curvaiure m space produced by & sphaene ol mass

But in our actual universe what determines the curvature of
space! The answer from general relativity 15 that the Einstein equations
give conditions for the value of a particular kind of curvature in terms
of the energy and momentum of matter that is present. And the point

then is that the shortest paths in space with this curvature seem to be
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consistent with those followed by objects moving under the influence
of gravity associated with the given distribution of matter.

For a continuous surface—or in general a continuous space—the
idea of curvature is a familiar one in traditional geometry, But if the
universe is at an underlying level just a discrete network of nodes then
how does curvature work? At some level the answer is that on large
scales the discrete network must approximate continuous space.

But it turns out that one can actually also recognize curvature in
the basic structure of a network, If one has a simple array of hexagons—
as in the picture on the left—then this can readily be laid out flat on a
two-dimensional plane. But what if one replaces some of these
hexagons by pentagons? One still has a fundamentally two-dimensional
surface. But if one tries to keep all edges the same length the surface
will inevitably become curved—like a soccer ball or a geodesic dome.

S0 what this suggests is that in a network just changing the
pattern of connections can in effect change the overall curvatore. And
indeed the pictures below show a succession of networks that in effect

have curvatures with a range of negative and positive values,

Metworks with wvaricus limiting curdaberes, If every region n the network & in effect @ hexegon—as o the picture at the top of the
papge—then the network will Behave as if it is flat. But f pentagons are infroduced, as in the cases on the left, the network will
ncreasingly bshavae as if it has positive curvature—like part of a sphars. And if heptagons are introduced, as intha cases on thea right,
1har rebwork will Bahanee &5 & 1f has negatne curvaiun. [nthe Botlom ros of oo, Thie nebworks are lad out &6 on page 473, 2o that

succmssnae heights gree the numiber S nodes &t successve distances « frorm a parteular node, In the beent af Bege e, s numbaer s
approximataly {1 -k ¥ 4. ) wihara k turne out to be exactly proportional to the curvature.
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But how can we I'.:IELEr!ITli.TIE the curvature EI'IZ'I-ITI the structure IZ'I-'I
each network? Earlier in this chapter we saw that if a network is going
to correspond to ordinary space in some number of dimensions 4, then
this means that by going r connections from any given node one must
reach about ' nodes. But it turns out that when curvature is present
it leads to a systematic correction to this.

In each of the pictures on the facing page the network shown can
be thought of as corresponding to two-dimensional space. And this
means that to a first approximation the number of nodes reached must
increase linearly with r. But the bottom row of pictures show that there
are corrections to this, And what happens is that when there is positive
curvature—as in the pictures on the left—progressively fewer than r
nodes end up being reached. But when there is negative curvature—as
on the right—progressively more nodes end up being reached, And in
general the leading correction to the number of nodes reached turns out
to be proportional to the curvature multiplied by !,

S0 what happens in more than two dimensions? In general the
result could be very complicated, and could for example involve all
sorts of different forms of curvature and other characteristics of space.
But in fact the leading correction to the number of nodes reached is
always quite simple: it is just proportional to what is called the Ricci
scalar curvature, multiplied by ™', And already here this is some
suggestion of general relativity—for the Riccl scalar curvature also
turns out to be a central guantity in the Einstein equations.

But in trying to see a more detailed correspondence there are
immediately a variety of complications. Perhaps the most obvious is
that the traditional mathematical formulation of general relativity
seems to rely on many detailed properties of continuous space. And
while one expects that sufficiently large networks should in some sense
act on average like continuous space, it is far from clear at first how the
kinds of properties of relevance to general relativity will emerge.

If one starts, say, from an ordinary continuous surface, then it is
straightforward to approximate it as in the picture on the right by a
collection of flat faces. And one might think that the edges of these
faces would define a network of the kind I have been discussing,
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But in fact, such a network has vastly less information. For given
just a set of connections between nodes, there is no obvious way even to
know which of these connections should be associated with the same
face—let alone to work out anything like angles between faces,

Yet despite this, it turns out that all the geometrical features that
are ultimately of relevance to general relativity can actually he
determined in large networks just from the connectivity of nodes.

One of these is the value of the so-called Ricci tensor, which in
effect specities how the Ricci scalar curvature is made up from different
curvature components associated with different directions,

As indicated above, the scalar curvature associated with a
network is directly related to how many nodes lie within successive
distances r of a given node on the network—or in effect how many
nodes lie within successive generalized spheres around that node, And
it turns out that the projection of the Ricci tensor along a particular
direction is then just related to the number of nodes that lie within a
cylinder oriented in that direction. But even just defining a consistent
direction in a network is not entirely straightforward. But one way to do
it is simply to pick two points in the network, then to say that paths in
the network are going in the same direction if they are segments of the
same shortest path between those points. And with this definition, a
region that approximates a cylinder can be formed just by setting up
spheres with centers at every point on the path.

But there is now another issue to address: at least in its standard
formulation general relativity is set up in terms of properties not of
three-dimensional space but rather of four-dimensional spacetime. And
this means that what is relevant are properties not so much of specific
networks representing space, but rather of complete caunsal networks.

And one immediate feature of causal networks that differs from
space networks is that their connections go only one way. But it turns
out that this is exactly what one needs in order to set up the analog of a
spacetime Ricci tensor, The idea is to start at a particular event in the
causal network, then to form what is in effect a cone of events that can
be reached from there. To define the spacetime Ricci tensor, one
considers—as on page 516—a sequence of spacelike slices through this
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cone and asks how the number of events that lie within the cone
increases as one goes to successive slices. After f steps, the number of
events reached will be proportional to ¢, But there is then a correction
proportional to £+, that has a coefficient that is a combination of the
spacetime Ricel scalar and a projection of the spacetime Ricei tensor
along what is in effect the time direction defined by the sequence of
spacelike slices chosen.

S0 how does this relate to general relativity? Tt turns out that
when there is no matter present the Einstein equations simply state
that the spacetime Ricel tensor—and thus all of its projections—are
exactly zero, There can still for example be higher-order curvature, but
there can be no curvature at the level described by the Ricei tensor.

S0 what this means is that any causal network whose behavior
obeys the Einstein equations must at the level of counting nodes in a cone
have the same uniform structure as it would if it were going to correspond
to ordinary flat space. As we saw a few sections ago, many underlying
replacement rules end up producing networks that are for example too
extensively connected to correspond to ordinary space in any finite
number of dimensions. But [ suspect that if one has replacement rules
that are causal invariant and that in effect successfully maintain a fixed
number of dimensions they will almost inevitably lead to behavior that
follows something close to the Einstein equations.

Probably the situation is somewhat analogous to what we saw